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A UNIQUE COMMON FIXED POINT THEOREM FOR FOUR

MAPS UNDER ψ - ϕ CONTRACTIVE CONDITION IN

PARTIAL METRIC SPACES

(COMMUNICATED BY SIMEON REICH)

K.P.R.RAO AND G.N.V.KISHORE

Abstract. In this paper, we obtain a unique common fixed point theorem for

four self maps satisfing ψ − ϕ contractive condition in partial metric spaces.
Our result generalizes and improves a theorem of Altun et. al. in partial
metric spaces.

1. Introduction

The notion of partial metric space was introduced by S.G.Matthews [1] as a part
of the study of denotational semantics of data flow networks. In fact, it is widely
recognized that partial metric spaces play an important role in constructing models
in the theory of computation ([2 - 9], etc).
S.G.Matthews [1], Sandra Oltra and Oscar Valero[10] and Salvador Romaguera [11]
and I.Altun, Ferhan Sola, Hakan Simsek [12] prove fixed point theorems in partial
metric spaces for a single map.
In this paper, we obtain a unique common fixed point theorem for four self mappings
satisfying a generalized ψ − ϕ contractive condition in partial metric spaces. Our
result generalizes and improves a theorem of Altun et. al.[12] and some known
theorems in partial metric spaces.
First we recall some definitions and lemmas of partial metric spaces.

2. Basic Facts and Definitions

Definition 2.1. [1]. A partial metric on a nonempty set X is a function p :
X ×X → R+ such that for all x, y, z ∈ X:
(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
(X, p) is called a partial metric space.
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It is clear that |p(x, y)− p(y, z)| ≤ p(x, z) ∀x, y, z ∈ X.
Also clear that p(x, y) = 0 implies x = y from (p1) and (p2).
But if x = y, p(x, y) may not be zero. A basic example of a partial metric space is
the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+.
Each partial metric p on X generates τ0 topology τp on X which has a base the
family of open p - balls {Bp(x, ϵ)/x ∈ X, ϵ > 0} for all x ∈ X and ϵ > 0, where
Bp(x, ϵ) = {y ∈ X/p(x, y) < p(x, x) + ϵ} for all x ∈ X and ϵ > 0.
If p is a partial metric metic on X, then the function ps : X ×X → R+ geven by
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Definition 2.2. [1]. Let (X, p) be a partial metric space.
(i) A sequence {xn} in (X, p) is said to converge to a point x ∈ X if and only if
p(x, x) = lim

n→∞
p(x, xn).

(ii) A sequence {xn} in (X, p) is said to be Cauchy sequence if
lim

n,m→∞
p(xn, xm) exists and is finite .

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges,
w.r.to τp, to a point x ∈ X such that p(x, x) = lim

n,m→∞
p(xn, xm).

Lemma 2.3. [1].Let (X, p) be a partial metric space.
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in
the metric space (X, ps).
(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Further-
more, lim

n→∞
ps(xn, x) = 0 if and only if p(x, x) = lim

n→∞
p(xn, x) = lim

n,m→∞
p(xn, xm).

Note 2.4. If {xn} is converges to x in (X, p), then lim
n→∞

p(xn, y) ≤ p(x, y) ∀ y ∈ X.

Proof. Since {xn} converges to x we have p(x, x) = lim
n→∞

p(xn, x).

Now p(xn, y) ≤ p(xn, x) + p(x, y)− p(x, x)
Letting n→ ∞,
lim

n→∞
p(xn, y) ≤ lim

n→∞
p(xn, x) + p(x, y)− p(x, x).

