
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 3 Issue 4 (2011), Pages 180-188

A FIXED POINT RESULT INVOLVING A GENERALIZED

WEAKLY CONTRACTIVE CONDITION IN G-METRIC SPACES

(COMMUNICATED BY SIMEON RICH)

HASSEN AYDI

Abstract. In this paper, we prove a fixed point result for a self-mapping on
a G-metric space satisfying (ψ,φ)-weakly contractive conditions. Besides this,
a non-trivial example is presented.

1. Introduction

Some generalizations of the notion of a metric space have been proposed by some
authors. In 2006, Mustafa in collaboration with Sims introduced a new notion
of generalized metric space called G-metric space [12]. In fact, Mustafa et al.
studied many fixed point results for a self-mapping in G-metric space under certain
conditions, see [11, 12, 13, 14, 15]. For other results on G-metric spaces, see [1, 2,
3, 4, 5, 16, 17, 18, 19].
In the present work, we study some fixed point results for a self-mapping in a
complete G-metric space X under weakly contractive conditions related to altering
distance functions.

Definition 1.1. (altering distance functions [9]) A mapping f : [0,+∞[→ [0,+∞[
is called an altering distance function if the following properties are satisfied:
(a) f is continuous and non-decreasing.
(b) f(t) = 0 ⇐⇒ t = 0.

We present now the necessary definitions and results in G-metric spaces, which
will be useful for the rest.

Definition 1.2. [12] Let X be a nonempty set, and let G : X ×X ×X −→ R+ be
a function satisfying the following properties:
(G1) G(x, y, z) = 0 if x = y = z,
(G2) G(x, x, y) > 0 for all x, y ∈ X, with x ̸= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X, with y ̸= z,
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in all three variables),
(G5) G(x, y, z) ≤ G(x, , a, a)+G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).
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Then the function G is called a generalized metric, or more specially a G-metric on
X, and the pair (X,G) is called a G-metric space.

Definition 1.3. [12] Let (X,G) be a G-metric space and let (xn) be a sequence
of points of X, a point x ∈ X is said to be the limit of the sequence (xn), if

lim
n,m→+∞

G(x, xn, xm) = 0, and we say that the sequence (xn) is G-convergent to x

or (xn) G-converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ε > 0 there exists k ∈ N
such that G(x, xn, xm) < ε for all m,n ≥ k.

Proposition 1.4. [12] Let (X,G) be a G-metric space. Then, the following are
equivalent
(1) {xn} is G-convergent to x
(2) G(xn, xn, x) → 0 as n→ +∞
(3) G(xn, x, x) → 0 as n→ +∞
(4) G(xn, xm, x) → 0 as n,m→ +∞.

Definition 1.5. [12] Let (X,G) be a G-metric space. A sequence (xn) is is called a
G-Cauchy sequence if for any ε > 0 there exists k ∈ N such that G(xn, xm, xl) < ε
for all m,n, l ≥ k, that is G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 1.6. [13] Let (X,G) be a G-metric space. Then, the following are
equivalent:
(1) the sequence (xn) is is G-Cauchy
(2) for any ε > 0 there exists k ∈ N such that G(xn, xm, xm) < ε for all m,n ≥ k.

Proposition 1.7. [12] Let (X,G) be a G-metric space. Then f : X → X is G-
continuous at x ∈ X if and only if it is G-sequentially continuous at x, that is,
whenever (xn) is G-convergent to x, (f(xn)) is G-convergent to f(x).

Proposition 1.8. [12] Let (X,G) be a G-metric space. Then the function G(x, y, z)
is jointly continuous in all three of its variables.

Definition 1.9. [12] A G-metric space (X,G) is called G-complete if every G-
Cauchy sequence is G-convergent in (X,G).

