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ABSTRACT. For z = (z1,%2, -+ ,Zn) € R?, the symmetric function on(z,T)
is defined by
" 14z
PSS S | G D LA

1<iy<ige-<ip<n \y=1 T4
where r =1,2,--- /n, and 41,42, -- ,in are positive integers.

In this article, the Schur convexity, Schur multiplicative convexity and
Schur harmonic convexity of ¢n(z,r) are discussed. As applications, some
inequalities, including Weierstrass inequality, are established by use of the

theory of majorization.

1. INTRODUCTION

In this paper, we shall adopt the notation and terminology as follows: R™ denotes
the n—dimensional Euclidean space (n > 2), R} = {(z1, 22, - ,2n) : & > 0,7 =
1,2,---,n}, R = (—o00,4+00), Ry = (0,400) and N = {1,2,--- ,n,---}. For x =
(1,22, yxn), ¥y = (Y1,Y2, - ,Yn) € R” and « € R, we denote by

x+y—(l’1+y1,$2—|—y27”- 7l‘n+yn)7

Y = (xlyla ZT2Y2, - 7xnyn)7
ar = (axl,ax2,~ CLQEy,),

= ell

76 765071)’

(
(a—l—xl,a—I—xQ, L ata)

and
a—x=(Q—T1,0—Tg, -+, 00— Ty).

2000 Mathematics Subject Classification. 05E05, 26B25.

Key words and phrases. symmetric function; Schur convex; Schur multiplicatively convex;
Schur harmonic convex.

(©2011 Universiteti i Prishtinés, Prishtiné, Kosové.

Submitted April 7, 2011. Published June 20, 2011.

This work was supported by the Natural Science Foundation of China (11071069), the Natural
Science Foundation of Zhejiang Province (Y7080185) and the Innovation Team Foundation of the
Department of Education of Zhejiang Province (T200924).

84



A CLASS OF SYMMETRIC FUNCTIONS AND THEIR APPLICATIONS 85

Moreover, we denote by

Jca = (f?,l‘g, o axg)a

logz = (logz1,log xz,- -+ ,logz,)

and

for x € R} .
For x = (x1,22,-- ,x,) € R}, r € N and r < n, the Hamy symmetric function
H, (z,r) is defined by T. Hara, M. Uchiyama and S. Takahasi [1] as follows:

r

Hy,(z,r) = Hy(x1,29, -+ ,xp;7r) = Z ﬁxij ,

1<iy <ig<---<ip<n \j=1
where 1,72, , i, € N.

Corresponding to this is the r—th order Hamy mean

1
aHn(mvr)a

n

O'n(m,r) = O'n(mlnya T ,.’L‘n;’l") =

where C7 = —"__ T. Hara, M. Uchiyama and S. Takahasi [1] established the

(n—r)lr!”
following refinement of the classical arithmetic and geometric means inequalities:

Gn(z) =0op(z,n) <op(z,n—1) < - <op(z,2) <op(z,1) = Ay (2).

Here, Ay (z) = £ 3" | x; and Gy (z) = ([T}, ;)% denote the classical arithmetic
and geometric means of x, respectively. We also denote the harmonic mean of x by
H,(z) = s

i=1 x;

The paper [2] by H. T. Ku, M. C. Ku and X. M. Zhang contains some interesting

inequalities including the fact that (o, (x,7))* is log-concave. More results can be
found in the book [3] by P. S. Bullen.

Recently, the Schur convexity of the Hamy symmetric function H,(z,r) was
discussed and some analytic inequalities were established by K. Z. Guan [4].

In this article, we define the following new symmetric function:

T

on(x,1) = on(T1, 22, ;03 7) = 11 > “ 1. (1.1)

1<i1<ig--<ir<n \j=1

J
for v = (z1,22,--- ,2,) € R}, r € Nand r < n. Here, iy,42,- - ,i, € N.

The main purpose of this paper is to discuss the Schur convexity, Schur mul-
tiplicative convexity and Schur harmonic convexity for the symmetric function
on(x,r). As applications, some inequalities are established by use of the theory
of majorization.

