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THE ONE-DIMENSIONAL HEAT EQUATION AS A
FIRST-ORDER SYSTEM :
FORMAL SOLUTIONS BY MEANS OF THE LAPLACE
TRANSFORM

(COMMUNICATED BY MARTIN HERMAN)

HEINZ TOPARKUS

ABSTRACT. In this paper an extended heat equation problem as a linear first-
order system of partial differential equations is considered. The classical prob-
lems in a strip S are assigned to our problems. Formal solutions are given by
one-dimensional Laplace transform.

1. THE PROBLEM

We consider a first-order system of partial differential equations for two real val-
ued functions u(z,t),v(z,t) and given functions f;(z,t):

U+f1(x7t)a u,v € Cl(R+X R+),

Uy

1
Up — Vg = falz, 1), fi € CRLxRy),i=1,2. W

In the case fi(x,t) # 0 this system is a more general problem as the conventional
one-dimensional heat equation [1, 12] with the inhomogeneous term fo(z,t) and
the solution u(z,t). We will see this below, when we look at the formal solutions.

We are looking for solutions of (1) in the strip S = (0,1) x Ry of the first quadrant
of the (x,t)-plane , I € R, .

Just like in the classical case of the heat equation [6, 8] we consider in S the four

Problems PiJ :

Give a solution [u,v]T of (1) inthedomain 0 <z <1, 0 <t < oo, with :
u satisfies limiio u(z,t) = f(x), 0 <z <, f(z)e C(0,1), and
for a fized PY, i, j e {1,2}, the solution satisfies
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11 . : _ : —
P Ilinjou(as,t) = ug(t), ml_l)rlriou(x,t) = uy(t),
P22 li = li =
dm o) =), lim o 0) = ull), o
12 : _ : —
P xl_l)rﬂou(x,t) = ugp(t), xliglzov(x,t) = (),
P2t lim v(z,t) = vo(t), lim w(z,t) = w(t),
x——+0 z—I1—0

where f andthe functions ug,u;, vy, v; € C(Ry) are given.

2. THE PROBLEM IN THE IMAGE RANGE, THE SOLUTION IN THE IMAGE RANGE

We now assume that the Laplace transform exists for all quantities which we are
using. We transform the problems (1), (2) from the t—domain (originals) into the
s—range (images) by Laplace transform:

Let

Llu(z, t);t](s) = /000 e Stu(x,t)dt = wi(x,s), shortly wu(x,t)o—ew(xz,s).

The transformation of the other quantities from (1), (2) into the s—range is de-
scribed in the following manner :

In the s—range we get the following system of ordinary differential equations
W1 o 0 1| [w; p1(x, ) 0 1| [w; ri(z, s)
e _ _ .«
{wg,m] L O} |:’lU2:| + [f(x) —o(x,8)| Df |s O] |wo + ro(x, s) (4)

Considering (2) we are now looking for solutions of the four boundary value
problems TTH (4),(4a) in the s—range:
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mr . w(0,5) = wi(s), wi(l,s) = wi(s),
22 . wy(0,5) = wi(s), wa(l,s) = wh(s),
(4a)
m2 . w(0,5) = wi(s), wa(l,s) = wh(s),
M2t . wy(0,5) = wi(s), wi(l,s) = wi(s).

The functions w?(s),wl(s),i = 1,2, are well-known from (3).

We can write problem IT!! using the "boundary matrices” B!, Bl11 and the right-
hand side g11:

1 0] [wi(0,s) 0 0f jwi(l,s)| _ p1n 11 _[wd(s)] _ an
o 0] [onlo ) 11 0] [t ] 58000+ w0 = [ £ 0t
Similarly we rewrite the remaining problems ITY from (4a) which have the corre-

sponding boundary matrices By, B’ and the right-hand sides 8%.

A particular solution of the initial value problem for a first-order system of lin-
ear inhomogeneous ordinary differential equations with constant coeflicients can be
found by the method referred to as ”Variation of the Parameters”.