In [6], Alber and Guerre-Delabriere introduced the concept of weak contraction
in Hilbert spaces. After this, Dutta and Choudhuty [8] obtained on a complete
ordinary metric space a fixed point result for a self map involving a (ψ,φ)- weakly
contractive condition. It is the following

Theorem 1.10. [6] Let (X, d) be a complete metric space. Suppose the map f :
X → X satisfies for all x, y ∈ X

ψ

(
d(fx, fy)

)
≤ ψ

(
d(x, y)

)
− φ

(
d(x, y)

)
, (1.1)

where ψ and φ are altering distance functions given in Definition 1.1. Then f has
a unique fixed point.

Motivated by the above result, we address the same question on G-metric spaces.
More precisely, taking a self-mapping on a complete G-metric space satisfying a
generalized weak contraction condition given by (2.1), we establish a fixed point
result. In the second part of the paper, an example is also presented.
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2. MAIN RESULTS

Our first main result is the following

Theorem 2.1. Let X be a complete G-metric space. Suppose the map T : X → X
satisfies for all x, y, z ∈ X

ψ

(
G(Tx, Ty, Tz)

)
≤ ψ

(
G(x, y, z)

)
− φ

(
G(x, y, z)

)
, (2.1)

where ψ and φ are altering distance functions given in Definition 1.1. Then T has
a unique fixed point (say u) and T is G-continuous at u.

Proof. Let x0 be an arbitrary point in X, and let xn+1 = Txn for any n ∈ N.
Assume xn ̸= xn−1. For n ∈ N, we have thanks to (2.1) and definition of φ

ψ

(
G(xn, xn+1, xn+1)

)
= ψ

(
G(Txn−1, Txn, Txn)

)

≤ ψ

(
G(xn−1, xn, xn)

)
− φ

(
G(xn−1, xn, xn)

)

≤ ψ

(
G(xn−1, xn, xn)

)
.

(2.2)

Since ψ is non-decreasing, we get that

G(xn, xn+1, xn+1) ≤ G(xn−1, xn, xn). (2.3)

If we take tn = G(xn, xn+1, xn+1), then from (2.3), we get 0 ≤ tn ≤ tn−1, so the
sequence (tn) is non-increasing, hence it converges to some r ≥ 0. Letting this in
(2.2), then as n −→ +∞

ψ(r) ≤ ψ(r)− φ(r),

using the continuity of ψ and φ. Then, we find φ(r) = 0, hence by a property of
φ, we have r = 0. We rewrite this as

lim
n→+∞

G(xn, xn+1, xn+1) = 0. (2.4)

Next, we prove that (xn) is a G-Cauchy sequence. We argue by contradiction.
Assume that (xn) is not a G-Cauchy sequence. Then, following Proposition 1.6,
there exists ε > 0 for which we can find subsequences (xm(k)) and (xn(k)) of (xn)
with n(k) > m(k) > k such that

G(xn(k), xm(k), xm(k)) ≥ ε. (2.5)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) and satisfying (2.5). Then

G(xn(k)−1, xm(k), xm(k)) < ε. (2.6)

We have, using (2.6) and the condition (G5), that

ε ≤ G(xn(k), xm(k), xm(k)) ≤ G(xn(k), xn(k)−1, xn(k)−1) +G(xn(k)−1, xm(k), xm(k))

< ε+G(xn(k), xn(k)−1, xn(k)−1).

(2.7)
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In other words, from the conditions (G3)-(G4)

0 ≤ G(xn(k), xn(k)−1, xn(k)−1) = G(xn(k)−1, xn(k)−1, xn(k)) ≤ G(xn(k)−1, xn(k), xn(k)).

Letting k → +∞, and using (2.4), we find G(xn(k), xn(k)−1, xn(k)−1) → 0. We take
this in (2.7)

lim
k→+∞

G(xn(k), xm(k), xm(k)) = ε. (2.8)

Moreover, we have thanks to condition (G4)

G(xn(k), xm(k), xm(k)) ≤G(xn(k), xn(k)−1, xn(k)−1) +G(xn(k)−1, xm(k)−1, xm(k)−1)

+G(xm(k)−1, xm(k), xm(k)),

G(xn(k)−1, xm(k)−1, xm(k)−1) ≤G(xn(k)−1, xn(k), xn(k)) +G(xn(k), xm(k), xm(k))

+G(xm(k), xm(k)−1, xm(k)−1).

