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ON q-INTEGRAL TRANSFORMS AND THEIR APPLICATIONS

(COMMUNICATED BY R.K. RAINA)

DURMUŞ ALBAYRAK, SUNIL DUTT PUROHIT AND FARUK UÇAR

Abstract. In this paper, we introduce a q-analogue of the P-Widder trans-
form and give a Parseval-Goldstein type theorem. Furthermore, we evaluate

the q-Laplace transform of a product of q-Bessel functions. Several special

cases of our results are also pointed out.

1. Introduction, Definitions and Preliminaries

In the classical analysis, a Parseval-Goldstein type theorem involving the Laplace
transform, the Fourier transform, the Stieltjes transform, the Glasser transform, the
Mellin transform, the Hankel transform, the Widder-Potential transform and their
applications are used widely in several branches of Engineering and applied Math-
ematics. Some integral transforms in the classical analysis have their q-analogues
in the theory of q-calculus. This has led various workers in the field of q-theory
for extending all the important results involving the classical analysis to their q-
analouges. With this objective in mind, this paper introduces q-analogue of the
P-Widder potential transform and establishes certain interesting properties for this
integral transform.

Throughout this paper, we will assume that q satisfies the condition 0 < |q| < 1.
The q-derivative Dqf of an arbitrary function f is given by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
,

where x 6= 0. Clearly, if f is differentiable, then

lim
q→1−

(Dqf)(x) =
df(x)

dx
.

2000 Mathematics Subject Classification. Primary 05A30, 33D05; Secondary 44A10,44A20.
Key words and phrases. q-Calculus, q-Laplace transform, q-analogue of P-Widder transform

and q-Bessel function.
c©2012 Universiteti i Prishtinës, Prishtinë, Kosovë.
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Before we continue, let us introduce some notation that is used in the remainder of
the paper. For any real number α,

[α] :=
qα − 1

q − 1
.

In particular, if n ∈ Z+, we denote

[n] =
qn − 1

q − 1
= qn−1 + · · ·+ q + 1.

Following usual notation are very useful in the theory of q-calculus:

(a; q)n =
n−1∏
k=0

(
1− aqk

)
, (a; q)∞ =

∞∏
k=0

(
1− aqk

)
,

(a; q)t =
(a; q)∞

(aqt; q)∞
( t ∈ R).

It is well known that in the literature there are two types of the q-Laplace transform
and studied in details by many authors. Hahn [4] defined q-analogues of the well-
known classical Laplace transform

φ(s) =

∫ ∞
0

exp(−st)f(t)dt (<(s) > 0) , (1)

by means of the following q-integrals:

Lq{f(t); s} = qLs{f(t)} =
1

1− q

∫ s−1

0

Eq(qst)f(t)dqt (<(s) > 0) , (2)

and

Lq{f(t); s} = qLs{f(t)} =
1

1− q

∫ ∞
0

eq(−st)f(t)dqt (<(s) > 0) , (3)

where the q-analogues of the classical exponential functions are defined by

eq(t) =

∞∑
n=0

tn

(q; q)n
=

1

(t; q)∞
(|t| < 1) , (4)

and

Eq(t) =

∞∑
n=0

(−1)nqn(n−1)/2tn

(q; q)n
= (t; q)∞ (t ∈ C) . (5)

By virtue of the q-integral (see [6, 11, 3])∫ ∞
0

f(t)dqt = (1− q)
∞∑

k=−∞

qkf(qk), (6)

the q-Laplace operator (3) can be expressed as

qLs{f(t)} =
1

(−s; q)∞

∑
k∈Z

qk(−s; q)k f(qk). (7)

Throughout this paper, we will use Lq instead of qLs.

The improper integral (see [8] and [6]) is defined by∫ ∞/A
0

f(x)dqx = (1− q)
∑
k∈Z

qk

A
f(
qk

A
). (8)
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The q-analogue of the integration theorem by a change of variable can be started
when u (x) = αxβ , α ∈ C and β > 0, as follows:∫ u(b)

u(a)

f (u) dqu =

∫ b

a

f (u (x))Dq1/βu (x) dq1/βx. (9)

As a special cases of the formula (9), one has the following reciprocity relations:∫ A

0

f(x)dqx =

∫ ∞/A
q/A

1

x2
f(

1

x
)dqx,∫ ∞/A

0

f(x)dqx =

∫ ∞·A
0

1

x2
f(

1

x
)dqx. (10)

Furthermore, the q-hypergeometric functions and well-known q-special functions
are defined by (see [9] and [7]):

rφs

[
a1 a2 · · · ar
b1 b2 · · · bs

; q, z

]
=
∞∑

n=0

(a1; q)n (a2; q)n · · · (ar; q)n
(q; q)n (b1; q)n · · · (bs; q)n

[
(−1)n q

(
n
2

)]1+s−r

zn,

rψs

[
a1 a2 · · · ar
b1 b2 · · · bs

; q, z

]
=

∞∑
n=−∞

(a1; q)n · · · (ar; q)n
(b1; q)n · · · (bs; q)n

[
(−1)n q

(
n
2

)]s−r

zn

and

Γq (α) =

∫ 1/(1−q)

0

xα−1Eq (q (1− q)x) dqx (α > 0) , (11)

Γq (α) = K (A;α)

∫ ∞/A(1−q)

0

xα−1eq (− (1− q)x) dqx (α > 0) , (12)

Bq (t; s) =
Γq (t) Γq (s)

Γq (t+ s)
(t, s ∈ R) , (13)

where last two representations are based on the following remarkable function (see
[7, p.15])

K (A; t) = At−1 (−q/A ; q)∞
(−qt/A ; q)∞

(−A ; q)∞
(−Aq1−t ; q)∞

(t ∈ R) . (14)

Recently Uçar and Albayrak [12] introduced q-analogues of the L2-transfom in
terms of the following q-integrals:

qL2 {f (t) ; s} =
1

1− q2

∫ 1/s

0

t Eq2(q2s2t2)f(t)dqt (<(s) > 0) , (15)

and

qL2 {f (t) ; s} =
1

1− q2

∫ ∞
0

t eq2(−s2t2)f(t)dqt (<(s) > 0) . (16)

In the same article [12], the author established an interesting relation between qL2

and Lq transforms, namely

qL2 {f (t) ; s} =
1

[2]
Lq2

{
f
(
t1/2

)
; s2
}
. (17)

The paper is organized in the following manner. In the next two sections we intro-
duce a q-analogue of the P-Widder potential transform and establish a Parseval-
Goldstein type theorem and its corollaries involving q-analogue of the P-Widder
and L2-Laplace transforms. Whereas in Section 4, we evaluate the q-Laplace trans-
form of a product of basic analogue of the Bessel functions. Several special cases
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and examples of our results are also pointed out in the concluding section.

2. q-Analogue of The P-Widder Transform

Widder [13] has presented a theory of the integral transform

P {f (x) ; y} =

∫ ∞
0

xf (x)

x2 + y2
dx,

in the real domain which is formally equivalent to the iterated L2 transform.

Definition [2] A function f is q-integrable on [0,∞) if the series
∑
n∈Z q

nf (qn)
converges absolutely.

We write L1
q(Rq) for the set of all functions that are absolutely q-integrable on

[0,∞), where Rq is the set
Rq = {qn : n ∈ Z} ,

that is

L1
q (Rq) :=

{
f :
∑
n∈Z

qn |f (qn)| <∞

}

:=

{
f :

1

1− q

∫ ∞
0

|f (x)| dqx <∞
}
.

Now we introduce the following q-integral transform, which may be regarded as
q-extension of the P-Widder potential transform.

Definition 2.1. A q-analogue of P-Widder potential transform will be denoted Pq
and defined by the following q-integral:

Pq {f (x) ; s} =
1

1− q2

∫ ∞
0

x

s2 + q2x2
f (x) dqx, (<(s) > 0) . (18)

In view of (8), (18) can be expressed as

Pq {f (x) ; s} =
1

1 + q

∑
n∈Z

q2n

s2 + q2+2n
f (qn) . (19)

Now we prove the following theorem that provide the existence and convergence
for the Pq-transform:

Theorem 2.1. If f ∈ L1
q (Rq) , then the improper q-integral defined by (18) is

well-defined.

Proof. From (19), we have

|Pq {f (x) ; s}| ≤ 1

1 + q

∑
n∈Z

∣∣∣∣ q2n

s2 + q2+2n

∣∣∣∣ |f (qn)| .

Since

{
qn

s2 + q2+2n
: n ∈ Z

}
is bounded, then there exists a K ∈ R+ such that∣∣∣∣ qn

s2 + q2+2n

∣∣∣∣ < K. Thus, we have

|Pq {f (x) ; s}| ≤ K

1 + q

∑
n∈Z

qn |f (qn)| .
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On the other hand, since f ∈ L1
q (Rq), there is a M ∈ R+ such that

1

(1− q)

∫ ∞
0

|f (x)| dqx =
∑
n∈Z

qn |f (qn)| = M <∞.

Hence we have

|Pq {f (x) ; s}| ≤ MK

1 + q
<∞.

This completes to proof. �

3. Main Theorems and Applications

Proposition 3.1. For A, t ∈ R, we have

lim
q→1−

K (A; t) = 1.

Proof. Multiplying numerator and denominator of K (A; t) by (1 + 1/A) , we get

K (A; t) = At−1 (1 + 1/A) (−q/A; q)∞
(1 + 1/A) (−qt/A; q)∞

(−A; q)∞
(−q1−tA; q)∞

= At
(−1/A; q)∞
(−qt/A; q)∞

(−qA; q)∞
(−q1−tA; q)∞

.

and then using the formula as q → 1− (see [3, p. 9, 1.3.18])

(aqt; q)∞
(a; q)∞

= 1φ0

(
qt;−; q, a

)
→ 1F0 (t;−; a) = (1− a)−t, |a| < 1, t real

into last expression, we obtain

lim
q→1−

K (A; t) = lim
q→1−

At
(−1/A; q)∞
(−qt/A; q)∞

(−qA; q)∞
(−q1−tA; q)∞

= lim
q→1−

At
1

1φ0 (qt;−; q,−1/A)

1

1φ0 (q−t;−; q,−qA)

= At
(

1 +
1

A

)t
(1 +A)

−t

= 1.

This completes to proof. �

Theorem 3.1. The Pq-Widder transform can be regarded as iterated qL2-Laplace
transforms as under:

qL2 {qL2 {f (x) ; s} ; t} =
1

[2]
Pq {f (x) ; t} , (20)

provided that the q-integrals involved converge absolutely.

Proof. On using the definition of the qL2-Laplace transform (16) the left-hand side
of (20) (say I) reduces to

I =
1

(1− q2)
2

∫ ∞
0

seq2
(
−t2s2

)(∫ ∞
0

xeq2
(
−s2x2

)
f (x) dqx

)
dqs. (21)
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Interchanging the order of the q-integration in (21), which is permissible by the
absolute convergence of q-integrals, we obtain

I =
1

(1− q2)
2

∫ ∞
0

xf (x)

(∫ ∞
0

seq2
(
−
(
t2 + q2x2

)
s2
)
dqs

)
dqx.

In view of the definition (16), we obtain

I =
1

1− q2

∫ ∞
0

qL2

{
1;
(
t2 + q2x2

)1/2}
xf (x) dqx.

On setting f(x) = 1 and s =
(
t2 + q2x2

)1/2
in (17) and then using the formula

Lq2{1; s2} =
1

s2
, we get the desired result

I =
1

[2]

1

1− q2

∫ ∞
0

xf (x)

t2 + q2x2
dqx

=
1

[2]
Pq {f (x) ; t} .