Schur convex, Schur multiplicatively convex and Schur harmonic convex func-
tions are defined as follows.
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Definition 1.1. Let E C R"™ be a set, a real-valued function F on E is called a
Schur convex function if

F(:rl;x%"' 73377,) SF(yhyQa"' 7yn)
for each pair of n-tuples x = (x1,-+ ,x,) and y = (y1,- - ,yn) in E, such that

T <Yy, e
Zk:zm < Zk:ym,k: 1,2, ,n—1
and -
;I[i] - ;y[i]v

where x(; denotes the ith largest component in x. F' is called Schur concave if —F
is Schur convex .

Definition 1.2. Let E C R} be a set, a real-valued function F': E — Ry is called a
Schur multiplicatively convex function on E if F(x1,xa,- - ,2n) < F(y1,y2, " »Yn)
for each pair of n—tuples © = (x1, 2, , ) and y = (y1,Y2, - ,Yn) in E, such
that logx < logy. F is called Schur multiplicatively concave if % is Schur multi-
plicatively convex.

Definition 1.3. Let E C R} be a set, a real-valued function F' on E is called a
Schur harmonic convex function on E if

F(mlaan'” ,l’n) S F(ylayQa'” 7yn) (12)

for each pair of n—tuples © = (x1, 2, , ) and y = (y1,Y2, -+ ,Yn) in E, such
1 1 . . . p . .

that + < g F is called a Schur harmonic concave function on E if inequality (1.2)

1s reversed.

The Schur convexity was introduced by I. Schur [5] in 1923, G. H. Hardy, J. E.
Littlewood and G. Pélya were also interested in some inequalities that are related
to the Schur convexity [6]. It has many important applications in extended mean
values [7], theory of statistical experiments [8], graphs and matrices [9], combinato-
rial optimization [10], reliability [11], gamma functions [12], information-theoretic
topics [13], stochastic orderings [14] and other related fields. Recently, the Schur
multiplicative and harmonic convexities were introduced and investigated in paper
[15, 16, 22-24).

2. LEMMAS

In this section, we introduce and establish some Lemmas, which are used in the
proof of our main results.

Lemma 2.1. [5] Let f : R} — Ry be a continuous symmetric function. If f is
differentiable in R, then f is Schur convez in R if and only if

of of
o 9 s 2.1
for all i,j = 1,2,--- ,n and v = (21, -+ ,2,) € R}. And f is Schur concave

in R% if and only if inequality (2.1) is reversed for all i,j = 1,2,---,n and
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r = (x1,---,2,) € R}. Here f is a symmetric function in R’} which means
that f(Px) = f(x) for any x € R} and any n x n permutation matriz P.

Remark 2.1. Since f is symmetric, the Schur’s condition in Lemma 2.1, i.e. (2.1)

can be reduced to of of
— L _ 2L ) >
((El xz) ((%1 8@) =0

Lemma 2.2. [15,16] Let f : Rt — Ry be a continuous symmetric function. If f
is differentiable in R}, then f is Schur multiplicatively convex in R if and only if

0 0
(logz1 — log xo) (mlaxfl - xgaai> >0 (2.2)
for all v = (x1,22,--- ,x,) € R}, And f is Schur multiplicatively concave in R’}

if and only if inequality (2.2) is reversed.

Lemma 2.3. [22] Let f : R} — Ry be a continuous symmetric function. If f is
differentiable in R}, then f is Schur harmonic convex in R} if and only if

of of
for all v = (x1,22,--- ,x,) € R, And f is Schur harmonic concave in R’} if and

only if inequality (2.8) is reversed.

Lemma 2.4. [4,16,17] Let v = (z1,22, -+ ,@,) € R% and Y jx; =s. Ifc > s,
then

fcl’l<fw"Ei’(:wzzl’,,.7ic‘rTll)<(x1,z2’...7xn)1'_

S S S S

Lemma 2.5. [17] Let © = (21,22, ,2,) € RY and 31"z =s. If ¢ >0, then
ncc—&-x :<c—|—x17c+x2"”7c+xn)<(ml,x27_”7xn>:x.
=+1 S B | =41

Lemma 2.6. [18] Suppose that © = (x1,22, -+ ,2,) € R} and >\ jx; = s. If
0< A< 1, then
s=Ar (8= Az1 5— ATz s — Az,
n—X \n—-X"n-X" " n-2X\

> < (21,29, ,xy) = x.