Letting k −→ +∞ in the two above inequalities and using (2.4)-(2.8)

lim
k→+∞

G(xn(k)−1, xm(k)−1, xm(k)−1) = ε. (2.9)

Setting x = xn(k)−1 and y = ym(k)−1 in (2.1) and using (2.5), we obtain thanks to
the fact that ψ is increasing

ψ(ε) ≤ψ(G(xn(k), xm(k), xm(k))) = ψ(G(Txn(k)−1, Txm(k)−1, Txm(k)−1)

≤ψ(G(xn(k)−1, xm(k)−1, xm(k)−1)− φ(G(xn(k)−1, xm(k)−1, xm(k)−1).

Letting k → +∞, then using (2.9) and the continuity of ψ and φ, we get

ψ(ε) ≤ ψ(ε)− φ(ε),

yielding that φ(ε) = 0, which is a contradiction since ε > 0. This shows that
(xn) is a G-Cauchy sequence and since X is a G-complete space, hence (xn) is
G-convergent to some u ∈ X, that is from Proposition 1.6

lim
n→+∞

G(xn, xn, u) = G(xn, u, u) = 0. (2.10)

We show now that u is a fixed point of the map T . From (2.1),

ψ

(
G(xn+1, xn+1, Tu)

)
=ψ

(
G(Txn, Txn, Tu)

)

≤ψ

(
G(xn, xn, u)

)
− φ

(
G(xn, xn, u)

)
.

Thanks to (2.10) and the continuity of ψ and φ, we find

lim
n→+∞

G(xn+1, xn+1, Tu) = 0. (2.11)

Again, using the conditions (G4) and (G5) given by Definition 1.2, one can write

G(u, u, Tu) ≤ G(u, u, xn+1) +G(xn+1, xn+1, Tu).

Letting n→ +∞ in the above inequality and having in mind (2.10) and (2.11), one
finds G(u, u, Tu) = 0, and then Tu = u. Hence u is a fixed point of T . Let us show
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its uniqueness. Let v be another fixed point of T , then

ψ

(
G(u, u, v)

)
=ψ

(
G(Tu, Tu, Tv)

)

≤ψ

(
G(u, u, v)

)
− φ

(
G(u, u, v)

)
.

It follows that φ

(
G(u, u, v)

)
= 0, and then G(u, u, v) = 0, yielding that u = v.

Following Proposition 1.7, to show that T is G-continuous at u, let (yn) be any
sequence in X such that (yn) is G-convergent to u. For n ∈ N, we have

ψ

(
G(u, u, Tyn)

)
=ψ

(
G(Tu, Tu, Tyn)

)

≤ψ

(
G(u, u, yn)

)
− φ

(
G(u, u, yn)

)
.

Letting n→ +∞ and using again the continuity of ψ and φ, the right-hand side of
the above inequality tends to 0, then we obtain

lim
n→+∞

G(u, u, Tyn) = 0.

Hence (Tyn)n is G-convergent to u = Tu, so T is G-continuous at u.
�

As an application of Theorem 2.1, we have the following corollaries.

Corollary 2.2. Let X be a complete G-metric space. Suppose the map T : X → X
satisfies for m ∈ N and x, y, z ∈ X

ψ

(
G(Tmx, Tmy, Tmz)

)
≤ ψ

(
G(x, y, z)

)
− φ

(
G(x, y, z)

)
, (2.12)

where ψ and φ are altering distance functions given in Definition 1.1. Then T has
a unique fixed point (say u), and T is G-continuous at u.

Proof. From Theorem 2.1, we conclude that Tm has a unique fixed point say u.
Since

Tu = T (Tmu) = Tm+1u = Tm(Tu),

we have that Tu is also a fixed point to Tm. By uniqueness of u, we get Tu = u.
�.

Corollary 2.3. Let X be a complete G-metric space. Suppose the map T : X → X
satisfies for all x, y, z ∈ X

G(Tx, Ty, Tz) ≤ kG(x, y, z), (2.13)

where k ∈ [0, 1), then T has a unique fixed point (say u), and T is G-continuous at
u.

Proof. It suffices to take in Theorem 2.1, ψ(t) = t and φ(t) = 1− k for k ∈ [0, 1).
�.

Remark 2.4. Corollary 2.3 corresponds to Theorem 2.1 in [11].
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3. Example

We give in this section an example illustrating Theorem 2.1.
Let X = [0, 1] ∪ {2, 3, 4, ...} and

G(x, y, z) =



max{|x− y|, |y − z|, |z − x|} if x, y, z ∈ [0, 1]

and at least x ̸= y or y ̸= z or z ̸= x

x+ y + z if at leat x or y or z /∈ [0, 1]

and at least x ̸= y or y ̸= z or z ̸= x

0 if x = y = z.

It is a simple exercise that (X,G) is a G-metric space. We claim that it is a G-
complete space. To do this, let {xn} be a G-Cauchy sequence in X. By proposition
1.6, for any ε > 0 there exists n0 ∈ N such that for any n ≥ n0 and m ≥ n0, we
have G(xn, xm, xm) < ε. We distinguish two cases.

(1) If xn = xm.
Here G(xn, xm, xm) = 0 for anym,n ≥ n0. In particular, G(xn, xn0 , xn0) =
0, which gives that the sequence {xn} G-converges to xn0

.

(2) If xn ̸= xm.
The sequence {xn} is G-Cauchy, hence by definition of G, we have neces-
sarily xn and xm are in [0, 1]. As a consequence,

|xn − xm| =: G(xn, xm, xm) < ε,

for any m,n ≥ n0. We find that {xn} is a Cauchy sequence in [0, 1], which
is complete with respect to the metric | . |. Hence, there exists x ∈ [0, 1]
such that |xn − x| → 0 as n → +∞. There are two possibilities, that are
x = xn and then G(xn, x, x) = 0, or x ̸= xn and so G(xn, x, x) = |xn − x|.
Always, we obtain

lim
n→+∞

G(xn, x, x) = 0,

meaning that {xn} G-converges to x. In the two cases we have the com-
pleteness of (X,G).

Now, let ψ : [0,+∞[→ [0,+∞[ such that

ψ(t) =

{
t if 0 ≤ t ≤ 1

t2 if t > 1.

Again, we define φ : [0,+∞[−→ [0,+∞[ such that

φ(t) =

{
1
2 t

2 if 0 ≤ t ≤ 1
1
2 if t > 1.

Moreover, let T : X −→ X be defined as

Tx =

{
x− 1

2x
2 if 0 ≤ x ≤ 1

x− 1 if x ∈ {2, 3, 4, ...}

It is obvious that ψ and φ verifies hypotheses of Theorem 2.1. Without loss of
generality, we assume that x > y > z and discuss the following cases:
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Case 1: x ∈ [0, 1]
Here, necessarily y > z and y, z ∈ [0, 1]. By definition of G, we have

G(x, y, z) = max{|x− y|, |y − z|, |z − x|} = x− z ∈ [0, 1].

It follows that by definition of ψ and φ

ψ(G(x, y, z))− φ(G(x, y, z)) =G(x, y, z)− 1

2
G2(x, y, z)

=(x− z)− 1

2
(x− z)2

≥(x− z)− 1

2
(x2 − z2).

(3.1)

Again, by definition of T , we get Tx, Ty, Tz ∈ [0, 1] and

Tx = x− 1

2
x2 > Ty = y − 1

2
y2 > Tz = z − 1

2
z2,

and hence

G(Tx, Ty, Tz) = max{|Tx−Ty|, |Ty−Tz|, |Tz−Tx|} = Tx−Tz = [(x−z)−1

2
(x2−z2)] ∈ [0, 1].