Thus lim
n→∞

p(xn, y) ≤ p(x, y). �

3. Main Result

Theorem 3.1. Let (X, p) be a partial metric space and let S, T, f, g : X → X be
such that

ψ (p (Sx, Ty)) ≤ ψ (M (x, y))− ϕ (M (x, y)) , ∀ x, y ∈ X, (3.1)

where ψ : [0,∞) → [0,∞) is continuous , non-decreasing and ϕ : [0,∞) → [0,∞)
is lower semi continuous with ϕ(t) > 0 for t > 0 and
M (x, y) = max

{
p(fx, gy), p(fx, Sx), p(gy, Ty), 12 [p(fx, Ty) + p(gy, Sx)]

}
S(X) ⊆ g(X), T (X) ⊆ f(X) (3.2)

either f(X) or g(X) is a complete subspace of X (3.3)

and

the pairs (f, S) and (g, T ) are weakly compatible. (3.4)

Then S, T, f and g have a unique common fixed point in X.
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Proof. Let x0 ∈ X. From (3.2), there exist sequences {xn} and {yn} in X such
that y2n = Sx2n = gx2n+1, y2n+1 = Tx2n+1 = fx2n+2, n = 0, 1, 2, .......
Case(i): Suppose y2m = y2m+1 for some m.
Assume that y2m+1 ̸= y2m+2.

M(x2m+2, x2m+1) = max

{
p(y2m+1, y2m), p(y2m+1, y2m+2), p(y2m, y2m+1),

1
2 [p(y2m+1, y2m+1) + p(y2m, y2m+2)]

}
But p(y2m+1, y2m) = p(y2m+1, y2m+1) ≤ p(y2m+1, y2m+2). from(p2)
and

1
2 [p(y2m+1, y2m+1) + p(y2m, y2m+2)]

≤ 1
2 [p(y2m, y2m+1) + p(y2m+1, y2m+2)] from(p4)

≤ 1
2 [p(y2m+1, y2m+2) + p(y2m+1, y2m+2)]

= p(y2m+1, y2m+2).

Hence M(x2m+2, x2m+1) = p(y2m+1, y2m+2) .
From (3.1),

ψ (p (y2m+2, y2m+1)) = ψ (p (Sx2m+2, Tx2m+1))
≤ ψ (M (x2m+2, x2m+1))− ϕ (M (x2m+2, x2m+1))
= ψ (p(y2m+2, y2m+1))− ϕ (p(y2m+2, y2m+1))
< ψ (p(y2m+2, y2m+1)) since ϕ(t) > 0 if t > 0 .

It is a contradiction. Hence y2m+2 = y2m+1.
Continuing in this way , we can conclude that yn = yn+k for all k > 0. Thus {yn}
is a Cauchy sequence.
Case(ii) Assume that yn ̸= yn+1 for all n.
Denote pn = p(yn, yn+1).

ψ (p2n) = ψ (p (y2n, y2n+1))
= ψ (p (Sx2n, Tx2n+1))
≤ ψ (M (x2n, x2n+1))− ϕ (M (x2n, x2n+1)) .

M(x2n, x2n+1) = max

{
p(y2n−1, y2n), p(y2n−1, y2n), p(y2n, y2n+1),

1
2 [p(y2n−1, y2n+1) + p(y2n, y2n)]

}
= max

{
p2n−1, p2n

}
from(p4)

Hence ψ(p2n) ≤ ψ(max {p2n−1, p2n})− ϕ(max {p2n−1, p2n}).
If p2n is maximum then ψ(p2n) ≤ ψ(p2n)− ϕ(p2n) < ψ(p2n).
Hence

ψ(p2n) ≤ ψ(p2n−1)− ϕ(p2n−1) (3.5)

< ψ(p2n−1).
Since ψ is increasing we have p2n < p2n−1.
Similarly,we can show that p2n−1 < p2n−2.
Thus pn < pn−1, n = 1, 2, 3, ...
Thus {pn} is a non increasing sequence of non negitive real numbers and must
converge to a real number, say, l ≥ 0.
Letting n→ ∞ in (3.5), we get
ψ(l) ≤ ψ(l)− ϕ(l) so that ϕ(l) ≤ 0. Hence l = 0.
Thus

lim
n→∞

p(yn, yn+1) = 0 (3.6)

Hence from (p2),
lim

n→∞
p(yn, yn) = 0 (3.7)
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From (3.6) and (3.7), we have

lim
n→∞

ps(yn, yn+1) = 0 (3.8)