�

Corollary 3.1. If −2 < α < 0 then the following formula holds:

Pq {xα; t} =
1

[2]

1

1− q2

Bq2 (1 + α/2;−α/2)

K (1; 1 + α/2)K (1/t2;−α/2)
tα, (22)

where K(A; t) is given by (14).

Proof. On setting f(x) = xα and make use of the known result due to Uçar and
Albayrak [12], namely

qL2 {xα; s} =
1

[2]

Γq2 (1 + α/2)

K (1/s2; 1 + α/2)

(
1− q2

)α/2
sα+2

(−2 < α < 0),

the identity (20) of Theorem 3.1 give rise to

Pq {xα; t} = [2]

{
qL2

{
1

[2]

Γq2 (1 + α/2)

K (1/s2; 1 + α/2)

(
1− q2

)α/2
sα+2

; t

}}

= Γq2 (1 + α/2)
(
1− q2

)α/2
qL2

{
s−α−2

K (1/s2; 1 + α/2)
; t

}
.

Using the series representation of the qL2-transform, we obtain

Pq {xα; t} = Γq2 (1 + α/2)
(
1− q2

)α/2 1

[2]

1

(−t2; q2)∞

∑
n∈Z

q2n (qn)
−α−2 (−t2; q2

)
n

K (1/q2n; 1 + α/2)
.

Following Kac and Sole [7] the function of x, K(x; t) is a q-constant, that is,
K(qnx; t) = K(x; t) for every integer n. Hence

Pq {xα; t} =
Γq2 (1 + α/2)

(
1− q2

)α/2
K (1; 1 + α/2)

1

[2]

1

(−t2; q2)∞

∑
n∈Z

q2n (qn)
−α−2 (−t2; q2

)
n
.
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Again, on using the series representation of the qL2-transform, we get

Pq {xα; t} =
Γq2 (1 + α/2)

(
1− q2

)α/2
K (1; 1 + α/2)

qL2

{
s−α−2; t

}
=

Γq2 (1 + α/2)
(
1− q2

)α/2
K (1; 1 + α/2)

1

[2]

Γq2 (−α/2)
(
1− q2

)−α/2−1

K (1/t2;−α/2) t−α

=
1

[2]

1

1− q2

Γq2 (1 + α/2)

K (1; 1 + α/2)

Γq2 (−α/2)

K (1/t2;−α/2)
tα

=
1

[2]

1

1− q2

Bq2 (1 + α/2;−α/2)

K (1; 1 + α/2)K (1/t2;−α/2)
tα.

�

In the following theorem, we establish a Parseval-Goldstein type theorem that
involving q-analogue of the P-Widder and L2-Laplace transforms:

Theorem 3.2. If Pq and qL2 denote q-analogues of the P-Widder and L2-Laplace
transforms, then the following result holds true:∫ ∞

0

x qL2 {f (y) ;x} qL2 {g (z) ;x} dqx =
1

[2]

∫ ∞
0

yf (y)Pq {g (z) ; qy} dqy, (23)

provided that the q-integrals involved converge absolutely.

Proof. Using the definition of the qL2-transform (16), the left-hand side of (23)
(say J) yields to

J =
1

1− q2

∫ ∞
0

x qL2 {g (z) ;x}
{∫ ∞

0

yeq2
(
−x2y2

)
f (y) dqy

}
dqx.

Changing the order of the q-integration, which is permissible by the hypothesis, we
find that

J =
1

1− q2

∫ ∞
0

yf (y)

{∫ ∞
0

xeq2
(
−q2y2x2

)
qL2 {g (z) ;x} dqx

}
dqy.

In view of the definition (16) and the result (20) of Theorem 3.1, the above relation
reduces to the desired right-hand side of (23). �

Corollary 3.2. We have∫ ∞
0

xh (x) qL2 {f (y) ;x} dqx =

∫ ∞
0

yf (y) qL2 {h (x) ; qy} dqy, (24)

provided that the q-integrals involved converge absolutely.