3. MAIN RESULTS

Theorem 3.1. For r € {1,2,---,n}, the symmetric function on(z,r) is Schur
conver in R’} .

Proof. By Lemma 2.1 and Remark 2.1 we only need to prove that

Opn(x,1)  Opn(x,T)
— — > 0. 1
(xl l‘z) < 0x1 0xo = (3 )
for all v = (x1, 22, ,2,) €ER} and r =1,2,--- ,n.

The proof is divided into four cases.
Case 1. If r = 1, then (1.1) leads to
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ﬁl—i—ml

i=1

@n(x7 1) = (,On(l'l,xg, t 7xn7

From (3.2) and simple computation we get

Opn(x,1)  Opp(z,1) (r1 — 22)2(1 + 21 + 22)
(@1 xQ)( Oy Oz z122(1 + 1) (1 + x2) en(1)
Case 2. If n > 2 and r = n, then (1.1) yields that
14 T;
gDn(l',n):QDn(fEhl’Q,"' y Ly N Z
=1
and
Opn(x,n)  Opnp(z,n) (r1 — 22)2 (21 + 22)
—~ - = > 0.
(1 —2) ( Ox1 Oxa z223 =

Case 3. If n > 3 and r = 2, then by (1.1) we have

on(®,2) = pp(T1, 22, ,25;2)
o ].+CE1 1+’I’2 n ].+ZL’1 ].+CEJ
= < o + - > U ( o z; On—1(z2, 3,
_j_3 -
1 1 1+a;
<1+2172 +x1> H( + T2 +x3) On_1(z1, 23, -
i) X1 - X2 T
_j_3 -
Simple computation and (3.4) lead to
Opn(x,2)  Opp(z,2)
(1’1 B 1’2) < 81‘1 B 81‘2

X1 + Zo
1‘11‘2(3;‘1 + 22129 + LL‘Q)

— (o1 - 22p(2.2) |

n
+Zm
Jj=3
> 0.

xz- + (@1 +22)(1 + 225);

122(z1 + 22125 + x5) (22 + 22025 + )

azn§2)

,.Z’n;2).

(3.2)

(3.3)

(3.4)
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Case 4. If n >4 and 3 <r <n — 1, then from (1.1) we have

@n(xﬂ“) = son(xlvm% T a‘rn”n)
-1
1+ T . 1+ x;
= pn-1(22, 23, , Tni7) ( o +y —
3<11<12< <ip—1<n j=1
r— 21
y H 1+ 2 1+$2+ +(Eij
. . . I L.
3<i1 << <ir—2<n j=1 J
-1
1 + 1) s 1 + xij
:Sanl(aj]_,x:;,"' 7.'1/'”,',') ( Lo +Z Iy
3<11<12< <ip—1<n j=1 g
-2
1 1 1+ z;
< 10 tnn, Y 5)
3<iy <ia< - <ip_o<n 1 =1
and
(21 — 22) Opn(x,1)  Opn(z,7)
8:1:1 8172
(21 — x)* Ty + T2
=55 —¢nlz,r) Z Tt
T1T5

14z 1+z2 r— 2
3<iy <in<-<ip_a<n g, T +D o1 o
J

r—1 1+xi]‘
J=1 0wy

(1+.’£1 +f£2)+(1’1 +£L’2)Z

DS
14z, 1+£1

1 1 14z
3<iy <ig<<ip_1<n ( o +ZT @ )(HI2 +ZT Ii; )

> 0.

Therefore (3.1) follows from Cases 1-4, and the proof of Theorem 3.1 is com-
pleted. O

Theorem 3.2. For r € {1,2,--- ,n}, the symmetric function @, (z,r) is Schur
multiplicatively conver in R’} .