Now we prove that {y2n} is a Cauchy sequence in (X, ps). On contrary suppose
that {y2n} is not Cauchy.
There exists an ϵ > 0 and monotone increasing sequences of natural numbers {2mk}
and {2nk} such that nk > mk,

ps(y2mk
, y2nk

) ≥ ϵ (3.9)

and

ps(y2mk
, y2nk−2) < ϵ (3.10)

From (3.9),
ϵ ≤ ps(y2mk

, y2nk
)

≤ ps(y2mk
, y2nk−2) + ps(y2nk−2, y2nk−1) + ps(y2nk−1, y2nk

)
< ϵ+ ps(y2nk−2, y2nk−1) + ps(y2nk−1, y2nk

) from (3.10)
Letting k → ∞ and using (3.8), we have

lim
k→∞

ps(y2mk
, y2nk

) = ϵ. (3.11)

Hence from definition of ps and from (3.7),we have

lim
k→∞

p(y2mk
, y2nk

) =
ϵ

2
. (3.12)

Letting k → ∞ and using (3.11) and (3.8) in
|ps(y2nk+1, y2mk

)− ps(y2mk
, y2nk

)| ≤ ps(y2nk+1, y2nk
)

we get

lim
k→∞

ps(y2nk+1, y2mk
) = ϵ. (3.13)

Hence we have

lim
k→∞

p(y2nk+1, y2mk
) =

ϵ

2
(3.14)

Letting k → ∞ and using (3.11) and (3.8) in
|ps(y2nk

, y2mk−1)− ps(y2nk
, y2mk

)| ≤ ps(y2mk−1, y2mk
)

we get

lim
k→∞

ps(y2nk
, y2mk−1) = ϵ. (3.15)

Hence we have

lim
k→∞

p(y2nk
, y2mk−1) =

ϵ

2
(3.16)

Letting k → ∞ and using (3.15) and (3.8) in
|ps(y2mk−1, y2nk+1)− ps(y2mk−1, y2nk

)| ≤ ps(y2nk+1, y2nk
)

we get

lim
k→∞

ps(y2mk−1, y2nk+1) = ϵ. (3.17)

Hence we have

lim
k→∞

p(y2mk−1, y2nk+1) =
ϵ

2
(3.18)
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ψ (p(y2mk
, y2nk+1))

= ψ (p(Sx2mk
, Tx2nk+1))

≤ ψ

(
max

{
p(y2mk−1, y2nk

), p(y2mk−1, y2mk
), p(y2nk

, y2nk+1),
1
2 [p(y2mk−1, y2nk+1) + p(y2nk

, y2mk
)]

})
−ϕ

(
max

{
p(y2mk−1, y2nk

), p(y2mk−1, y2mk
), p(y2nk

, y2nk+1),
1
2 [p(y2mk−1, y2nk+1) + p(y2nk

, y2mk
)]

})
.

Letting k → ∞ and using (3.14), (3.16), (3.6), (3.18) and (3.12), we get
ψ( ϵ2 ) ≤ ψ

(
max

{
ϵ
2 , 0, 0,

1
2 [

ϵ
2 + ϵ

2 ]
})

− ϕ
(
max

{
ϵ
2 , 0, 0,

1
2 [

ϵ
2 + ϵ

2 ]
})

ψ( ϵ2 ) ≤ ψ( ϵ2 )− ϕ( ϵ2 ) < ψ( ϵ2 ).
It is a contradiction. Hence {y2n} is Cauchy.
Letting n,m→ ∞ in
|ps(y2n+1, y2m+1)− ps(y2n, y2m)| ≤ ps(y2n+1, y2n) + ps(y2m, y2m+1)
we get lim

n,m→∞
ps(y2n+1, y2m+1) = 0.

Hence {y2n+1} is Cauchy.
Thus {yn} is a Cauchy sequence in (X, ps). Hence , we have lim

n, m→∞
ps(yn, ym) = 0.

Now, from the definition of ps and from (3.7), we have

lim
n, m→∞

p(yn, ym) = 0. (3.19)

Suppose f(X) is complete.
Since {y2n+1} ⊆ f(X) is a Cauchy sequence in the complete metric space (f(X), ps),
it follows that {y2n+1} converges in (f(X), ps).
Thus lim

n→∞
ps(y2n+1, v) = 0 for some v ∈ f(X).