For boundary value problems of the form (4),(4a) (linear inhomogeneous ordinary
first-order systems with constant coefficients and totally separated boundary con-
ditions) the method works too [4]. This is used in the following.

To construct the columns of the fundamental matrix ¥V which contains the princi-
pal solutions of the homogeneous system from (4) we make use of the eigenvalues
A1 = /8, A2 = —/s of the coefficient matrix of the homogeneous system from (4)
and of the corresponding eigenvectors

er=1[1, 5", ea=[-1, V5] :

eVst —e Vs
W(xv 5) = (5)
VeVt \Jsem Vi

As an exemplary case, in the sequel we give focus on the problem II'! from (4),
T
(4a), where r(z,s) = [ri(z,s) , ra(z,s)]

Using (5) and the boundary matrices Bj', Bj'! defined above, we define

MH5351W(o,s)+351wa,5):B 8} W(O,s)+ﬁ 8] W(L,s).  (6)

Thus, we obtain the solution of the inhomogeneous problem IT'! from (4), (4a):
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!
w(z,s) =W(x, s) Mfll Bt —|—/ g“(x,g,s) r(&,s)d¢ . (7)
0

Since the function G!! describes the influence of the left-hand and the right-hand
boundary of S on the solution of the problem IT'! at the position z, z € (0,1), it is
named influence function or Greens function.

With (7) we have

1 0
0 0
GH(z, & 5) = (8)

X 8] W)W 6s), v <t

Wiz, s) My [ 1 W(0,s)W=H(E,s), &<,

—W(x, s) M1_11 l

Let us abbreviate

S(x) > sinh(y/sz), C(z) > cosh(v/sz).

Then, Green’s function can be formulated as:

CS(r—— 1)~ S(tE—1) %{—C(m—g— D)+C(a+E— 1)

no_ 1
TS
—s{Clxz—&-D)+C(x+ -1} =S(@—&—-1D)+S(x+£-1) 7
1
L1 —S(x—E&+1)-8(x+£-1) ﬁ{—C(JJ—G—l)—i-C(x—i-E—l)}
T

—V/s{Cz—E+ D) +HC(z+€-1)}F  =S(x—E&+1) + S(x+£€ 1)

So we have in accordance with (7) the complete solution of IT*1:
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11 _sinhy/s(l—xz) | sinh/sz
wr (@) = sinh /sl W)+ o VAl sinh fl

1 [%sinhy/s(x —&—1) sinh/s(x — & + 1)
_5/0 smh Vs (&) - */T smh vl L&

wy(s)

9)
¥ cosh/s(x —&—1) 1 [!cosh/s(x —E+1)
2 /o V/ssinh /sl ra(§, 8)d€ — 2/, V/ssinh /sl

1 ["sinh/s(z+ €& —1) " cosh \/5(x + € — 1)
*5/0 sinh /sl ri(§$)dE + /s sinh /sl ra(€, 8)d¢

] (ga S)df

wal (x,5) = —

Vscosh/s(l—z) Vs cosh /sx
smh st L e i)

'V/scosh v/s(z—&— ) Vscosh/s(x —&+1)
/ sinh /sl (8, 8)dé - 7/ sinh /sl ri(&, 8)de

1 ["sinhy/s(z — €& 1) sinh \/3(z — £ + 1)
2 /0 sinh /sl a6 ) =3 /z sinh \fl r2(, 5)dg

Vs cosh/s(x + & —1) sinh /s(z + & — 1)
/ sinh /sl (&, s)d§ + 5 /0 sinh /51 ro(€, 5)dE .

Inserting the expressions (9), (9a) into the system (4) and looking at the boundary

conditions of IT*!, we see that [wi! ,w%l]T is indeed the solution of the inhomoge-
neous problem 1'[11.

