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ONE-DIMENSIONAL ASSOCIATED HOMOGENEOUS

DISTRIBUTIONS

(COMMUNICATED BY DANIEL PELLEGRINO )

GHISLAIN FRANSSENS

Abstract. Let H′ (R) denote the set of Associated Homogeneous Distribu-
tions (AHDs) with support in R. The set H′ (R) consists of the distributional
analogues of one-dimensional power-log functions. H′ (R) is an important sub-

set of the tempered distributions S′ (R), because (i) it contains the majority
of the (one-dimensional) distributions typically encountered in physics appli-
cations and (ii) recent work done by the author shows that H′ (R), as a linear
space, can be extended to a convolution algebra and an isomorphic multipli-

cation algebra.
This paper (i) reviews the general properties enjoyed by AHDs, (ii) com-

pletes the list of properties of the various important basis AHDs by deriving
many new and general expressions for their derivatives, Fourier transforms,

Taylor and Laurent series with respect to the degree of homogeneity, etc., and
(iii) introduces some useful distributional concepts, such as extensions of par-
tial distributions, that play a natural role in the construction of AHD algebras.

1. Introduction

Homogeneous distributions are the distributional analogue of homogeneous func-
tions, such as |x|z : R → C, which is homogeneous with complex degree z. Asso-
ciated to homogeneous functions are power-log functions, which arise when taking
the derivative with respect to the degree of homogeneity z. The set of Associ-
ated Homogeneous Distributions (AHDs) with support in the line R, and which
we denote by H′ (R), is the distributional analogue of the set of one-dimensional
power-log functions. One-dimensional associated homogeneous distributions were
first introduced in [15]. In the current paper, a comprehensive survey of the set
H′ (R) is given, which (i) applies a new approach to regularization and (ii) gives
many new properties of AHDs of a greater generality then found in e.g., [15].

The set H′ (R) is an interesting and important subset of the distributions of slow
growth (or tempered distributions), S ′ (R), [23], [28], for the following reasons.
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Submitted September 21, 2009. Published April 17, 2011.

1



2 G. FRANSSENS

(i) H′ (R) contains the majority of the distributions one encounters in physics
applications, such as the delta distribution δ, the step distributions 1±, several
so called pseudo-functions generated by taking Hadamard’s finite part of certain
divergent integrals, among which is Cauchy’s principal value distribution x−1, the
even and odd Riesz kernels, the Heisenberg distributions and many familiar others.

(ii) H′ (R) is, just as S ′ (R), closed under Fourier transformation.
(iii) Recent results obtained by the author, [9]–[12], show that it is possible to

extend the linear space H′ (R) to a closed (non-commutative and non-associative)
convolution algebra over C.

(iv) By combining the two former properties and inspired by the generalized
convolution theorem, [28, p. 191], [14, p. 101], we can also define a closed mul-
tiplication product for AHDs on R, [13]. Hence, H′ (R) also extends to a closed
(non-commutative and non-associative) multiplication algebra over C, which is iso-
morphic to the former convolution algebra under Fourier transformation. The im-
portance of this distributional multiplication algebra stems from the fact that it
now becomes possible to give a rigorous meaning to distributional products such
as δ2 , δ.δ and many interesting others as a distribution (for instance, it is found
in [13] that δ2 = cδ(1), c ∈ C arbitrary). Attempts to define a multiplication prod-
uct for the whole set of distributions D′, such as in [3] (using model delta nets
and passage to the limit) or in [2] (using Fourier transformation and a functional
analytic way, a method which generalizes [16, p. 267, Theorem 8.2.10]), fail to
produce meaningful products of certain AHDs as a distribution, e.g., for δ2 see [5,
Chapter 2]. Other approaches allow to define a multiplication product for a dif-
ferent class of generalized functions G, as in Colombeau’s work (which belongs to
non-standard analysis), [5], and where δ2 ∈ G but δ2 has no association in D′. The
by the author adopted definition for multiplication of AHDs makes that (H′(R), .)
is internal to Schwartz’ distribution theory, in the sense that all products are in
H′ (R) ⊂ S ′ (R) ⊂ D′ (R).

(v) A certain subset of H′ (R) is fundamental to give a distributional justifica-
tion of ”integration of complex degree” over R, for certain subsets of functions and
distributions. Integration of complex degree is the generalization to complex de-
grees of the well-known classical “fractional integration/derivation” calculus, [22].
Certain AHDs appear as kernel in convolution operators that define integration of
complex degree over the whole of R. The classical fractional calculus was devel-
oped for functions defined on the half-lines R± and can be justified in distributional
terms, using subalgebras of the well-known convolution algebras (D′

L(R),+, ∗) and
(D′

R(R),+, ∗), [23]. A distributional treatment of integration of complex degree
over the whole line however, has not been given yet.

These facts show that the subset H′ (R) occupies a remarkable position within
Schwartz’ distribution theory and this justifies a more up-to-date review of these
important distributions. This work discusses the general properties enjoyed by
one-dimensional AHDs and brings together known and many new properties of the
various important basis AHDs. All the basis AHDs considered here, play one or
more key roles in the construction of the mentioned algebras. The following is an
overview of new results presented in this paper.

(i) We extend and generalize the classical exposition, given in [15], for seven types
of basis AHDs. This includes expressions for generalized derivatives (of two types),
Taylor and Laurent series expansions with respect to the degree of homogeneity,
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Fourier transforms, etc. The structure theorems for AHDs on R, derived in [9],
make use of these basis AHDs and each type has a distinct advantage, allowing
common operations to be performed on AHDs with ease and elegance.

(ii) The classical process of the regularization of divergent integrals, as given
in [15] and which goes back to Hadamard, has been placed here in the more gen-
eral context of a functional extension process and is justified by the Hahn-Banach
theorem. We will refer to this method as “extension of partial distributions”.

(iii) Attention is given to the appropriateness of the suggestive notation com-

monly used for AHDs. For instance, with k,m ∈ Z+, the distributions x−k
± lnm |x|

are often tacitly interpreted as the distributional multiplication products x−k
± . lnm |x|,

which is correct in this case, while the notation (x± i0)
−k

lnm (x± i0), used in e.g.,
[15, pp. 96-98] for the distributions Dm

z (x± i0)
z
at z = −k, is prone to be read

as the distributional multiplication products (x± i0)
−k
. lnm (x± i0), but which is

incorrect, see eq. (5.156). The justification for using or avoiding such notation
is subject to our definition of multiplication product, given by (4.19), and follows
from results obtained in [13].

(iv) We emphasize the fact that, besides the well-known generalized derivative
D for distributions, one can also define a second natural generalized derivative
X. The operator D is a derivation with respect to the multiplication product,
and is expressible as the convolution operator D = δ(1)∗, while the operator X
is a derivation with respect to the convolution product, and is expressible as the
multiplication operator X = x.. Both generalized derivatives, D and X, appear on
an equal footing in the theory of AHDs.

(v) We introduce the distributional concepts, “partial distribution” and “exten-
sion of a partial distribution”, that proved valuable in the context of AHDs.

In this work we only consider one-dimensional distributions, i.e., with support
contained in the line R. This restriction is deliberate for two reasons.

(i) AHDs based on R have a very simple structure, which allows to derive useful
structure theorems, see [9]. These theorems give representations for a general AHD
in terms of the basis AHDs considered here. The availability of structure theorems
leads to more explicit results, such as [12] and [13]. Higher-dimensional analogues
of AHDs, with support in Rn with n > 1, have far more degrees of freedom, and
give rise to a generalization, called almost quasihomogeneous distributions in [26].

(ii) AHDs based on Rp,q (pseudo-Euclidean coordinate space with signature
(p, q)) can be obtained from AHDs based on R as the pullback along a scalar
function. If such a function possesses a special symmetry, e.g., O (p, q)-invariance,
then the resulting AHDs on Rp,q inherit an isomorphic algebraic structure from
the AHDs on R. It is thus relevant (and much simpler) to study the algebraic
structure of one-dimensional AHDs, as a precursor for constructing algebras of cer-
tain n-dimensional AHDs. The latter set of distributions contains members which
are of paramount importance in physics, e.g., for solving the ultrahyperbolic wave
equation in Rp,q and consequently for developing Clifford Analysis over pseudo-
Euclidean spaces.

We end this introduction with the organization of the paper.
(i) We first establish some general definitions and notation.
(ii) We state some useful distributional preliminaries.
(iii) We continue with the formal definition of AHDs and state their general

properties.
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(iv) Thereafter, we introduce a number of un-normalized AHDs, and present a
fairly complete collection of properties.

(v) Finally, we discuss in detail and give new properties for a number of important
normalized basis AHDs, which, together with the un-normalized ones, play an
essential role in the construction of AHD algebras.

2. General definitions

(1) Number sets. Define respectively the sets of odd and even positive integers
Zo,+ and Ze,+, of odd and even negative integers Zo,− and Ze,−, of non-

negative and non-positive even integers Ze,[+ , {0} ∪ Ze,+ and Ze,−] ,
Ze,− ∪ {0}, of odd and even integers Zo , Zo,− ∪ Zo,+ and Ze , Ze,− ∪
{0} ∪ Ze,+, of positive and negative integers Z+ , Zo,+ ∪ Ze,+ and Z− ,
Zo,− ∪ Ze,−, of non-negative and non-positive natural numbers N , Z[+ ,
{0}∪Z+ and−N , Z−] , Z−∪{0} and the set of integers Z , Z−∪{0}∪Z+.

Define finite sets of consecutive integers Z[i1,i2], ∀i1, i2 ∈ Z, as Z[i1,i2] , ∅
if i1 > i2, Z[i1,i1] , {i1} and Z[i1,i2] , {i1, i1 + 1, ..., i2} if i1 < i2. Further,
define the open half-lines R+ (the set of positive real numbers) and R− (the

set of negative real numbers), their half closures R[+ , {0} ∪ R+ (the set

of non-negative real numbers) and R−] , R− ∪{0} (the set of non-positive

real numbers), and the open line R , R− ∪ {0} ∪R+. Open n-dimensional
real coordinate space is denoted by Rn and C stands for the field of complex
numbers.

(2) Indicator functions. Let LP denote the set of logical predicates. Define the
indicator (or characteristic) function 1 : LP → {0, 1}, such that

p 7→ 1p ,
{

1 if p is true,
0 if p is false.

(2.1)

We immediately introduce the following convenient even and odd symbols,
∀k ∈ Z,

ek , 1k∈Ze , (2.2)

ok , 1k∈Zo . (2.3)

(3) Factorial polynomials. Denote by

z(k) , 1k=0 + 10<k z(z + 1)(z + 2)...(z + (k − 1)), (2.4)

=
Γ(z + k)

Γ(z)
, (2.5)

=
k∑

p=0

(−1)k−ps (k, p) zp, (2.6)

the rising factorial polynomial (Pochhammer’s symbol), ∀k ∈ N. In par-
ticular, 0(k) = 1k=0 and m(k) = (m − 1 + k)!/(m − 1)! for m ∈ Z+. Also,
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denote by

z(k) , 1k=0 + 1k>0 z(z − 1)(z − 2)...(z − (k − 1)), (2.7)

=
Γ(z + 1)

Γ(z + 1− k)
, (2.8)

=
k∑

p=0

s (k, p) zp, (2.9)

the falling factorial polynomial. In particular, 0(k) = 1k=0 and m(k) =
1k≤m (m!/(m− k)!) for m ∈ Z+. In (2.6) and (2.9), s (k, p) are Stirling
numbers of the first kind, [1, p. 824, 24.1.3]. Both polynomials are related

as z(k) = (−1)k (−z)(k).
(4) Modified Euler and Bernoulli polynomials. We will need the polynomials

En(x) and Bn+1(x), ∀n ∈ N, with degrees indicated by their subscripts,
defined by the generating functions,

1

cosh t
ext =

+∞∑
n=0

En(x)
tn

n!
, (2.10)

t

sinh t
ext = 1 +

+∞∑
n=1

nBn(x)
tn

n!
. (2.11)

Obviously, En(−x) = (−1)
n
En(x) and Bn+1(−x) = (−1)

n+1
Bn+1(x).

Our polynomials En(x) and Bn+1(x) are related to the standard Euler
polynomials En(x) and standard Bernoulli polynomials Bn+1(x), as defined
in [1, p. 804, 23.1.1], in the following way,

En(x) = 2nEn

(
x+ 1

2

)
, (2.12)

(n+ 1)Bn+1(x) = 2n+1Bn+1

(
x+ 1

2

)
. (2.13)

Define modified Euler and modified Bernoulli numbers by, ∀n ∈ N,

En , En(0), (2.14)

Bn+1 , Bn+1(0). (2.15)

The numbers En and Bn+1 are related to the standard Euler numbers
En , 2nEn (1/2) and standard Bernoulli numbers Bn , Bn(0) as

En = En, (2.16)

Bn+1 = −
(
2n+1 − 2

) Bn+1

n+ 1
. (2.17)

The following orthogonality relations hold for our modified numbers,

n∑
k=0

(
n
k

)
en−kEk = 1n=0, (2.18)

n∑
k=0

(
n
k

)
on−kBk+1 = 1n=0 −

en
n+ 1

, (2.19)
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Let dz denote the ordinary derivative with respect to z. We will also
need the following operator relations, holding ∀n ∈ N,

En(dz)z = zEn(dz) + 10<nnEn−1(dz), (2.20)

Bn+1(dz)z = 1n=0 + zBn+1(dz) + 10<nnBn(dz). (2.21)

Equations (2.18)–(2.21) are easily proved from the generating functions
(2.10)–(2.11).

(5) Function spaces. Let n ∈ Z+ and consider a non-empty open subset U ⊆
Rn, called base space. By Ck(U,C) we denote the space of functions from

U → C having continuous derivatives of order k, by E(U) , C∞(U,C) the
space of infinitely differentiable (or smooth) functions from U → C and by
S(U) the (Schwartz) space of smooth functions of rapid descent (towards
infinity) from U → C, [23, vol. II, p. 89], [28, p. 99]. We will also need
the space DL(R) of smooth functions with support bounded on the right
and the space DR(R) of smooth functions with support bounded on the

left, from R → C. Of central importance is the space D(U) , C∞
c (U,C)

of smooth, complex valued “test” functions with compact support in the
base space U . We will also need the space of smooth functions of slow
growth denoted OM (U) (kernels of multiplication operators), [23, vol. II,
pp. 99–101], the space P(U) of polynomial functions from U → C, the space
of functions Z(V ) whose Fourier transform is in D(U), [28, p. 192], and
ZM (V ), the subspace of multipliers in Z(V ), consisting of functions that
are the Fourier transform of a distribution of compact support contained in
U . In addition, A (Ω,C) stands for the space of complex analytic functions
from Ω ⊆ C → C and the space of complex functions, being locally Lebesgue
integrable on U , is denoted L1

loc (U,C).
Let Z1 ⊆ Z and denote byDZ1(U) (SZ1(U)) the subspace of test functions

φ ∈ D(U) (φ ∈ S(U)) such that, ∀l ∈ Z1, (i) if l < 0, all |l + 1|-th order
partial derivatives of φ at the origin are zero and (ii) if 0 ≤ l, all l-th order
partial moments of φ are zero. In particular, DZ−(U) is the space of smooth
functions with compact support such that the value of the function and the
value of all its derivatives at the origin is zero and DN(U) is the space of
smooth functions with compact support with zero non-negative moments.
Similarly, SZ− (U) is the space of smooth functions of rapid descent such
that the value of the function and the value of all its derivatives at the origin
is zero and SN (U) is the space of smooth functions of rapid descent with
zero non-negative moments. The space SN (U) is also known as Lizorkin’s
space, [22, p. 148].

(6) Distribution spaces. Some well-known generalized function spaces are: (i)
the space of distributions D′, (ii) the space of distributions of slow growth
(also called tempered distributions) S ′, (iii) Z ′ (dual to Z), called the
space of ultradistributions (i.e., distributions which are the Fourier trans-
form of a distribution in D′). Denote by E ′ (U) ⊂ D′ (U) the space of
distributions with compact support, which is dual to the space E (U) of
smooth functions. It will be convenient to also introduce the space of dis-
tributions E ′

0 (U) ⊂ E ′ (U), having as support {0}. Denote by N ′ the set
of regular distributions, which are generated by the set P of polynomials
with complex coefficients. The Fourier transformation FS and its inverse



ASSOCIATED HOMOGENEOUS DISTRIBUTIONS 7

F−1
S (see below) are homeomorphisms between N ′ (U) and E ′

0 (V ), with V
called the spectral base space (or spectral domain) of the base space U .
Further, we denote by D′

R (R) ⊂ D′ (R) the space of distributions with
support bounded on the left (also called right-sided distributions) (D′

R

is dual to DL) and by D′
L (R) ⊂ D′ (R) the space of distributions with

support bounded on the right (also called left-sided distributions) (D′
L is

dual to DR). Clearly, E ′ (R) ⊂ D′
L,R (R). The spaces D′

L,R (R) together

with the sum + and convolution product ∗, denoted
(
D′

L,R,+, ∗
)
, are com-

mutative integral domains and can be given the additional structure of
commutative and associative convolution algebras over C, [23, vol II, pp.
28–30]. We will also need the space of distributions of rapid descent, de-
noted O′

C (U) (kernels of convolution operators), [23, vol. II, pp. 99–101].
The following inclusions hold D (U) ⊂ E ′ (U) ⊂ O′

C (U) ⊂ S ′ (U) and also
D (U) ⊂ S (U) ⊂ OM (U) ⊂ S ′ (U), [23, vol. II, p. 170].

(7) Notation. We almost exclusively consider generalized functions based on
R, so we will write D for D(R), D′ for D′(R), etc.. We also adopt the
convention that generic symbols like f (x) denote a function value, while f
denotes either a function or a distribution, with the distinction being clear
from the context. Exceptions to this rule are the customary symbols for
particular functions, such as ex, ln |x|, etc.. Occasionally, the need will arise
to explicitly indicate a dummy variable x and write f(x) for a distribution,
to show that it is an element of D′({x ∈ R}), as in the tensor product of
two distributions f(x) ⊗ g(y) ∈ D′(

{
(x, y) ∈ R2

}
).

3. Preliminaries

Any function f ∈ L1
loc (U,C) generates a distribution f ∈ D′(U) by defining,

∀φ ∈ D(U),

⟨f, φ⟩ ,
∫
U

f(x)φ(x)dx. (3.1)

The resulting distribution f is called regular. Distributions which are not regular
are called singular.

3.1. Products of distributions. Products of distributions can in general not be
defined. Under certain restrictions however, a multiplication product or a convo-
lution product can be defined, which is commutative but generally not associative,
as is illustrated by the special cases below. In these cases, the defined product is
assumed to satisfy the usual distributive and algebra axioms over C.

3.1.1. Multiplication product. The multiplication product of two distributions can
easily be defined in the following cases.

(1) If f and g are both regular distributions, generated from locally integrable
functions f and g from U → C, and if the (codomain pointwise) product
function fg is also locally integrable on U , then the multiplication product
of distributions f.g = g.f can be defined as the regular distribution given
by

⟨f.g, φ⟩ ,
∫
U

f(x)g (x)φ(x)dx , ⟨g.f, φ⟩ . (3.2)

In this case, the multiplication product inherits associativity from the as-
sociative product of locally integrable functions. A typical example is the



8 G. FRANSSENS

set of regular distributions generated from the set of continuous functions,
which together with addition and the multiplication (3.2) forms an algebra
over C.

(2) More general, if h is a regular distribution, generated from any smooth
function h ∈ E (U), and f is any distribution, the multiplication product of
distributions h.f = f.h can be defined by

⟨h.f, φ⟩ , ⟨f, hφ⟩ , ⟨f.h, φ⟩ (3.3)

and it is easily shown that h.f ∈ D′ (U), [28, p. 28]. In particular, if
h ∈ D (U), h.f ∈ E ′ (U).

(3) If h is a regular distribution, generated from a smooth function of slow
growth h ∈ OM (U) and f ∈ S ′ (U) is a tempered distribution, the multi-
plication product h.f can also be defined by (3.3) and h.f ∈ S ′ (U), [23,
vol. II, pp. 101–102].

(4) One can also define the multiplication product of a smooth function with
a distribution as E(U) × D′(U) → D′(U) such that (h, f) 7→ hf = fh,

with hf defined by ⟨hf, φ⟩ , ⟨f, hφ⟩ , ⟨fh, φ⟩. This is an example of an
external operation, which turns D′(U) into a module over E(U). In the
particular case that h = φ ∈ D(U), this operation is called localization of
a distribution f ∈ D′(U), with respect to φ, and the resulting distribution
of compact support is regarded as a localized approximation to f . In this
sense, test functions can be thought of as “localized” approximations of the
one distribution 1.

(5) Let Z ′
+ and Z ′

− denote those subspaces of the ultradistributions Z ′ whose
elements are the Fourier transform of a distribution in D′

L and D′
R, respec-

tively. If f, g ∈ Z ′
+ (f, g ∈ Z ′

−), then a multiplication product f.g ∈ Z ′
+

(f.g ∈ Z ′
−) can be defined by

f.g , FD′
((
F−1

Z′ f
)
∗
(
F−1

Z′ g
))
. (3.4)

Then, the spaces Z ′
± together with the sum + and multiplication product

., and denoted
(
Z ′

±,+, .
)
, are commutative integral domains and can be

given the additional structure of commutative and associative convolution
algebras over C. The structures

(
Z ′

±,+, .
)
are isomorphic under the Fourier

transformation to the structures
(
D′

L,R,+, ∗
)
, considered below, and are

two other examples of generalized function spaces that can be extended to
a multiplication algebra over C.

(6) Fix any w ∈ D′ (U) and let D′
w (U) ⊂ D′ (U) be that subset of distributions

for which the multiplication with w exists. The operator Tw : D′
w (U) →

D′ (U) such that f 7→ w.f is called a multiplication operator with kernel
w. A necessary and sufficient condition that an operator T , from a subset
of D′ (U) to D′ (U), is a multiplication operator is that T is (i) single-
valued, (ii) linear, (iii) sequentially continuous and (iv) commutes with any

phase operator Ea , ei(x·a). (by isomorphism with convolution operator,
see below).

In engineering, a multiplication operator w. is called a (phase-invariant)
filter and its kernel w is called the transfer function of the filter.

3.1.2. Convolution product. The convolution product of two distributions is always
defined in the following cases.
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(1) In particular, if f and g are regular distributions, generated from locally
integrable functions f and g from U → C, respectively, and if the function

h (x) ,
∫
U

f(x− y)g (y) dy, (3.5)

exists almost everywhere and is also locally integrable, then f ∗ g = g ∗ f is
defined as the regular distribution generated by h, [28, p. 126].

(2) Let φ ∈ D (U) and φx+y ∈ D(U ×U) : (x, y) 7→ φ (x+ y). The convolution
product f ∗ g = g ∗ f of two distributions f, g ∈ D′ (U), can be defined in
terms of the tensor product f(x) ⊗ g(y) ∈ D′(U × U) as

⟨f ∗ g, φ⟩ ,
⟨
f(x) ