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NEW ITERATIVE METHODS BASED ON SPLINE FUNCTIONS

FOR SOLVING NONLINEAR EQUATIONS

(COMMUNICATED BY MARTIN HERMANN)

HADI TAGHVAFARD

Abstract. Two new iterative methods for solving nonlinear equations are
presented using a new quadrature rule based on spline functions. Analysis of
convergence shows that these methods have third-order convergence. Their
practical utility is demonstrated by numerical examples to show that these

methods are more efficient than that of Newton’s.

1. Introduction

Solving nonlinear equations is one of the most predominant problems in numer-
ical analysis. Newton’s method is the most popular one in solving such equations.
Some historical points on this method can be found in [14].

Recently, some methods have been proposed and analyzed for solving nonlinear
equations [1, 2, 4, 6, 7, 8]. These methods have been suggested by using quadrature
formulas, decomposition and Taylor’s series [3, 8, 9, 13]. As we know, quadrature
rules play an important and significant role in the evaluation of integrals. One
of the most well-known iterative methods is Newton’s classical method which has
a quadratic convergence rate. Some authors have derived new iterative methods
which are more efficient than that of Newton’s [5, 9, 12, 13].

This paper is organized as follows. Section 2 provides some preliminaries which
are needed. Section 3 is devoted to suggest two iterative methods by using a new
quadrature rule based on spline functions. These are implicit-type methods. To
implement these methods, we use Newton’s and Halley’s method as a predictor
and then use these new methods as a corrector. The resultant methods can be
considered as two-step iterative methods. In section 4, it will be shown that these
two-step iterative methods are of third-order convergence. In section 5, a compar-
ison between these methods with that of Newton’s is made. Several examples are
given to illustrate the efficiencies and advantages of these methods. Finally, section
6 will close the paper.
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2. Preliminaries

We use the following definition [13]:

Definition 1. Let α ∈ R and xn ∈ R, n = 0, 1, 2, ... . Then the sequence xn is
said to be convergence to α if

lim
n→∞

|xn − α| = 0.

If there exists a constant c > 0, an integer n0 = 0 and p = 0 such that for all
n > n0, we have

|xn+1 − α| 5 c|xn − α|p,
then xn is said to be convergence to α with convergence order at least p. If p = 2
or p = 3, the convergence is said to be quadratic or cubic, respectively.

Notation 1. The notation en = xn − α is the error in the nth iteration. The
equation

en+1 = cepn +O(ep+1
n ),

is called the error equation. By substituting en = xn − α for all n in any iterative
method and simplifying, we obtain the error equation for that method. The value of
p obtained is called the order of this method.

We consider the problem of numerical determine a real root α of nonlinear equa-
tion

f(x) = 0, f : D ⊂ R → R. (2.1)

The known numerical method for solving equation (2.1) is the classical Newton’s
method given by

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, ...

where x0 is an initial approximation sufficiently close to α. The convergence order
of the classical Newton’s method is quadratic for simple roots [3].

If the second order derivative f(xn) is available, the third-order convergence rate
can be achieved by using the Halley’s method [5]. Its iterative formula is

xn+1 = xn − 2f(xn)f
′(xn)

2(f ′(xn))2 − f(xn)f ′′(xn)
, n = 1, 2, 3, ... .

3. Iterative method

For several reasons, we know that cubic spline functions are popular spline func-
tions. They are smooth functions with which to fit data, and when used for in-
terpolation, they do not have the oscillatory behavior that is the characteristic of
high-degree polynomial interpolation.

We have derived a new quadrature rule which is based on spline interpolation
[11]. In this section, we review it briefly and then present the iterative methods.
Let us suppose ∆ = {xi| i = 0, 1, 2} be a uniform partition of the interval [a, b] by
knots a = x0 < a+b

2 = x1 < b = x2 and h = x1 − x0 = x2 − x1 and yi = f(xi); then
the cubic spline function S∆(x) which interpolates the values of the function f at
the knots x0, x1, x2 ∈ ∆ and satisfies S′′

∆(a) = S′′
∆(b) = 0 is readily characterized

by their moments, and these moments of interpolating cubic spline function can
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be calculated as the solution of a system of linear equations. We can obtain the
following representation of the cubic spline function in terms of its moments [10]:

S∆(x) = αi + βi(x− xi) + γi(x− xi)
2 + δi(x− xi)

3, (3.1)

for x ∈ [xi, xi+1], i = 0, 1, where

αi = yi , βi =
yi+1 − yi

h
− 2Mi −Mi+1

6
h , γi =

Mi+1 −Mi

6h
,

M0 = M2 = 0 , M1 =
3

2h2
[f(a)− 2f(

a+ b

2
) + f(b)].