In a similar manner we discuss the remaining problems IT22 T1'2? TI2! from (4),(4a);
we introduce the corresponding quantities

(3827312275227]\422)7 (3827-3[1275127]\4-12)7 (3317312175217]\421)
and obtain in analogy with (6), (7), (8), (9), (9a) the solutions

22(‘7: S) %2(3335) %l(zﬂs) (10)
w22 (z, ) wi2(z, ) w3 (z,s)|
Here, we don’t formulate the complete solutions (10) of the problems IT22, T12 T121
in analogy with (9), (9a). We give only the solutions of the corresponding homo-

geneous problems (ry(x,s) = ra(x,s) = 0 in (4)). So we can demonstrate at least,
which combinations of hyperbolic functions play an important part in the individual
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problems IT!, because only those quotients of hyperbolic functions, which appear
in the solution of the homogeneous problem also play a role in the solution of the
inhomogeneous problem. From these quotients we need the originals of the Laplace
transform to get the formal solution of the problems IT!:

1 1 1
w%zhom(z s) = m{*ﬁ coshy/s(l — x)-w3(s) + ﬁ coshy/sz-wh(s)},
(1)

o (,3) = S {sinh V(L =) - w(s) + sinh v - ().

12

W (8) = — ﬂ{coshf 50— ) - wl(s) + —sinh vz - wh(s))

Vs
{—/ssinh/5(l — z) - w)(s) 4 cosh /52 - wh(s)},
(11a)

1 1 .
W (25) = W{‘% sinh v/(1 — ) - w)(s) + cosh /5 - wl(s)}

W (2,5) = — ﬂ{coshf S — ) - wl(s) + V/asinh /5w - wh(s)} .

w%,zhom(xas) = COSh\[l

3. FORMAL SOLUTIONS OF THE PROBLEMS PU : THE SOLUTIONS OF THE
PROBLEMS II*” WILL BE TRANSFORMED BACK

We know that under the Laplace transform the originals of particular quotients
of hyperbolic functions are mainly Jacobian theta functions. We make use of theta
functions as real valued functions of real arguments and we write them as follows [7] :

1 > (T+n—7
O1(z,t) = it Z (=1)"e —QZ )te ™ Slnt )%, sin[(2n+1)7z],
1 = wtn)? = 1
O (z,t) = Nz Z (_1)n€_( = Z e~ 1) cos(2n + 1)ma],
n=—o00 n=0
(12)
1 > _ (@+n)? = _n2tn?
O3(x,t) = W= Z et = Zene - cos[2mna]
n=—oo n=0
1 (@+n+3)? > :
O4(z,t) = N Z e ¢t = Z(fl)"sne*”(zmz - cos[2mnx] ,
n=—o00 n=0

co=1,¢e,=2,n>0.
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Such theta functions are entire, transcendent functions of their arguments in the
upper half-plane H = {(z,t)] — 00 < z < 00,t > 0}. See the charts of the theta
functions in [10] and put ibidem ¢ = e~ ¢ .

For ¢ — 40 we have a characteristic behavior on the boundary of H. We observe,

see [3], that the terms, appearing in (12) in ©3(x,t),

_(=4n)?

ki(z,n) ;f et , neZz,

1~
5

establish w.r.t. the variable t a ” sequence of type ¢ ”, i.e. they converge for t — +0
to the §-distribution §(z + n) in the sense of convergence, which is valid in D'(R)
( D’ space of distributions) . The sum §(z+n) converges on its part in D’ [11], thus

hn+1 O3(x,t) = do, (z Z O(x+n)

n—=——oo

is a distribution (Dirac comb), which assigns each ¢ € D (D space of test functions)
the (per definition) finite sum > ;- o(k) .

Similar statements hold for the remaining ©-functions in (12).

The theta functions ©;(3;, lz), 1=1,2,3,4, (x,t) € H, satisfy the differential
equation

T ¢ Tz 1

e = Oy p)

This can be demonstrated with the help of (12) .

Now we have to transform back quotients of hyperbolic functions which are relevant
for our problem (4),(4a). For this purpose we give two tables [5, 7, 9]. We suppose
lv| <l,veR.

The tables Tab.1,Tab.2 present the orginals of hyperbolic functions in which we
are interested: the headers for a general argument v, the subsequent five lines for
the arguments named concretly in the first column.

O4(

B G CICRE o e
v 1040 (50 ) 1015 )

- —%93@ (%7 lg) 193(%772)
oo Lo, (P55 5 1095t )
r—E+1 %93@(%&57%) 1@):%(x;lg’l%)
r+E—1 %GSz(x;é.al%) %@3(“%;:5’%2)
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Tab.1
cosh /sv v, vt _sinh/sv vt
v cosh\fl Oii@l(i’ﬁ) /s cosh /sl e el(i’ﬁ)
1 rz t T
g 190 (g ) 19 G )
1 Tz t 1 T
Lo "9 G ) 19250 )
1 r—§& t 1 r—& t
roed "9 o) 190w
1 r—& t 1 r—& t
Z*£+l 79295( 2 ’ﬁ) 7@2( 2 7?)
1 r+& t 1 z+& ¢
rHE-t —792: (5 ) —7192 (5 )
Tab.2

The terms of the solutions in (9), (9a), (11), (11a) contain products of functions
depended on the variable s. Therefore we have convolutions in the t-domain.
Furthermore we have not considered hitherto in T'ab.1, T'ab.2 terms of such kind:

cosh /sv sinh /sv

il A N il Al
s \/ssinh /sl () § /s cosh /sl

h(s).
We treat such terms by the product rule pertaining to the s-range [7]
d t
s =5 () 2(9) o0 5 { [ - npcriar)
0

- / Fro(t—7) fa(r)dr + £1(0) falt), (13)

gi(s) e—o fi(t),i=1,2.
With (13) and Tab.1 we have

v t—T

¢
cosh v/sv h(s) a0 %/ @47t(El’T)H(T)dT"‘%@AL(%aO)H(t)a (14)
0

5 \/ssinh /sl
h(s) e—o H(t),

and especially in the t—domain for
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T t -7
=z, h(s) = w / Oue (5, ()T + 10425, 0) (),
J; t -7 1 T
l/:l—x, h(s): / @3 t ) O(T)dT—‘y-i@g(i,O)uO(t).
In the same way we get the originals of the remaining v-values (see T'ab.1) with

h(s) = ¢1(§,s) in (14).

In exactly the same manner we obtain with (13) and Tab.2

v t—T

sinh o ;/ 010 (5, V()4 101(2,0) H(t),  (15)

S. /s cosh /sl

h(s) s—o HI(1),

and especially in the ¢t —domain for

v=u, h(s) =w /@1t - t_T) ((T)dT + @( ;0) wi(t),
v=l—x, h(s) = u'(s) : 7/0@ o O(T)dT—&—%@z(%,O)uo(t).

In the same way we get the originals of the remaining v-values (see Tab.2) with
h(s) = ¢1(¢;s) in (15).

Now that the transformation into the t—domain has been accomplished for the
solutions (11), (11a) of the homogeneous problems and for the solutions of the cor-
responding inhomogeneous problems, we translate the solutions (9),(9a) as well as
the not explicitely listed solutions (10) term by term into the t—domain and obtain
formally explicit solutions for the problems P given in (1), (2).

Setting

r—& t—71 x+€ t—71
OF (@.6,t,7) = 01 (> — ) + 0 (5 )
r—& t—T r+& t—T

07 (x,€,t,7) = ©; (

ETERARE )~ Ol 20 ' 2 ),
i€{2,3},



THE ONE-DIMENSIONAL HEAT EQUATION AS A FIRST-ORDER SYSTEM 183

we can write the formal solutions for our problems in the strip S as:

T t—T r t—T1
/@335 —— uo(T)dT + - /@435 QZ’T)W(T)dT

/ @ (x,&,t,7) f1(&, 7)drdE + 21// @9 (x,&,t,7) fa(&, T)dTdE

L [eswme oo,
0

/ @3t )UO( d’T"— / @4t ;l tl_27_)ul('r)d7—
L pt
72ll/0\/0 @?’t(x,f,t,’r)fl(g, )def**/ @ :C E,T T).fl(f, ) g
L pt 1
to /0 /0 OF , (.6, ) olE, T)rdE + o /0 05 (2, ,4,0) f(€)de

1 T 1 T
- 7@3(570)%@) + 7@4(5’0)%@),

1 t
uzz(x,t):fj/ O3 (2l E vo T)dT + = /@4 — Yoy (T)dr

05 ,(x, & t, 1) f1(€, T)dTdE + — O (x,&,t,7) f2(&, 7)drdE
“a [ e T

l
‘o / OF (2, €,,0) f(€)de

:—7/ @395 )Uo( Ydr + - /@4a: ;l tl_zT)Ul(T)dT
L pt
_%/0/0 @gt(x,g,taT)fl(gv )def_i/ @@ J? 577— T)fl(g t) §

b [ [ ot g tmnenasac + 3 [ 65 men o,
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/ 09,2 uo T)dr + = / 1 ( E t_T Ju(T)dr
L pt brt
— % /()/0 ega,$(x7 fa t7 T)fl (53 T)de& + % /0/(; 626(1:7 67 t? T)f2(§7 T)def

l
N % / 0 (x, €,1,0) f(€)dE ,

1 [ enr . i + 1 [ 00 (5 S u(ryer
I pt
‘%/0/0 @?t(m,é,t,T)f1(£7T)de€—*/ OF (2.6, 7. 116 1)

21// 0% (x.6,1.7) fo(é, )d¢d§+21/ 05, (x.£.1,0) F(€)de

- *@2( ,0)uo(t),

z t—T r t—T

1t 1/t
u21($,t) = 77/0 O, (?Z’ZT)UO(T)dT+7/O @1713(%,[72)’&1(7')(17'
// oS (z,&,t,7) f1(€, T)drdé + — // OF (x,&,t,7) f2(€, T)drdE

l
‘o /O OF (2, €,,0) f(€)de

r t—T1

o= l/ @2t )uo( dT—’_l/ O1,x ( 2l7lT)Ul(T)dT
1 Lot 1 l
_27/0/0 ®§'it(x,§7t,7)f1(£,7)d7d£—27/0 9?(%5,7,7)]‘1(5,15)(15

21// 05 ,(z,&,t,7) f2(, )d7d5+2l/ O3 ,(x,&,,0)f(&)d¢

- *@2( ; 0)uo(t) -

Each permitted input f,ug,vo,u;,v;, on the three sides of the strip S according
to (1),(2) leads to a formal solution (u(z,t),v(x,t)), 0 <t <t., =z € (0,1), i.e
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each permitted initial state has a solution for the interior of the strip and for the
closure of the strip at ¢t = t.,x € (0,1).

The problem (1),(2) therefore describes evolutionary problems. The point is that
the problems P1J are initial value problems in the strip S.

It needs to be explained in full detail that the formal solutions (P'"), (P??), (P'?),
(P?") solve the problem (1), (2), i.e. that they satisfy the assumption of a theorem
concerning existence and unity. We recall that [1, 12] contain proofs of theorems
concerning existence and unity of the solution of the homogeneous and the inho-
mogeneous heat equation of second order in the strip S. In order to prove such a
theorem for the problem (1), (2), more work is needed.

If we reduce (1), (2) to the classical heat equation of second order and we adopt the
assumptions of the theorems in [1, 12] and we look at the remaining parts of the
solution u!(z,t) of (P'), u?2(x, t) of (P*?), we obtain solutions which are identical
to those in [1, 12].
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