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ON QUASI-POWER INCREASING SEQUENCES GENERAL

CONTRACTIVE CONDITION OF INTEGRAL TYPE

(COMMUNICATED BY MOHAMMAD SAL MOSLEHIAN )

W.T. SULAIMAN

Abstract. A general result concerning absolute summability of infinite series

by quasi-power increasing sequence is proved. Our result gives three improve-
ments to the result of Sevli and Leindler [4].

1. Introduction

Let
∑

an be an infinite series with partial sım (sn), A denote a lower triangular
matrix. The series

∑
an is said to be absolutely A-summable of order k ≥ 1, if

∞∑
n=1

nk−1 |Tn − Tn−1|k < ∞, (1.1)

where

Tn =

n∑
v=0

anvsv. (1.2)

The series
∑

an is summable |A|k , k ≥ 1, if

∞∑
n=1

nk−1 |Tn − Tn−1|k < ∞. (1.3)

Let tn denote the nth (C, 1) mean of the sequence (nan), i,e.,

tn =
1

n+ 1

n∑
v=1

vav.

A positive sequence γ = (γn) is said to be a quasi−β−power increasing sequence if
there exists a constant K = K(β, γ) ≥ 1 such that

Knβγn ≥ mβγm (1.4)
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holds for all n ≥ m ≥ 1. It may be mentioned that every almost increasing sequence
is a quasi-β−power increasing sequence for any nonnegative β, but the converse need
not be true.

A positive sequence γ = (γn) is said to be a quasi−f−power increasing sequence
if (see[5]) there exists a constant K = K(γ, f) ≥ 1 such that

Kfnγn ≥ fmγm (1.5)

holds for all n ≥ m ≥ 1.
Two lower triangular matrices A and Â are associated with A as follows

anv =
n∑

r=v

anr, n, v = 0, 1, . . . , (1.6)

ânv = anv − an−1,v, n = 1, 2, . . . , â00 = a00 = a00. (1.7)

Sevli and Leindler [4] proved the following result

Theorem 1.1. Let A be lower triangular matrix with nonnegative entries satisfying

an−1,v ≥ an,v for n ≥ v + 1, (1.8)

an0 = 1, n = 0, 1, . . . , (1.9)

nann = O(1), as n → ∞, (1.10)

m∑
n=1

λn = o(m), m → ∞, (1.11)

m∑
n=1

|∆λn| = o(m), m → ∞. (1.12)

If (Xn) is a quasi-f−increasing sequence satisfying

m∑
n=1

n−1 |tn|k = O(Xm), m → ∞, (1.13)

∞∑
n=1

nXn (β, µ) |∆ |∆λn|| < ∞, (1.14)

then the series
∑

anλn is summable |A|k , k ≥ 1, where (fn) =
(
nβ (log n)

µ)
, µ ≥ 0,

0 ≤ β < 1, and Xn (β, µ) = max
(
nβ (logn)

µ
Xn, log n

)
.We name the conditions

m∑
n=1

1

n (nβ logγ nXn)
k−1

|tn|k = O
(
mβ logγ mXm

)
, m → ∞, (1.15)

λn → 0, as n → ∞, (1.16)

∞∑
n=1

nβ+1 logγ nXn |∆ |∆λn|| < ∞, (1.17)

n−1∑
v=1

avvân,v = O(ann), 1/nann = O(1). (1.18)
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2. Lemmas

Lemma 2.1. [1]. Let A be as defined in theorem 1.1, then

ân,v+1 ≤ ann for n ≥ v + 1, (2.1)

and
m+1∑

n=v+1

ân,v+1 ≤ 1, v = 0, 1, . . . . (2.2)

Lemma 2.2. Condition (1.15) is weaker than (1.13).

Proof. Suppose that (1.13) is satisfied. Since nβ logγ nXn is non-decreasing, then
m∑

n=1

1

n (nβ logγ nXn)
k−1

|tn|k = O (1)
m∑

n=1

1

n
|tn|k = O (Xm) ,

while if (1.15) is satisfied, we have

m∑
n=1

1

n
|tn|k =

m∑
n=1

1

n (nβ logµ nXn)
k−1

|tn|k
(
nβ logµ nXn

)k−1

=
m−1∑
n=1

(
n∑

v=1

1

v (vβ logµ vXv)
k−1

|tv|k
)
∆
(
nβ logµ nXn

)k−1

+
m∑

n=1

1

n (nβ logµ nXn)
k−1

|tn|k
(
mβ logµ mXm

)k−1

= O(1)

m−1∑
n=1

nβ logγ nXn

∣∣∣∆ (nβ logµ nXn

)k−1
∣∣∣

+O
(
mβ logγ mXm

) (
mβ logµ mXm

)k−1

= O
(
(m− 1)

β
logγ (m− 1)Xm−1

)m−1∑
n=1

((
(n+ 1)

β
logµ(n+ 1)Xn+1

)k−1

−
(
nβ logµ nXn

)k−1
)
+O

(
mβ logµ mXm

)k
= O

(
mβ logµ mXm

) (
mβ logµ mXm

)k−1
+O

(
mβ logµ mXm

)k
= O

(
mβ logµ mXm

)k ̸= O (Xm) .

Therefore (1.15) implies (1.13) but not conversely. �
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Lemma 2.3. Condition (1.16) and (1.17) imply

mβ+1 logµ mXm |∆λm| = O(1), m → ∞ (2.3)

∞∑
n=1

nβ logµ nXn |∆λn| = O(1), (2.4)

and

nβ logµ nXn |λn| = O(1), n → ∞. (2.5)

Proof. As ∆λn → 0, and nβ logµ nXn is non-decreasing, we have

nβ+1 logµ nXn |∆λn| = nβ+1 logµ nXn

∞∑
v=n

∆ |∆λv|

= O(1)
∞∑

v=n

vβ+1 logµ vXv |∆ |∆λv||

= O(1).

This proves (2.3). To prove (2.4), we observe that

∞∑
n=1

nβ logµ nXn |∆λn| =
∞∑

n=1

nβ logµ nXn

∞∑
v=n

∆ |∆λv|

≤
∞∑
v=1

|∆ |∆λv||
v∑

n=1

nβ logµ nXn

= O(1)

∞∑
v=1

vβ+1 logµ vXv |∆ |∆λv||

= O(1), by (1.17).
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Finally

nβ logµ nXn |λn| = nβ logµ nXn

∞∑
v=n

∆ |λv|

≤
∞∑

v=n

vβ logµ vXv |∆λv|

= O(1), by (2.4).

�

3. Main Result

Theorem 3.1. Let A satisfies conditions (1.8)-(1.10) and (1.18), let (λn) be a
sequence satisfies (1.16). If (Xn) is a quasi-f-power increasing sequence satisfying
(1.15) and (1.17), then the series

∑
anλn is summable |A|k , k ≥ 1, where (fn) =(

nβ (log n)
µ)

, µ ≥ 0, 0 ≤ β < 1.

Proof. Let xn be the nth term of the A-transform of the series
∑

anλn . By defini-
tion, we have

xn =
n∑

v=0

anvsv =
n∑

v=0

anvλvav,

and hence

Tn := xn − xn−1 =

n∑
v=0

v−1ânvλvvav. (3.1)

Applying Abel’s transformation,

Tn =
n+ 1

n
annλntn +

n−1∑
v=1

∆vânvλvtv +
n−1∑
v=1

ân,v+1∆λvtv +
n−1∑
v=1

v−1ân,vλvtv

= Tn1 + Tn2 + Tn3 + Tn4. (3.2)

To complete the proof, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

nk−1 |Tnj |k < ∞, j = 1, 2, 3, 4.
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Applying Holder’s inequality, we have, in view of (2.5),

m∑
n=1

nk−1 |Tn1|k =
m∑

n=1

nk−1

∣∣∣∣n+ 1

n
annλntn

∣∣∣∣k

= O(1)
m∑

n=1

(nann)
k 1

n
|tn|k |λn|k

= O(1)

m∑
n=1

1

n
|tn|k |λn|k

= O(1)

m∑
n=1

1

n (nβ logµ nXn)
k−1

|tn|k |λn|
(
|λn|nβ logµ nXn

)k−1

= O(1)

m∑
n=1

1

n (nβ logµ nXn)
k−1

|tn|k |λn|

= O(1)

m−1∑
n=1

|∆λn|
n∑

v=1

1

v (vβ logµ vXv)
k−1

|tv|k

+O(1) |λm|
m∑

n=1

1

n (nβ logµ nXn)
k−1

|tn|k

= O(1)
m−1∑
n=1

|∆λn|nβ logµ nXn +O(1) |λm|mβ logµ mXm

= O(1).
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As, (see[2]),

n−1∑
v=0

|∆vânv| =

n−1∑
v=0

(an−1,v − an,v) = 1− 1 + ann = ann,

therefore, in view of (2.5),

m+1∑
n=2

nk−1 |Tn2|k =

m+1∑
n=2

nk−1

∣∣∣∣∣
n−1∑
v=1

∆vânvλvtv

∣∣∣∣∣
k

≤
m+1∑
n=2

nk−1
n−1∑
v=1

|∆vânv| |λv|k |tv|k
(

n−1∑
v=1

|∆vânv|

)k−1

= O(1)
m+1∑
n=2

(nann)
k−1

n−1∑
v=1

|∆vânv| |λv|k |tv|k

= O(1)
m∑

v=1

|λv|k |tv|k
m∑

n=v+1

|∆vânv|

= O(1)
m∑

v=1

avv |λv|k |tv|k

= O(1)
m∑

v=1

1

v
|λv|k |tv|k

= O(1), as in the case of Tn1.
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In view of (2.4), (1.10), and (2.2),

m+1∑
n=2

nk−1 |Tn3|k =
m+1∑
n=2

nk−1

∣∣∣∣∣
n−1∑
v=1

ân,v+1∆λvtv

∣∣∣∣∣
k

≤
m+1∑
n=2

nk−1
n−1∑
v=1

(ân,v+1)
k |∆λv|

|tv|k

(vβ logµ vXv)
k−1

(
n−1∑
v=1

|∆λv| vβ logµ vXv

)k−1

= O(1)

m+1∑
n=2

nk−1
n−1∑
v=1

(ân,v+1)
k |∆λv|

|tv|k

(vβ logµ vXv)
k−1

= O(1)

m∑
v=1

|∆λv|
|tv|k

(vβ logµ vXv)
k−1

m+1∑
n=v+1

nk−1ân,v+1 (ân,v+1)
k−1

= O(1)
m∑

v=1

|∆λv|
|tv|k

(vβ logµ vXv)
k−1

m+1∑
n=v+1

nk−1ân,v+1 (ann)
k−1

= O(1)
m∑

v=1

|∆λv|
|tv|k

(vβ logµ vXv)
k−1

m+1∑
n=v+1

ân,v+1 (nann)
k−1

= O(1)

m∑
v=1

|∆λv|
|tv|k

(vβ logµ vXv)
k−1

m+1∑
n=v+1

ân,v+1

= O(1)
m∑

v=1

v |∆λv|
|tv|k

v (vβ logµ vXv)
k−1

= O(1)
m−1∑
v=1

∆(v |∆λv|)
v∑

r=1

1

r (rβ logµ rXr)
k−1

|tr|k

+O(1)m |∆λm|
m∑

v=1

1

v (vβ logµ vXv)
k−1

|tr|k

= O(1)
m∑

v=1

|∆λv| vβ logµ vXv +O(1)
m∑

v=1

|∆ |∆λv|| vβ+1 logµ vXv

+O(1) |∆λm|mβ+1 logµ mXm

= O(1).
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m+1∑
n=2

nk−1 |Tn4|k =
m+1∑
n=2

nk−1

∣∣∣∣∣
n−1∑
v=1

v−1ân,vλvtv

∣∣∣∣∣
k

=

m+1∑
n=2

nk−1
n−1∑
v=1

(vavv)
−k

avvân,v |λv|k |tv|k
(

n−1∑
v=1

avvân,v

)k−1

= O(1)
m+1∑
n=2

(nann)
k−1

n−1∑
v=1

(vavv)
−1

avvân,v |λv|k |tv|k

= O(1)

m∑
v=1

avv |λv|k |tv|k
m+1∑

n=v+1

ân,v

= O(1)
m∑

v=1

avv |λv|k |tv|k

= O(1), as in the case of Tn1.

�
Remark 3.2. As an applications to theorem 3.1, improvements to all corollaries
mentioned in [4] can also obtained via weaker conditions
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