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FINITE BLASCHKE PRODUCTS AND CIRCLES THAT PASS

THROUGH THE ORIGIN

(COMMUNICATED BY UDAY CHAND DE)

NİHAL YILMAZ ÖZGÜR

Abstract. Let B(z) be a finite Blaschke product of degree n and C be the
unit circle. It is well-known that for any given Blaschke product B(z) of degree

n and any specified point λ of C, there exist n distinct points of C that B(z)
maps to λ. In this paper, we discuss the determination of these points using
circles passing through the origin.

1. Introduction

A Blaschke product of degree n is a function defined by

B(z) = β

n∏
i=1

z − ai
1− aiz

(1.1)

where |β| = 1 and the ai are complex numbers of modulus less than one for 1 ≤
i ≤ n. The degree is simply the number of zeros of B counted according to their
multiplicity: the Blaschke product has zeros precisely at the points a1, a2, ..., an
and a zero that appears exactly m times in this list is said to be of multiplicity
m. This is the general form for a rational function which takes the closed unit disc
D = {z : |z| ≤ 1} to itself, and it is usually referred as a finite Blaschke product.
B(z) is an n-to-one map of D onto itself and has modulus one on the unit circle
C = {z : |z| = 1}, (see [8]).

In this paper, we look at some geometric properties of finite Blaschke products.
It is well-known that for any given Blaschke product B of degree n and any specified
point λ of C, there exist n distinct points of C that B maps to λ. We shall try
to determine the points of C that B maps to λ for Blaschke products of degree n
using circles passing through the origin. We start with the Blaschke products of
degree two and three and then, we give an open problem for Blaschke products of
degree n ≥ 4.

In Section 2 and Section 3, we obtain the complete solutions of our problem for
the Blaschke products of degrees 2 and 3, respectively. In these cases, our results
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are based on the two theorems obtained in [3]. In Section 4, we deal with the cases
n ≥ 4 and we solve the open problem for some special cases. We use the notion
of decomposition of finite Blaschke products (see [2], [6] and [11]) and following
uniqueness theorem for monic Blaschke products (see [7]):

Theorem 1.1. [7] Let

A(z) =

n∏
j=1

((z − aj)/(1− ajz)) and B(z) =

n∏
j=1

((z − bj)/(1− bjz)),

with aj and bj ∈ D = {z : |z| < 1} for j = 1, ..., n. Suppose that A(λj) = B(λj)
for n distinct points λ1, ..., λn in D. Then A ≡ B.

2. Blaschke Products of Degree Two

In this section, we consider the Blaschke products of the form

B(z) =
z(z − a)

1− az
,

where a ̸= 0, |a| < 1. In [3], the following theorem was proved:

Theorem 2.1. (see [3], Theorem 2). Let B(z) = z(z−a)
1−az be a Blaschke product

with a ̸= 0. For λ in C, let z1 and z2 be the two distinct points satisfying B(z1) =
B(z2) = λ. Then the line joining z1 and z2 passes through the point a. Conversely,
if we consider any line L through the point a, then for the points z1 and z2 at which
L intersects C it is the case that B(z1) = B(z2).

Here we look at the circles that pass through the origin. By means of the circles
through the points 0 and 1

a , we determine the two distinct points of C that B maps
to λ.

We prove the following theorem:

Theorem 2.2. Let a ̸= 0 be any complex number with |a| < 1 and B(z) = z(z−a)
1−az

be a Blaschke product of degree 2. The unit circle C and any circle through the
points 0 and 1

a have exactly two distinct intersection points z1 and z2. Then we
have B(z1) = B(z2) for these intersection points.

Conversely, for λ in C, let z1 and z2 be the two distinct points satisfying B(z1) =
B(z2) = λ. Then the circle through the points 0, z1 and z2 passes through the point
1
a .

Proof. For the first part of the proof we use the inversion map z → 1
z in the unit

circle C. Since |a| < 1, we have
∣∣ 1
a

∣∣ > 1 and therefore, any circle passing through

the points 0 and 1
a must intersect the unit circle C at two distinct points z1 and z2.