Proof. According to Lemma 2.2 we only need to prove that

Oon(z,T) . On(z,1)
8:101 2 81'2

(log 1 — log x2) (xl >0 (3.6)
for all x = (z1,22,--- ,2,) €R} and r=1,2,--- ,n

The proof is divided into four cases.
Case I. If r = 1, then (3.2) leads to

a n 7]- a n 71
(log z1 — log x2) <x1 @855 )—xg 908;52 )>

_ (logzy1 — logxa)(x1 — x2)
(1+21)(1+ 229)

wn(z,1) > 0.
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Case II. If n > 2 and r = n, then (3.3) implies that

Opn(z, Opn(,
(logx1 — log x2) (:El @8;3:1 n) — 29 @85:2 n)>

_ (931 7$2)(10gI1 710gl’2) Z 0.
122

Case III If n > 3 and r = 2, then (3.4) leads to
Ovn,(z,2) Opn(z,2) >
i — X

(logz1 — log xa) <x

8$1 2 61‘2
1
= — 1 —1 2) | ———————
(a1 = ) logoy ~ 08 22)(2.2) | gt
i zn: (1 + 217j)1‘j 2 0
= (x1 4+ 2z125 + ;) (22 + 20225 + ;)
Case IV.If n >4 and 3 <r <n — 1, then (3.5) reveals
a n bl 8 n b
(logz1 — log xs) (331 (paif r) — 9 @ag r))
(21 — z2)(log x1 — log ) Z 1
- - z r—9 14z,
T12 8<iy <ig<<ip_g<n oot 4 1i22 4 Zj:f e
r—1 1+1‘ij
J > 0.
+ Z — on(x,7) >0

—1 14z, —1 14z,
3<i1 << <ipr_1<N ( 1 + 22:1 T;])(% + 22:1 3«'72;] )

Therefore (3.6) follows from Cases I-IV, and the proof of Theorem 3.2 is com-
pleted. O

Theorem 3.3. For r € {1,2,---,n}, the symmetric function on(z,r) is Schur
harmonic concave in R} .

Proof. According to Lemma 2.3 we only need to prove that

Ipn(x,r) Opn (1)
(x1 — x2) (xf gxl — z2 gxg <0 (3.7)
for all x = (x1, 22, ,2,) €ER} and r =1,2,--- ,n.

The proof is divided into four cases.
Case A. If r = 1, then from (3.2) we have

(21 — 22) (x2 Opn(x,1) 5 0pn(x, 1))

1 83:1 2 81’2
(1 — @2)°
- 1) <o
Wt o)1 +a2) 7Y
Case B. If n > 2 and r = n, then (3.3) leads to

&pn(az, n) 8gon(x, n)
. 2 .2 _
(1 — x2) (:z:l o 5 s =0.
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Case C. If n > 3 and r = 2, then (3.4) shows that

Opn(x,2) Oon(x,2)
_ 2 .2
(Z‘l 1‘2) (ml axl Lo 81'2

x2

—(z1 — (z,2) k <0
( ! 2 <,0n 12233 .%'1+2$1$Uj+$j)(.’1?2+2$2$j+$j) -

Case D. If n >4 and 3 <r <n—1, then (3.5) deduces that
(xl o 1'2) <l’% 8@”«(‘%7 7’) o I2 8cpn(x, T)>

81‘1 2 63&‘2
- (Cﬂl - $2)2
= - on(x,7)
12
1
<0.
X > i, = 7z, T TFe, =0

+X0 = RS =)

Therefore (3.7) follows from Cases A-D, and the proof of Theorem 3.3 is com-
pleted. ([l

3<i1<ia< <1< (

Tij

4. APPLICATIONS

In this section, we establish some inequalities by use of Theorems 3.1-3.3 and
the theory of majorization.

Theorem 4.1. If x = (z1,x9, - ,x,) € R” T,s = Z;‘:lxi and r € {1,2,--- ,n},
theZ) Pn(2,7) > ¥n (s, r) for ¢ > s;

(2) on(@,7) < (%x r) fore>3T0 &

(3) pn(z,7) > @p (nCchH, r) for ¢ > 0;

(4) on(@,7) < pp (%ﬂ“xr) for ¢ > 0;

(5) enl,r) > @n(5AE, 1) for 0 < A< 1;

(6) on(z,7) < @ (m,r) for0 <A<,

(7) pn(x,7) > @n(snt:\;,?“) for0< A< 1;

(8) on(x,7) < p (m )for()g)\gl.