Now from (3.1) we obtain∫ b

a

S∆(x)dx =

∫ a+b
2

a

S∆(x)dx+

∫ b

a+b
2

S∆(x)dx

=
h

2

[
f(a) + 2f(

a+ b

2
) + f(b)

]
− h3

24
[M0 + 2M1 +M2]

=
h

8

[
3f(a) + 10f(

a+ b

2
) + 3f(b)

]
.

and thus ∫ b

a

f(t)dt ≃ b− a

16

{
3f(a) + 10f

(
a+ b

2

)
+ 3f(b)

}
. (3.2)

We use the above quadrature rule to approximate integrals and use it to obtain
an iterative method. In order to do this, let α ∈ D be a simple zero of sufficiently
differentiable function f : D ⊂ R → R for an open interval D and x0 is sufficiently
close to α. To derive the iterative method, we consider the computation of the
indefinite integral on an interval of integration arising from Newton’s theorem

f(x) = f(xn) +

∫ x

xn

f ′(t)dt. (3.3)

Using the quadrature rule (3.2) to approximate the right integral of (3.3),∫ x

xn

f ′(t)dt =
x− xn

16

{
3f ′(xn) + 10f ′

(
xn + x

2

)
+ 3f ′(x)

}
, (3.4)

and looking for f(x) = 0. From (3.3) and (3.4) we obtain

x = xn − 16f(xn)

3f ′(xn) + 10f ′
(
x+xn

2

)
+ 3f ′(x)

. (3.5)

This fixed point formulation enables us to suggest the following implicit iterative
method

xn+1 = xn − 16f(xn)

3f ′(xn) + 10f ′
(

xn+xn+1

2

)
+ 3f ′(xn+1)

, (3.6)

which requires the (n+1)th iterate xn+1 to calculate the (n+1)th iterate itself. To
obtain the explicit form, we make use of the Newton’s iterative step to compute the
(n+1)th iterate xn+1 on the right-hand side of (3.6), namely replacing f(xn+xn+1

2 )

with f(xn+yn

2 ) , where yn = xn − f(xn)
f ′(xn)

is the Newton iterate and obtain the

following explicit method:
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Algorithm 1. For a given x0, compute the approximate solution xn+1 by the
following iterative scheme

xn+1 = xn − 16f(xn)

3f ′(xn) + 10f ′(xn+yn

2 ) + 3f ′(yn)
, n = 0, 1, 2, ...

where

yn = xn − f(xn)

f ′(xn)
.

We can replace xn+1 in the right hand-side of (3.6) by Halley’s method. Therefore
we suggest the following algorithm:

Algorithm 2. For a given x0, compute the approximate solution xn+1 by the
following iterative scheme

xn+1 = xn − 16f(xn)

3f ′(xn) + 10f ′
(
xn+yn

2

)
+ 3f ′(yn)

, n = 0, 1, 2, ... (3.7)

where

yn = xn − 2f(xn)f
′(xn)

2(f ′(xn))2 − f(xn)f ′′(xn)
. (3.8)

4. Analysis of convergence

In this section, we prove the convergence of Algorithm 2. In a similar way, one
can prove the convergence of Algorithm 1.

Theorem 4.1. Let α ∈ D be a simple zero of sufficiently differentiable function
f : D ⊂ R → R for an open interval D. If x0 is sufficiently close to α, then
the two-step iterative method defined by Algorithm 2 converges cubically to α in a
neighborhood of α and it satisfies the error equation

en+1 =

(
−7

16
c2

)
e3n +O(e4n),

where ck = 1
k!

fk(α)
f ′(α) , k = 1, 2, 3, ... and en = xn − α.

Proof. Let α be a simple zero of f , i.e. f(α) = 0 and f ′(α) ̸= 0. Since f is
sufficiently differentiable, by using Taylor’s expansion of f(xn), f

′(xn) and f ′′(xn)
about α, we obtain

f(xn) = f ′(α)(xn − α) +
1

2!
f ′′(α)(xn − α)2 +

1

3!
f ′′′(α)(xn − α)3

+
1

4!
f (4)(α)(xn − α)4 +

1

5!
f (5)(α)(xn − α)5 +O((xn − α)6)

= f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n + c5e

5
n +O(e6n)

]
, (4.1)

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)

]
, (4.2)

f ′′(xn) = f ′(α)
[
2c2 + 6c3en + 12c4e

2
n + 20c5e

3
n +O(e4n)

]
, (4.3)

where ck = 1
k!

fk(α)
f ′(α) , k = 1, 2, 3, ... and en = xn − α.