There exists t ∈ X such that v = f(t).
Since {yn} is Cauchy in X and {y2n+1} → v , it follows that {y2n} → v.
From Lemma 2.3(b), we have

p(v, v) = lim
n→∞

p(y2n+1, v) = lim
n→∞

p(y2n, v) = lim
n, m→∞

p(yn, ym). (3.20)

From (3.19)and (3.20), we have

p(v, v) = lim
n→∞

p(y2n+1, v) = lim
n→∞

p(y2n, v) = 0. (3.21)

We now prove that lim
n→∞

p(St, y2n) = p(St, v).

ps(St, y2n) = 2p(St, y2n)− p(St, St)− p(y2n, y2n).
Letting n→ ∞, we get
ps(St, v) = 2 lim

n→∞
p(St, y2n)− p(St, St)− 0 from (3.7).

2p(St, v)− p(St, St)− p(v, v) = 2 lim
n→∞

p(St, y2n)− p(St, St).

p(St, v) = lim
n→∞

p(St, y2n) from(3.21).

Let St ̸= v.
p(St, v) ≤ p(St, Tx2n+1) + p(Tx2n+1, v)− p(Tx2n+1, Tx2n+1)

≤ p(St, Tx2n+1) + p(y2n+1, v)

ψ(p(St, v)) ≤ ψ(p(St, Tx2n+1) + p(y2n+1, v)).
Letting n→ ∞, we have

ψ(p(St, v)) ≤ ψ
(
lim
n→∞

p(St, Tx2n+1) + 0
)

= lim
n→∞

ψ(p(St, Tx2n+1))

≤ lim
n→∞

[ψ(M(t, x2n+1))− ϕ(M(t, x2n+1)))] .
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M(t, x2n+1) = max{p(v, y2n), p(v, St), p(y2n, y2n+1),
1
2 [p(v, y2n+1) + p(y2n, St)]}

→ p(v, St) as n → ∞, from (3.21), (3.6).
Thus ψ(p(St, v)) ≤ ψ(p(St, v))− ϕ(p(St, v)) < ψ(p(St, v)).
Hence St = v.Thus St = v = ft.
Since the pair (f, S) is weakly compatible, we have fv = Sv.
Suppose Sv ̸= v
As in above , using the metric ps and (3.7),(3.21), we can show that
p(Sv, v) = lim

n→∞
p(Sv, y2n).

p(Sv, v) ≤ p(Sv, Tx2n+1) + p(Tx2n+1, v)− p(Tx2n+1, Tx2n+1)
≤ p(Sv, Tx2n+1) + p(y2n+1, v)

ψ(p(Sv, v)) ≤ ψ(p(Sv, Tx2n+1) + p(y2n+1, v)).
Letting n→ ∞, we have that

ψ(p(Sv, v)) ≤ ψ
(
lim
n→∞

p(St, Tx2n+1) + 0
)

= lim
n→∞

ψ(p(St, Tx2n+1))

≤ lim
n→∞

[ψ(M(v, x2n+1))− ϕ(M(v, x2n+1))] .

M(v, x2n+1) = max

{
p(Sv, y2n), p(Sv, Sv), p(y2n, y2n+1),

1
2 [p(Sv, y2n+1) + p(y2n, Sv)]

}
→ p(Sv, v) as n → ∞, from(3.6) and (p2).

Thus ψ(p(Sv, v)) ≤ ψ(p(Sv, v))− ϕ(p(Sv, v)) < ψ(p(Sv, v)).
Hence Sv = v.Thus

fv = Sv = v. (3.22)

Since S(X) ⊆ g(X), there exists w ∈ X such that v = Sv = gw.
Suppose v ̸= Tw.
ψ(p(v, Tw)) = ψ(Sv, Tw)

≤ ψ(max
{
p(v, v), p(v, v), p(v, Tw), 12 [p(v, Tw) + p(v, v)]

}
)

−ϕ(max
{
p(v, v), p(v, v), p(v, Tw), 12 [p(v, Tw) + p(v, v)]

}
)

= ψ(p(v, Tw))− ϕ(p(v, Tw)) from (3.21)
< ψ(p(v, Tw)).