It follows that

ψ(G(Tx, Ty, Tz)) = G(Tx, Ty, Tz) = (x− z)− 1

2
(x2 − z2),

(3.1) gives us

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(x, y, z))− φ(G(x, y, z)).

Then the inequality (2.1) holds.
Case 2: x ∈ {3, 4, ...}
Since x > y > z, hence y may be in {3, 4, ...} or in [0, 1]. We start with the case
when y ∈ {3, 4, ...}. Even here, we have two cases for z, indeed z ∈ {3, 4, ...} or in
[0, 1].
• If z ∈ {3, 4, ...}. Here, Tx = x− 1 > Ty = y − 1 = Tz = z − 1 ≥ 2. Then

G(Tx, Ty, Tz) = Tx+ Ty + Tz = x+ y + z − 3 > 1.

We deduce then

ψ(G(Tx, Ty, Tz)) = G2(Tx, Ty, Tz) = (x+ y + z − 3)2. (3.2)

In other words, G(x, y, z) = x+ y + z > 1, so

ψ(G(x, y, z))− φ(G(x, y, z)) =G2(x, y, z)− 1

2

=(x+ y + z)2 − 1

2
.

(3.3)

Comparing (3.2) to (3.3) we find

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(x, y, z))− φ(G(x, y, z)),

meaning that (2.1) holds.
• If z ∈ [0, 1]. Here, we have G(x, y, z) = x+ y + z > 1, then

ψ(G(x, y, z))− φ(G(x, y, z)) =G2(x, y, z)− 1

2

=(x+ y + z)2 − 1

2
.

(3.4)
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Again, since Tz = z − 1
2z

2 ∈ [0, 1] and Tx = x − 1 ̸= Ty = y − 1 > 1, then

G(Tx, Ty, Tz) = Tx+ Ty + Tz = x+ y + z − 2− 1
2z

2 > 1. Therefore,

ψ(G(Tx, Ty, Tz)) = G2(Tx, Ty, Tz) = (x+ y + z − 2− 1

2
z2)2. (3.5)

We compare (3.4) to (3.5) to get that (2.1) holds.
Let us now do the case where y ∈ [0, 1]. Here, y > z ∈ [0, 1]. The same strategy
yields that

ψ(G(Tx, Ty, Tz)) = ψ

(
G(x− 1, y − 1

2
y2, z − 1

2
z2)

)

=ψ(x+ y + z − 1− 1

2
y2 − 1

2
z2)

=(x+ y + z − 1− 1

2
y2 − 1

2
z2)2.

(3.6)

Moreover,

ψ(G(x, y, z))− φ(G(x, y, z)) = (x+ y + z)2 − 1

2
.

We deduce then

ψ(G(Tx, Ty, Tz)) ≤ ψ(G(x, y, z))− φ(G(x, y, z)),

that is the inequality (2.1).
Case 3: x = 2
In this case, since x > y > z, we have necessarily y, z ∈ [0, 1]. Here, we have

ψ(G(Tx, Ty, Tz)) = ψ

(
G(1, y − 1

2
y2, z − 1

2
z2)

)

=ψ(1− (z − 1

2
z2))

=1− (z − 1

2
z2).

(3.7)

Again,

ψ(G(x, y, z))− φ(G(x, y, z)) = ψ(2 + y + z)− φ(2 + y + z) = (2 + y + z)2 − 1

2
.

It is clear that (2.1) holds.
As a conclusion, the hypotheses of Theorem 2.1 are verified, and then we find that
u = 0 is the unique fixed point of T in X.

References

[1] M. Abbas, A.R. Khan and T. Nazir, Coupled common fixed point results in two generalized
metric spaces, Appl. Math. Comput. (2011), doi:10.1016/j.amc.2011.01.006.

[2] M. Abbas, T. Nazir and P. Vetro, Common fixed point results for three maps in G-metric
spaces, Filomat 25 (2011), 1-17.
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