Proof. The identity (24) follows immediately after letting h (x) = qL2 {g (z) ;x} in
the relation (23). �

Corollary 3.3. With due regards to convergence, we have

q2Pq
{
qL2 {g (u) ;x} ; q2z

}
= qL2 {Pq {g (u) ; qy} ; qz} . (25)
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Proof. To prove (25), we set f (y) = eq2
(
−y2z2

)
, then we get

qL2 {f (y) ;x} =
1

1− q2

∫ ∞
0

yeq2
(
−x2y2

)
eq2
(
−q2z2y2

)
dqy

=
1

[2]

1

x2 + q2z2
. (26)

Substituting (26) into the identity (23) of Theorem 3.2, we obtain∫ ∞
0

x

x2 + q2z2 qL2 {g (u) ;x} dqx =

∫ ∞
0

yeq2
(
−q2z2y2

)
Pq {g (u) ; qy} dqy

q2Pq
{
qL2 {g (u) ;x} ; q2z

}
= qL2 {Pq {g (u) ; qy} ; qz} .

Similarly, if we set f (y) = E1/q2

(
−y

2z2

q2

)
in Theorem 3.2 and using the well-

known q-exponential identity eq2(q2x) = E1/q2(x) we find that

qL2

{
E1/q2

(
−y

2z2

q2

)
;x

}
= qL2

{
eq2
(
−q2z2y2

)
;x
}

=
1

[2]

1

x2 + q2z2
(27)

Substituting (27) into (23) we obtain∫ ∞
0

x

x2 + q2z2 qL2 {g (u) ;x} dqx =

∫ ∞
0

yE1/q2
(
−z2y2

)
Pq {g (u) ; qy} dqy

and finally we have

q2Pq
{
qL2 {g (u) ;x} ; q2z

}
=

∫ ∞
0

yeq2
(
−q2z2y2

)
Pq {g (u) ; qy} dqy

= qL2 {Pq {g (u) ; qy} ; qz} .
�

Theorem 3.3. We have∫ ∞
0

x qL2

{
h (y) ;

(
x2 + q2z2

)1/2}
qL2 {g (z) ;x} dqx

=
1− q2

[2]
qL2 {h (y)Pq {g (z) ; qy} ; qz} (28)

provided that the q-integrals involved converge absolutely.

Proof. Let f (y) = eq2
(
−y2z2

)
h (y). Using the definition of the qL2-transform we

obtain

qL2

{
eq2
(
−y2z2

)
h (y) ;x

}
=

1

1− q2

∫ ∞
0

yeq2
(
−
(
x2 + q2z2

)
y2
)
h (y) dqy

= qL2

{
h (y) ;

(
x2 + q2z2

)1/2}
. (29)

Substituting (29) into (23), we find that∫ ∞
0

x qL2

{
h (y) ;

(
x2 + q2z2

)1/2}
qL2 {g (z) ;x} dqx

=
1

[2]

∫ ∞
0

yeq2
(
−q2z2y2

)
h (y)Pq {g (z) ; qy} dqy

=
1− q2

[2]
qL2 {h (y)Pq {g (z) ; qy} ; qz} .
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�

It is interesting to observe that, if we set h (y) = 1 and make use of the Theorem
3.3, one can easily deduced Corollary 3.3.

Corollary 3.4. The following result holds true:

qL2

{
1

s2 qL2

{
f (x) ;

1

s

}
; t

}
=

1

[2]
Pq {f (x) ; t} , (30)

provided that the q-integrals involved converge absolutely.