Form (4.1), (4.2) and (4.3) one obtains

f(xn)f
′(xn) = f ′2(α)[en + 3c2e

2
n + (4c3 + 2c22)e

3
n +O(e4n)] (4.4)

f ′2(xn) = f ′2(α)[1 + 4c2en + (6c3 + 4c22)e
2
n + (12c2c3 + 8c4)e

3
n +O(e4n)](4.5)

f(xn)f
′′(xn) = f ′2(α)[2c2en + (6c3 + 2c22)e

2
n + (8c2c3 + 12c4)e

3
n +O(e4n)](4.6)



NEW ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS 35

Substituting (4.4), (4.5) and (4.6) into (3.8), we get

yn = xn − 2f(xn)f
′(xn)

2(f ′(xn))2 − f(xn)f ′′(xn)

= α+ (c22 − c3)e
3
n +O(e4n) (4.7)

Now, from (4.7) we have

xn + yn
2

= xn − f(xn)f
′(xn)

2(f ′(xn))2 − f(xn)f ′′(xn)

= α+
1

2
en +

1

2
(c22 − c3)e

3
n +O(e4n) (4.8)

Substituting (4.7) and (4.8) into the Taylor’s expansion of f(yn), f
′(yn) and f ′′(xn+yn

2 )
about α and get

f(yn) = f ′(α)(yn − α) +
1

2!
f ′′(α)(yn − α)2 +

1

3!
f ′′′(α)(yn − α)3

+
1

4!
f (4)(α)(yn − α)4 +O((yn − α)5)

= f ′(α)
[
(c22 − c3)e

3
n + (−3c32 + 6c2c3 − 3c4)e

4
n +O(e5n)

]
, (4.9)

f ′(yn) = f ′(α)[1 + c2(yn − α) + c3(yn − α)2 + c4(yn − α)3 +O((yn − α)4)]

= f ′(α)[1 + (2c32 − 2c2c3)e
3
n +O(e4n)], (4.10)

f ′(
xn + yn

2
) = f ′(α)[1 + c2en + (c32 − c2c3)e

3
n +O(e4n)] (4.11)

By substituting (4.2), (4.10) and (4.11) into (3.7), we get

xn+1 = xn − 16f(xn)

3f ′(xn) + 10f ′
(
xn+yn

2

)
+ 3f ′(yn)

= α+

(
−7

16
c2

)
e3n +O(e4n).

and thus

en+1 =

(
−7

16
c2

)
e3n +O(e4n).

This means that the method defined by algorithm 2 is cubically convergent.�

Theorem 4.2. Let α ∈ D be a simple zero of sufficiently differentiable function
f : D ⊂ R → R for an open interval D. If x0 is sufficiently close to α, then
the two-step iterative method defined by Algorithm 1 converges cubically to α in a
neighborhood of α and it satisfies the error equation

en+1 =

(
3

8
c2 +

5

8
c22 −

1

32
c3

)
e3n +O(e4n),

where cn = 1
n!

fn(α)
f ′(α) , n = 1, 2, 3, ... and en = xn − α.

Proof. Similar to the proof of Theorem 4.1.�
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5. Numerical examples

In this section, we employ the methods obtained in this paper to solve some
nonlinear equations and compare them with the Newton’s method (NM). We use
the stopping criteria |xn+1 − xn| < ϵ and |f(xn+1)| < ϵ, where ϵ = 10−14, for
computer programs. All programs are written in Matlab.

In Table 1, the number of iterations (NI) and function evaluations (NFE) is given
so that the stopping criterion is satisfied. In table 2, the comparison of the number
of operations needed for obtaining solutions for examples 1 and 2 is given.

We use the following test functions and display the approximate zeros x∗ found
up to the 14th decimal place.

Example1 f1(x) = x3 − x+ 3, x∗ = −1.671699881657161
Example2 f2(x) = x3 + 4x2 − 10, x∗ = 1.36523001341410
Example3 f3(x) = − cos(x)− x, x∗ = −0.73908513321516

Example4 f4(x) = xex
2 − sin2(x) + 3 cos(x) + 5, x∗ = −1.207647827130919

Table 1. Comparison of number of iterations and function eval-
uations of different iterative methods.

NI NFE
f(x) x0 NM Alg.1 Alg.2 NM Alg.1 Alg.2
f1(x) 5 41 7 6 82 28 30
f2(x) - 0.3 53 4 27 106 16 135
f3(x) π/4 70 4 4 140 16 20
f4(x) 1.2 622 7 10 1044 28 50

Table 2. Comparison of number of operations of different itera-
tive methods.

+ or – × or ÷
f(x) x0 NM Alg.1 Alg.2 NM Alg.1 Alg.2
f1(x) 5 164 63 60 164 56 54
f2(x) - 0.3 212 36 297 265 32 216

In Tables 1 and 2, it is shown that in some cases, algorithms 1 and 2 are better
than the Newton’s method for solving nonlinear equations. It is observe that in
some cases the new methods require less iteration and function evaluation than
that of Newton’s. Moreover, as you see in Table 2, the new methods require less
number of operations than Newton’s method.

6. Conclusion

We derived two iterative methods based on spline functions for solving nonlinear
equations. Convergence proof is presented in details for algorithm 2. In Theorem
4.1 and 4.2, we proved that the order of convergence of these methods is three.
Analysis of efficiency showed that these methods are preferable to the well-known
Newton’s method. From numerical examples, we showed that these methods have
great practical utilities.
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