Proof. Theorem 4.1(1) and (2) follow from Lemma 2.4 , Theorem 3.1 and Theorem
3.3.
Theorem4.1(3) and (4) follow from Lemma 2.5 , Theorem 3.1 and Theorem 3.3.
Theorem 4.1(5) and (6) follow from Lemma 2.6 , Theorem 3.1 and Theorem 3.3.
Theorem 4.1(7) and (8) follow from Theorem 3.1 , Theorem 3.3 together with
the face that

s+Ar  [(s+Ar1 s+ Ax2 s+ Az,
n+X \n+X  n+X 7 n+A

) < (x1,29,  ,Ty) = .
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Theorem 4.2. If x = (v1,22, -+ ,2,) € R} and r € {1,2,--- ,n}, then

o I (T[] -

1<iy <ig<--<ip<n \j=1 K

T

@) 11 S +a)

1<i1 << <ir<n | j=1

[rAn (1 + 2)] T

IN

Proof. We clearly see that
(Ap (), Ap(x), -, Ap(x)) < (21,29, ,2n) = @. (4.1)

Therefore, Theorem 4.2(i) follows from (4.1) and Theorem 3.1 together with
(1.1), and Theorem 4.2 (ii) follows from (4.1) and Theorem 3.3 together with
(1.1). O

If we take r = 1 in Theorem 4.2(¢) and (ii), and » = n in Theorem 4.2(7),
respectively, then we have
Corollary 4.1. If x = (z1,22, - ,x,) € R, then

ZGn(142)  A(1+x)
D= 2 aw

(i1)Gp(1 + 2) < A, (1 + 2);

(iii) An (1 * x) > A’;l(i (:)x).

xT

Remark 4.1. If we take > . x; = 1 in Corollary 4.1(i), then we get the Weier-
strass inequality (see [19, p. 260])

n

H(;—H) > (n+1)"

i=1

Theorem 4.3. If x = (v1,22, -+ ,2,) € R} and r € {1,2,--- ,n}, then

T

Ol | S ta,)| = [+ Hala)) 70

1<i1<io <<t <n | j=1

T

@ I PRy [“HH(@)}‘")

X, H,(z)

1<i1 <i9 < <i,,<n \ j=1 j

Proof. We clearly see that

(Hnl(x)’Hnl(x)"" ’Hnl(x)> = (;13312 ;) =—. (4.2)

Therefore, Theorem 4.3 (i) follows from (4.2), Theorem 3.1 and (1.1), and The-
orem 4.3 (i7) follows from (4.2), Theorem 3.3 and (1.1).

If we take » = 1 and r = n in Theorem 4.3, respectively, then we get the following
Corollaries 4.2 and 4.3. (]

| =

— 8
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Corollary 4.2. If v = (21,%2,-- ,x,) € R, then
(Z)Gn(l + I) >1+ Hn(ilf),
> .
e its T+ @

Corollary 4.3. If x = (21,22, - ,x,) € R}, then
(A, (1+2z) > 1+ Hy(x);

(ii) Ay, (1:9”) <14

Theorem 4.4. If x = (v1,22, -+ ,2,) € R} and r € {1,2,--- ,n}, then

U 1+ Gn(2) Ic=Dn
7 > L Tn\) )
N O R

1<ig <ipg <o <ip<n \j=1
Proof. We clearly see that
log (G (), Gn(z), - ,Gp(x)) <log(z1,22, -, Zpn). (4.3)
Therefore, Theorem 4.4 follows from (4.3), Theorem 3.2 and (1.1). O

If we take r = 1 and r = n in Theorem 4.4, respectively, then we get
Corollary 4.4. If x = (21,22, - ,x,) € RY, then
()Gr(l+z) > 1+ G,(2);

o (552 S

Theorem 4.5. If v = (z1,22, - ,2,) € RY, then

n—1)!

" 24z (n—1)! 2 n : =D (n—)!
O T (X ) senrE |TEen - )
1<iq <ig-<ip<n \j=1 i i=1"
for 1<r<mn-1,
n

.. 2+ x; 2"'2”_1331‘
< 1= 2 71.
0 ST g Y

n—1)!

r n =D (n—r)1
(n—1)!
Gy TI | Xe+ay)| 2 @)m <2r+§ x>

1<y <ig--<ip<n | j=1 i=1
for 1<r<n-—1.