Proof. In view of the definition of the qL2-transform, the left-hand side of (30) (say
L) yields to

L =
1

1− q2

∫ ∞
0

1

s
eq2

(
−t2 1

s2

)
1

s2 qL2

{
f (x) ;

1

s

}
dqs

=
1

(1− q2)
2

∫ ∞
0

1

s3
eq2

(
−t2 1

s2

)(∫ ∞
0

xeq2

(
− 1

s2
x2

)
f (x) dqx

)
dqs

=
1

(1− q2)
2

∫ ∞
0

xf (x)

(∫ ∞
0

1

s3
eq2

(
−t2 1

s2

)
eq2

(
− 1

s2
x2

)
dqs

)
dqx.

On making use of the identity (10) into the right-hand side, we obtain

L =
1

(1− q2)
2

∫ ∞
0

xf (x)

(∫ ∞
0

seq2
(
−
(
t2 + q2x2

)
s2
)
dqs

)
dqx

=
1

1− q2

∫ ∞
0

xf (x) qL2

{
1;
(
t2 + q2x2

)1/2}
dqx

=
1

[2]

1

1− q2

∫ ∞
0

xf (x)

t2 + q2x2
dqx

=
1

[2]
Pq {f (x) ; t} .

�

4. q-Laplace Image of a Product of q-Bessel functions

Recently, Purohit and Kalla [10] evaluated the q-Laplace image under the Lq
operator (2) for a product of basic analogue of the Bessel functions. In this section,
we propose to add one more dimension to this study by introducing a theorem
which give rise to q-Laplace image under the Lq operator (3) for a product of q-
Bessel functions. The third q-Bessel function is defined by Jackson and in some
literature it is called Hahn-Exton q-Bessel function. For further details see [5].

J (3)
ν (t; q) =

(
qν+1; q

)
∞

(q; q)∞
tν 1Φ1

[
0

qν+1 ; q, qt2
]

(31)

= tν
∞∑
n=0

(−1)
n
qn(n−1)/2

(
qt2
)n

(q; q)ν+n (q; q)n
.
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Theorem 4.1. Let J
(3)
2µj

(
√
ajt; q) , j = 1, 2, ..., n be n different q-Bessel functions.

Then, q-Laplace transform of their product is as follow

Lq {f (t) ; s} =
(1− q)υ−M−1

Γq (υ +M)

Γq (2µ1 + 1) ...Γq (2µn + 1)

aµ1

1 ...aµnn s−υ−M

K (1/s; υ +M)
(32)

∞∑
m1,...,mn=0

(
qυ+M ; q

)
m

(q2µ1+1; q)m1
... (q2µn+1; q)mn

...
(−a1/s)

m1 ... (−an/s)mn

(q; q)m1
· · · (q; q)mn q

m(m−1)/2
.

where f(t) = tυ−1qµ1J
(3)
2µ1

(√
qv+M−1a1t; q

)
· · · qµnJ (3)

2µn

(√
qv+M−1ant; q

)
,M =

µ1 + · · ·+ µn, Re (s) > 0, Re (υ +M) > 0.

Proof. To prove the above theorem we put

f (t) = tυ−1qµ1J
(3)
2µ1

(√
qv+M−1a1t; q

)
· · · qµnJ (3)

2µn

(√
qv+M−1ant; q

)
,

M = µ1 + · · ·+ µn

into (7) and make use of (31), to obtain

Lq {f (t) ; s} =
1

(−s; q)∞

∑
j∈Z

qj (−s; q)j
(
qj
)υ−1

×

{(
q2µ1+1; q

)
∞

(q; q)∞

(
qv+Ma1q

j
)µ1 · · ·

(
q2µn+1; q

)
∞

(q; q)∞

(
qv+Manq

j
)µn}

×
∞∑

m1,··· ,mn=0

qm1(m1−1)/2
(
−qv+Ma1q

j
)m1

(q2µ1+1; q)m1
(q; q)m1

· · ·
qmn(mn−1)/2

(
−qv+Manq

j
)mn

(q2µn+1; q)mn (q; q)mn
.

On interchanging the order of summations, which is valid under the conditions
given with theorem, we obtain

Lq {f (t) ; s} =
1

(−s; q)∞

(
q2µ1+1; q

)
∞

(q; q)∞
· · ·
(
q2µn+1; q

)
∞

(q; q)∞
aµ1

1 · · · aµnn
(
qv+M

)M
×

∞∑
m1 ,··· ,mn=0

qm1(m1−1)/2
(
−qv+Ma1

)m1

(q2µ1+1; q)m1
(q; q)m1

· · ·
qmn(mn−1)/2

(
−qv+Man

)mn
(q2µn+1; q)mn (q; q)mn

.

×
∑
j∈Z

(−s; q)j q
j(υ+µ1+···+µn+m1+···+mn)

By using the well-known q-gamma function

Γq (t) =
(q; q)∞

(qt; q)∞ (1− q)t−1 ,

and then summing the inner series with the help of the bilateral summation formula
(see [3, p. 126, 5.2.1]), namely

1ψ1 (b; c; q, z) =
∑
n∈Z

(b; q)n
(c; q)n

zn =
(q, c/b, bz, q/bz; q)∞
(c, q/b, z, c/bz; q)∞

(|c/b| < |z| < 1),
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we have

Lq {f (t) ; s} =
1

(−s; q)∞
(1− q)−2M

Γq (2µ1 + 1) · · ·Γq (2µn + 1)
aµ1

1 · · · aµnn

×
∞∑

m1,··· ,mn=0

(−a1)
m1

(q2µ1+1; q)m1
(q; q)m1

· · · (−an)
mn

(q2µn+1; q)mn (q; q)mn

×
(
q, 0,−sqυ+M+m1+···+mn ,−q1−(υ+M+m1+···+mn)/s; q

)
∞

(0,−q/s, qυ+M+m1+···+mn , 0; q)∞
,

We may rewrite this series

Lq {f (t) ; s} =
(1− q)−2M

Γq (2µ1 + 1) · · ·Γq (2µn + 1)
aµ1

1 · · · aµnn
(
qv+M

)M
×

∞∑
m1,··· ,mn=0

qm1(m1−1)/2
(
−qv+Ma1

)m1

(q2µ1+1; q)m1
(q; q)m1

· · ·
qmn(mn−1)/2

(
−qv+Man

)mn
(q2µn+1; q)mn (q; q)mn

×
(q; q)∞

(qυ+M+m; q)∞

(
−sqυ+M+m; q

)
∞

(−s; q)∞

(
−q1−(υ+M+m)/s; q

)
∞

(−q/s; q)∞
, (33)

where m = m1 + · · ·+mn. Setting A = s and t = υ +M +m in (14), we get

K (1/s; υ +M +m) =

(
1

s

)υ+M+m
s

1 + s

(−s; q)∞
(−qυ+M+ms; q)∞

(−1/s; q)∞(
−q1−(υ+M+m)/s; q

)
∞

=

(
1

s

)υ+M+m
(−s; q)∞

(−qυ+M+ms; q)∞

(−q/s; q)∞(
−q1−(υ+M+m)/s; q

)
∞
.

(34)

Substituting relation (34) into (33), we obtain

Lq {f (t) ; s} =
(1− q)−2M

Γq (2µ1 + 1) · · ·Γq (2µn + 1)
aµ1

1 · · · aµnn
(
qv+M

)M
×

∞∑
m1,··· ,mn=0

qm1(m1−1)/2
(
−qv+Ma1

)m1

(q2µ1+1; q)m1
(q; q)m1

· · ·
qmn(mn−1)/2

(
−qv+Man

)mn
(q2µn+1; q)mn (q; q)mn

×
(q; q)∞

(qυ+M+m; q)∞

1

K (1/s; υ +M +m)
.

1

sυ+M+m
.

Finally, on considering the following remarkable identity(
qt+m; q

)
∞ =

(qt; q)∞
(qt; q)m

(m ∈ N),

K (t; s) = qs−1K (t; s− 1)

we have

Lq {f (t) ; s} =
(1− q)υ−M−1

aµ1

1 · · · aµnn Γq (υ +M)

Γq (2µ1 + 1) · · ·Γq (2µn + 1)K (1/s; υ +M) sυ+M

×
∞∑

m1,··· ,mn=0

(
qυ+M ; q

)
m

(q2µ1+1; q)m1
· · · (q2µn+1; q)mn

· · · (−a1/s)
m1 ... (−an/s)mn

(q; q)m1
· · · (q; q)mn q

m(m−1)/2
.

This completes the proof. �
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5. Special Cases

In this section, we briefly consider some consequences and special cases of the
results derived in the preceding sections. If we take n = 1, µ1 = υ, υ = µ and
a1 = a in (32) , we obtain

Lq
{
tµ−1qvJ

(3)
2v

(√
qv+µ−1at; q

)
; s
}

=
(qµ+υ)

v
Γq (µ+ υ) (1− q)µ−v−1

sυ+µΓq (2v + 1)K (1/s;µ+ υ)
av 2Φ1

(
qµ+υ, 0
q2v+1 ; q,−a

s

)
(35)

where Re (µ+ υ) > 0 and Re (s) > 0.
Again, if we write υ

2 + 1 and υ
2 instead of µ and υ in (35), respectively, we obtain

Lq
{

(qt)
υ/2

J (3)
υ

(√
qvat; q

)
; s
}

=
aυ/2s−υ−1qv(v+1)/2

K (1/s; υ + 1)
eq (−a/s) (36)

Now, setting υ = 1 in (36) we obtain

Lq
{

(qt)
1/2

J
(3)
1

(√
qat; q

)
; s
}

= a1/2s−2eq (−a/s) (Re (s) > 0) . (37)

Similarly, if we set υ = 0 in (36) , then we have

Lq
{
J

(3)
0

(√
at; q

)
; s
}

= s−1 eq (−a/s) (Re (s) > 0) . (38)

In (35) we write υ = 0 and then a = 0, we find that

Lq
{
tµ−1; s

}
=

Γq (µ) (1− q)µ−1

sµ
1

K (1/s;µ)
. (39)

If we let q → 1−, and make use of the limit formulae

lim
q→1−

Γq (t) = Γ (t) , lim
q→1−

K (A; t) = 1

and

lim
q→1−

(qa; q)n
(1− q)n

= (a)n

where (a)n = a (a+ 1) ... (a+ n− 1), we observe that the identity (28) of Theorem
3.3 and (25) of Corollary 3.3 provide, respectively, the q-extensions of the known
related results due to Yürekli [14, p. 97, Theorem 1 and Corollary 1]. Also, the
results (32), (35), (36), (37) and (38) provide, respectively, the q-extensions of the
following known results given in Erdélyi, Magnus, Oberhettinger and Tricomi [1,
pp. 182-187]:

L
{
tυ−1J2µ1

(
2
√
a1t
)
J2µ2

(
2
√
a2t
)
· · · J2µn

(
2
√
ant
)

; s
}

=
aµ1

1 · · · aµnn
Γ (2µ1 + 1) · · ·Γ (2µn + 1)

Γ (υ +M)

sυ+M
·

×Ψ
(n)
2

(
υ +M ; 2µ1 + 1, · · · , 2µn + 1;

−a1

s
, · · · , −an

s

)
where M = µ1 + ...+ µn,Re (s) > 0 and Re (υ +M) > 0.

L
{
tµ−1J2υ

(
2
√
at
)

; s
}

=
Γ (µ+ υ) aυ

sµ+υΓ (2υ + 1)
1F1

[
µ+ υ;
2υ + 1;

− a/s
]
,

L
{
tυ/2Jυ

(
2
√
at
)

; s
}

= aυ/2s−υ−1 e−a/s,
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L
{
t1/2J1

(
2
√
at
)

; s
}

= a1/2s−2e−a/s,

and

L
{
J0

(
2
√
at
)

; s
}

= s−1e−a/s,

where Re (s) > 0 and Re (µ+ υ) > 0.
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