The image of this circle under the inversion map z → 1
z is a line passing through

the points z1, z2 and a. Then by Theorem 2.1, we have B(z1) = B(z2).
Conversely, let λ be a fixed point on the unit circle C and let z1 and z2 be the

two distinct points satisfying B(z1) = B(z2) = λ. Let L be the line joining z1
and z2. By Theorem 2.1, if L does not pass through 0, the image of L under the
inversion map w = 1

z is the circle passes through the points z1, z2, 0 and 1
a or itself

if L passes through 0. This completes the proof of the theorem. �
In the proof of Theorem 2.2, we use the basic properties of the inversion map

z → 1
z in the unit circle C. For more details about inversion maps on the complex

plane one can see [1] and [10].
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3. Blaschke Products of Degree Three

In this section, we consider a Blaschke product with three distinct zeros. Com-
posing with a Möbius transformation, we may assume that one zero is at the origin
and that our Blaschke product has the form

B(z) = z
z − a1
1− a1z

z − a2
1− a2z

.

We have the following theorem:

Theorem 3.1. (see [3], Theorem 1). Let B be a Blaschke product of degree three
with distinct zeros at the points 0, a1 and a2. For λ on the unit circle, let z1, z2
and z3 denote the points mapped to λ under B. Then the lines joining zj and zk
for j ̸= k are tangent to the ellipse E with equation

|w − a1|+ |w − a2| = |1− a1a2| . (3.1)

Conversely, every point on E is the point of tangency of a line segment joining two
distinct points z1 and z2 on the unit circle for which B(z1) = B(z2).

Let F be the image of the ellipse E with equation (3.1) under the inversion map
w = 1

z . It can be easily seen that the curve F has the equation

|a1|
∣∣∣∣z − 1

a1

∣∣∣∣+ |a2|
∣∣∣∣z − 1

a2

∣∣∣∣ = |1− a1a2| |z| .

Now we prove the following theorem.

Theorem 3.2. Let a1 ̸= 0 and a2 ̸= 0 be any distinct complex numbers with
|a1| < 1, |a2| < 1 and B(z) = z z−a1

1−a1z
z−a2

1−a2z
be a Blaschke product of degree 3. The

unit circle C and any circle through the point 0 and tangent to the curve F with
equation

|a1|
∣∣∣∣z − 1

a1

∣∣∣∣+ |a2|
∣∣∣∣z − 1

a2

∣∣∣∣ = |1− a1a2| |z| (3.2)

have exactly two distinct intersection points z1 and z2. Then we have B(z1) = B(z2)
for these intersection points.

Conversely, for λ on the unit circle C, let z1, z2 and z3 be the three distinct
points satisfying B(z1) = B(z2) = B(z3) = λ. Then the circle through the points
zj, zk, and 0 (j ̸= k and 1 ≤ j, k ≤ 3) is tangent to the curve F with equation (3.2).

Proof. Since the ellipse E with equation (3.1) is contained in the unit disc (see [5],
p. 785), the curve F (being the image of the ellipse E under the inversion map
w = 1

z ) lies outside of the unit circle. Therefore, any circle passing through the
point 0 and tangent to the curve F must intersect the unit circle C at two distinct
points z1 and z2. The image of any such circle under the inversion map z → 1

z
is a line passing through the points z1 and z2 and tangent to the ellipse E with
equation (3.1). Then by Theorem 3.1, we have B(z1) = B(z2).

Conversely, let λ be a fixed point on the unit circle C and let z1, z2 and z3 be
the three distinct points satisfying B(z1) = B(z2) = B(z3) = λ. Let γ be any circle
that passes through the points 0, zj and zk for j ̸= k and 1 ≤ j, k ≤ 3. Let L be any
line joining zj and zk. Then by Theorem 3.1, the image of L under the inversion
map w = 1

z is a circle through the points zj , zk, and 0 and tangent to the curve F

with equation (3.2) since the inversion map w = 1
z is an anti-conformal map. This

completes the proof of the theorem. �
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E

F

Figure 1. Blaschke product of degree 3 with a1 = 1
2 − 1

2 i and

a2 = 1
2 + 1

2 i; the ellipse E and its Blaschke mate F .

If any two circles passing through the point 0 and tangent to the curve F with
equation (3.2) have only one common intersection point with the unit circle C,
then we have found the three points z1, z2 and z3 of C satisfying B(z1) = B(z2) =
B(z3) = λ.

We call the curve F with equation (3.2) as the Blaschke mate of the ellipse E
with equation (3.1) (see Figure 1).

4. Blaschke Products of Higher Degree

Let B(z) = z
n−1∏
i=1

z−ai

1−aiz
be a Blaschke product with n distinct zeros. In the cases

n = 2 or n = 3, we have seen that the circles or lines, pass through 0 and have a
common property, are enough to determine the points zi and zj on the unit circle
for which B(zi) = B(zj). We hope to find the corresponding common property for
Blaschke products of degree n ≥ 4. It seems that it is not easy to find a complete
solution of this problem for n ≥ 4. Now we formulate our problem as an open
problem.

Open Problem 1. Let B(z) = z
n−1∏
i=1

z−ai

1−aiz
be a Blaschke product with n distinct

zeros and of degree n ≥ 4. Let zi and zj be any intersection points of the unit circle
with a circle or a line through 0.

For which circles or lines through 0 do we have B(zi) = B(zj)?

In this section, we solve this open problem for two special cases. At first, we
give the answer of the open problem for some Blaschke products of degree 2n.
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Now we consider a Blaschke product with four distinct zeros and we give the
following theorem:

Theorem 4.1. Let a1, a2, a3 be three distinct nonzero complex numbers with |ai| <

1 for 1 ≤ i ≤ 3 and B(z) = z
3∏

i=1

z−ai

1−aiz
be a Blaschke product of degree 4 with the

condition that one of its zeros, say a1, satisfies the following equation:

a1 + a1a2a3 = a2 + a3. (4.1)

i) If L is any line through the point a1, then for the points z1 and z2 at which L
intersects C, we have B(z1) = B(z2).

ii) The unit circle C and any circle through the points 0 and 1
a1

have exactly

two distinct intersection points z1 and z2. Then we have B(z1) = B(z2) for these
intersection points.

Proof. Let B(z) be any Blaschke product of degree 4 with the condition that one
of its zeros, say a1, satisfies the equation (4.1). At first we show that B(z) can be
written as a composition of two Blaschke products of degrees 2 as

B(z) = B2 ◦B1(z),

where

B1(z) =
z(z − a1)

1− a1z
and B2(z) =

z(z + a2a3)

1 + a2a3z
.

Indeed, it is clear that

B2 ◦B1(0) = B2 ◦B1(a1) = 0.

Using the equation (4.1), after some straightforward computations, we have also

B2 ◦B1(a2) = B2 ◦B1(a3) = 0.

Then by Theorem 1.1, we obtain B ≡ B2 ◦B1.
(i) Let L be any line through the point a1 and z1, z2 be the points at which L

intersects C. By Theorem 2.1, we have B1(z1) = B1(z2). Hence we obtain

B(z1) = B2(B1(z1)) = B2(B1(z2)) = B(z2).

(ii) Let us consider any circle through the points 0 and 1
a1
. Since |a1| < 1, we have∣∣∣ 1

a1

∣∣∣ > 1. Therefore, any circle passing through the points 0 and 1
a1

must intersect

the unit circle C at two distinct points z1 and z2. The image of this circle under
the inversion map z → 1

z is a line passing through the points z1, z2 and a1. Then
by the Case (i) we have B(z1) = B(z2). �

For the converse of Theorem 4.1 (i), let B(z) = B2(B1(z)) = λ for a fixed λ ∈ C
and let u = B1(z). Then there are 2 distinct points u1 and u2 of the unit circle C
such that B2(uk) = λ where 1 ≤ k ≤ 2 (notice that the line joining u1 and u2 passes
through the point −a2a3 by Theorem 2.1). For every uk, there are two points zk1

and zk2 of the unit circle C such that B1(zk1) = B1(zk2) = uk. By Theorem 2.1,
the line joining zk1 and zk2 passes through the point a1. Therefore we have 2 lines
pass through the point a1, (see Figure 2). Now we can extend the arguments used
in the Theorem 4.1 for Blaschke products of degree 2n.
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a1

Figure 2. Blaschke product of degree 4 with a1 = 2
3 , a2 = 1

2 −
1
2 i

and a3 = 1
2 + 1

2 i.

Theorem 4.2. Let a1, a2, ..., a2n−1 be 2n − 1 distinct nonzero complex numbers

with |ai| < 1 for 1 ≤ i ≤ 2n − 1 and B(z) = z
2n−1∏
i=1

z−ai

1−aiz
be a Blaschke product

of degree 2n with the condition that one of its zeros, say a1, satisfies the following
equations:

a1 + a1a2a3 = a2 + a3,
a1 + a1a4a5 = a4 + a5,

...
a1 + a1a2n−2a2n−1 = a2n−2 + a2n−1.

i) If L is any line through the point a1, then for the points z1 and z2 at which L
intersects C, we have B(z1) = B(z2).

ii) The unit circle C and any circle through the points 0 and 1
a1

have exactly

two distinct intersection points z1 and z2. Then we have B(z1) = B(z2) for these
intersection points.

Proof. By the same arguments used in the proof of Theorem 4.1, we can show that
B(z) can be written as a composition of two Blaschke products of degrees 2 and n
as

B(z) = B2 ◦B1(z),

where

B1(z) =
z(z − a1)

1− a1z
and

B2(z) =
z(z + a2a3)(z + a4a5)...(z + a2n−2a2n−1)

(1 + a2a3z) (1 + a4a5z) ... (1 + a2n−2a2n−1z)
.

Then the proof follows similarly. �
Theorem 4.1 is the special case of Theorem 4.2 for n = 2.
For the converse of Theorem 4.2 (i), let B(z) = B2(B1(z)) = λ for a fixed λ ∈ C

and let u = B1(z). Then there are n distinct points u1, u2, ..., un of the unit circle
C such that B2(uk) = λ where 1 ≤ k ≤ n. For every uk, there are two points zk1
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and zk2 of the unit circle C such that B1(zk1) = B1(zk2) = uk. By Theorem 2.1,
the line joining zk1 and zk2 passes through the point a1. Therefore we have n lines
pass through the point a1.

Now we consider the Blaschke products of degree 6 with six distinct zeros. We
can give the following theorem:

Theorem 4.3. Let a1, a2, a3, a4, a5 be five distinct nonzero complex numbers with

|ai| < 1 for 1 ≤ i ≤ 5 and B(z) = z
5∏

i=1

z−ai

1−aiz
be a Blaschke product of degree 6 with

the condition that two of its zeros, say a1 and a2, satisfy the following equations:

a1 + a2 + a3a4a5a1a2 = a3 + a4 + a5 (4.2)

and
a1a2 + a3a4a5(a1 + a2) = a3a4 + a3a5 + a4a5. (4.3)

i)Let E be the ellipse with equation

|z − a1|+ |z − a2| = |1− a1a2| (4.4)

and L be any line tangent to the ellipse E. For the points z1 and z2 on the unit
circle C at which L intersects C, we have B(z1) = B(z2).

ii) Let F be the image of the ellipse E under the inversion map w = 1
z . The

curve F has the equation

|a1|
∣∣∣∣z − 1

a1

∣∣∣∣+ |a2|
∣∣∣∣z − 1

a2

∣∣∣∣ = |1− a1a2| |z| .

Then the unit circle C and any circle through the point 0 and tangent to the curve
F have exactly two distinct intersection points z1 and z2. For these intersection
points we have B(z1) = B(z2).

Proof. Let B(z) be any Blaschke product of degree 6 with the condition that two
of its zeros, say a1 and a2, satisfy the equations (4.2) and (4.3). Using Theorem
1.1, we show that B(z) can be written as a composition of two Blaschke products
of degrees 3 and 2 as B(z) = B2 ◦B1(z) where

B1(z) =
z(z − a1)(z − a2)

(1− a1z) (1− a2z)
and B2(z) =

z(z − a3a4a5)

1− a3a4a5z
.

Indeed, it is clear that

B2 ◦B1(0) = B2 ◦B1(a1) = B2 ◦B1(a2) = 0.

Using the equations (4.2) and (4.3), it can be easily checked that

B2 ◦B1(a3) = B2 ◦B1(a4) = B2 ◦B1(a5) = 0.

Then by Theorem 1.1, we obtain B ≡ B2 ◦B1.
Now the rest of the proof can be easily seen by the same arguments used in the

proofs of Theorem 3.2 and Theorem 4.1. �
For the converse of Theorem 4.3 (i), let B(z) = B2(B1(z)) = λ for a fixed λ ∈ C.

Then there are 2 distinct points u1 and u2 of the unit circle C such that B2(uk) = λ
where 1 ≤ k ≤ 2 (notice that the line joining u1 and u2 passes through the point
a3a4a5 by Theorem 2.1). For every uk, there are three points zk1 , zk2 and zk3 of
the unit circle C such that B1(zk1) = B1(zk2) = B1(zk3) = uk. By Theorem 3.2,
the line joining zki and zkj for i ̸= j is tangent to the ellipse E with equation (4.4).
Therefore we have 6 lines tangent to the ellipse E.
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We can extend the arguments used in the Theorem 4.3 for Blaschke products of
degree 3n.