Proof. Theorem 4.5 follows from Theorem 3.1, Theorem 3.3 and (1.1) together with
the fact that

(L4, 14z, 1+ a,) < (14 @, 1,1, 1),
i=1
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Theorem 4.6. Let A= A1 As -+ Apt1 be a n—dimensional simplex in R™ and P be
an arbitrary point in the interior of A. If B; is the intersection point of straight line
A; P and hyperplane )", = A1Ag -+ Ai—1Aiy1 - Apg1,0 =1,2,--- ,n+1. Then for
re{l,2,--- ,n+ 1} we have

. " A; B;. + PB;. (n41)!
(@) 11 > PB, |~ [r(n + 2)] 0=y

1<iy <ige--<ip<n+1 \ j=1

(n+1)!
g " A; B;. + PB;. r(n 4 2)] 7ot
i et Bt B P B ALy .
O | Do = ,
1<iy<ig--<i.<n+1 \j=1 e’}
r __(ndD!
A; B;. + PAij S |:7«(2n + 1):| Tin—r+1)!

(iid) H Z ] ;Aij

1<iy iz <ir<n+1 \j=1

n

. n+1)!
Ay By +PA; [T(Qn—&- 1)} Rl

(iv) H Z A; By, ntl

1<iy <ig-<ip<n+1 \j=1

Proof. 1t is easy to see that Z?;l LB — 1 and Z?:Jrll L4 = p, these imply that

1 1 1 = PB; PB, PB4 (4.4)
TL+17TL+1’ 7TL+]. AlBl’AQBQ, ’An+1Bn+1 ’

and

n n n < PAl PAQ PAn+1 (4 5)
n+1’n+1’ 7n—i—1 AlBl7AQBg’ 7An+an+1 ' ’

Therefore, Theorem 4.6 follows from (4.4), (4.5), Theorem 3.1, Theorem 3.3 and
(1.1). O

Remark 4.2. D. S. Mitrinovié¢, J. E. Pecairé and V. Volenec [20, p. 473-479]
established a series of inequalities for f,gj and 5%’, ,i=1,2,--- ,n+1. Obvious,

our inequalities in Theorem 4.6 are different from theirs.

Theorem 4.7. Suppose that A € M,,(C)(n > 2) is a complex matrix, A1, Aa, -, A\
and 01,09, -+ ,0, are the eigenvalues and singular values of A, respectively. If A
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is a positive definite Hermitian matriz and r € {1,2,--- ,n}, then
T 14N, r(n -+ trA)] 7O
N J > .
9 . H , Z Ai; - { trA ] '
1<ii<iz--<ir<n \j=1 J

@ I1 i(1+)\i],) < [’WW‘)}H

1<ii<ig-<ip,<n [ j=1

i) 11 32N [t YT ) o
141 i > 7
1<i1 <ip<ip<n \ j=1 L+ A, Vdet(I + A)

r'(n !

r(trA + detA)
VdetA

r A+
@ I (X"

1<iy <ig-<ip.<n \j=1 J

14N 1+ 0y,
(’U) H J;\l J < H Z + 0;

1<i1 <ig-+<ir-<n \j=1 1<) <ig-<ir<n

Proof. (i) — (i) We clearly see that \; > 0(¢ = 1,2,--- ,n) and Y .-, \; = trA,

these lead to A A "
t t t
(7“7”;) < (AL A2, ). (4.6)

n n

Therefore, Theorem 4.7 (i) and (éi) follows from (4.6), Theorem 3.1, Theorem
3.3 and (1.1).

(7i7) Tt is easy to see that 1+ A1, 1+ Ao, -+, 14+ )\, are the eigenvalues of matrix
I'+ Aand [, (14 X\) = det(I + A), these yield that
log ({/det(f + A), /det(I + A),---, V/det(I + A)) (4.7)

<log(l+ A1, 14+ Agy--- ;14 Ay).

Therefore, Theorem 4.7 (i4i) follows from (4.7), Theorem 3.2 and (1.1).
(iv) Theorem 4.7(iv) follows from (1.1), Theorem 3.2 and the fact that

VdetA VdetA VdetA A1 g An
log ™ < log .

trA T rA 0 trA’ trA’ trA
(v) A result due to H. Weyl [21] (see also [5, p. 231]) gives
log(A17>\23"' 7>\n) < log(01702)"' ao-n)' (48)
Therefore, Theorem 4.7 (v) follows from (4.8), Theorem 3.2 and (1.1). O
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