Hence Tw = v. Thus gw = Tw = v.
Since (g, T ) is weakly compatible, we have gv = Tv.
Suppose Tv ̸= v.
ψ(p(v, Tv)) = ψ(p(Sv, Tv))

≤ ψ

(
max

{
p(v, Tv), p(v, v), p(Tv, Tv),

1
2 [p(v, Tv) + p(Tv, v)]

})
−ϕ

(
max

{
p(v, Tv), p(v, v), p(Tv, Tv),

1
2 [p(v, Tv) + p(Tv, v)]

})
≤ ψ(p(v, Tv))− ϕ(p(v, Tv)) from (3.21) and (p2)
< ψ(p(v, Tv)).

Hence Tv = v. Thus

gv = Tv = v. (3.23)

From (3.22) and (3.23), v is a common fixed point of f, g, S and T .
Let z be another common fixed point of f, g, S and T .
Suppose v ̸= z.
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ψ(p(v, z)) = ψ(p(Sv, Tz))
≤ ψ

(
max

{
p(v, z), p(v, v), p(z, z), 12 [p(v, z) + p(z, v)]

})
− ϕ

(
max

{
p(v, z), p(v, v), p(z, z), 12 [p(v, z) + p(z, v)]

})
= ψ(p(v, z))− ϕ(p(v, z))from(p2)
< ψ(p(v, z))

Hence v = z. Thus v is the unique common fixed point of f, g, S and T . �

The following two simple examples illustrate our Theorem 3.1.

Example 3.2. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X. Let
f, g, S, T : X → X, f(x) = x

2 , g(x) =
x
3 , S(x) =

x
4 and T (x) = x

6 , ψ : [0,∞) →
[0,∞) by ψ (t) = t and ϕ : [0,∞) → [0,∞) by ϕ (t) = t

2 . Then all conditions
(3.1), (3.2), (3.3) and (3.4) are satisfied and 0 is unique common fixed point of f, g, S
and T .

Example 3.3. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X. Let

f, g, S, T : X → X, f(x) = x
x+1 , g(x) = x

x+2 , S(x) = x2

2x+2 and T (x) = x2

2x+4 ,

ψ : [0,∞) → [0,∞) by ψ (t) = t and ϕ : [0,∞) → [0,∞) by ϕ (t) = t
2 . Then all

conditions (3.2), (3.3) and (3.4) are satisfied and

p(Sx, Ty) = max{ x2

2x+2 ,
y2

2y+4}
≤ 1

2 max{ x
x+1 ,

y
y+2}

= 1
2p(fx, gy)

≤ 1
2 max{p(fx, gy), p(fx, Sx), p(gy, Ty), 12 [p(fx, Ty) + p(gy, Sx)]}.

Clearly 0 is unique common fixed point of f, g, S and T .

Corollary 3.4. Theorem 3.1 holds with the condition (3.1) is replaced by

p(Sx, Ty) ≤ φ

(
max

{
p(fx, gy), p(fx, Sx), p(gy, Ty),

1
2 [p(fx, Ty) + p(gy, Sx)]

})
(3.24)

∀x, y ∈ X, where φ : [0,∞) → [0,∞) is continuous and φ(t) < t for t > 0.

Proof. Define ψ(t) = t and ϕ(t) = t− φ(t) ∀ t ≥ 0.
Then the condition(3.24) implies the condition (3.1). �

Corollary 3.5. Let (X, p) be a complete partial metric space and F : X → X be a
map such that
p(Fx, Fy) ≤ φ

(
max

{
p(x, y), p(x, Fx), p(y, Fy), 12 [p(x, Fy) + p(y, Fx)]

})
,

∀x, y ∈ X, where φ : [0,∞) → [0,∞) is continuous and φ(t) < t for t > 0.
Then F has a unique fixed point in X.

Remark. Altun, Sola, Simsek [12] proved the corollary 3.5. with an additional
condition on φ, namely, φ is non-decreasing.

Acknowledgments. The authors are thankful to the referees for their valuable
suggestions.
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