Theorem 4.4. Let a1, a2, ..., a3n−1 be 3n − 1 distinct nonzero complex numbers

with |ai| < 1 for 1 ≤ i ≤ 3n − 1 and B(z) = z
3n−1∏
i=1

z−ai

1−aiz
be a Blaschke product

of degree 3n with the condition that two of its zeros, say a1 and a2, satisfy the
following equations:

a1 + a2 + a3a4a5a1a2 = a3 + a4 + a5,
a1a2 + a3a4a5(a1 + a2) = a3a4 + a3a5 + a4a5,

a1 + a2 + a6a7a8a1a2 = a6 + a7 + a8,
a1a2 + a6a7a8(a1 + a2) = a6a7 + a6a8 + a7a8,

...
a1 + a2 + a3n−3a3n−2a3n−1a1a2 = a3n−3 + a3n−2 + a3n−1,

a1a2 + a3n−3a3n−2a3n−1(a1 + a2) = a3n−3a3n−2 + a3n−3a3n−1 + a3n−2a3n−1.
(4.5)

i)Let E be the ellipse with equation

|z − a1|+ |z − a2| = |1− a1a2|
and L be any line tangent to the ellipse E. For the points z1 and z2 on the unit
circle C at which L intersects C, we have B(z1) = B(z2).

ii) Let F be the image of the ellipse E under the inversion map w = 1
z . The

curve F has the equation

|a1|
∣∣∣∣z − 1

a1

∣∣∣∣+ |a2|
∣∣∣∣z − 1

a2

∣∣∣∣ = |1− a1a2| |z| .

The unit circle C and any circle through the point 0 and tangent to the curve F have
exactly two distinct intersection points z1 and z2. Then we have B(z1) = B(z2) for
these intersection points.

Proof. By the same arguments used in the proof of Theorem 4.3, we can show that
B(z) can be written as a composition of two Blaschke products of degrees 3 and n
as B(z) = B2 ◦B1(z) where

B1(z) =
z(z − a1)(z − a2)

(1− a1z) (1− a2z)

and

B2(z) =
z(z − a3a4a5)(z − a6a7a8)...(z − a3n−3a3n−2a3n−1)

(1− a3a4a5z) (1− a6a7a8z) ... (1− a3n−3a3n−2a3n−1z)
.

Then the proof follows similarly. �
Theorem 4.3 is the special case of Theorem 4.4 for n = 2.
For the converse of Theorem 4.4 (i), let B(z) = B2(B1(z)) = λ for a fixed

λ ∈ C. Then there are n distinct points u1, u2, ..., un of the unit circle C such
that B2(uk) = λ where 1 ≤ k ≤ n. For every uk, there are three points zk1 , zk2 and
zk3 of the unit circle C such that B1(zk1) = B1(zk2) = B1(zk3) = uk. By Theorem
3.2, the line joining zki and zkj for i ̸= j is tangent to the ellipse E with equation
(4.4). Therefore we have 3n lines tangent to the ellipse E.

Finally, we note that for a degree n Blaschke product the role of the ellipse plays
for degree 3 is replaced by algebraic curves of higher class. These curves are referred
to by some authors as Poncelet curves (see [4] and [9]).
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References

[1] D. Blair, Inversion theory and conformal mapping, Student Mathematical Library, 9, Amer-

ican Mathematical Society, Providence, RI, 2000.
[2] R. L. Craighead, F. W. Carroll, A Decomposition of finite Blaschke products, Complex Vari-

ables Theory Appl. 26 (1995), no. 4, 333-34.
[3] U. Daepp, P. Gorkin, R. Mortini, Ellipses and finite Blaschke products, Amer. Math. Monthly

109 (2002), no. 9, 785-795.
[4] U. Daepp, P. Gorkin, K. Voss, Poncelet’s theorem, Sendov’s conjecture, and Blaschke prod-

ucts, J. Math. Anal. Appl. 365 (2010), no. 1, 93-102.
[5] M. Frantz, How conics govern Möbius transformations, Amer. Math. Monthly 111 (2004),

no. 9, 779-790.
[6] P. Gorkin, L. Laroco, R. Mortini and R. Rupp, Composition of inner functions, Results

Math. 25 (1994), no. 3-4, 252-269.
[7] A. L. Horwitz and L. A. Rubel, A Uniqueness Theorem for Monic Blaschke Products, Proc.

Amer. Math. Soc. 96 (1986), no. 1, 180-182.
[8] J. B. Garnett, Bounded analytic functions, Pure and Applied mathematics No. 96, Academic

Press, New York, 1981.
[9] Hwa-Long Gau, Pei Yuan Wu, Numerical range and Poncelet property, Taiwanese J. Math.

7 (2003), no. 2, 173-193.
[10] G. A. Jones, D. Singerman, Complex functions. An algebraic and geometric viewpoint, Cam-

bridge University Press, Cambridge, 1987.

[11] H. Urabe, On factorization of the Blaschke products, Bull. Kyoto Univ. Ed. Ser. B No. 63
(1983), 1-13.
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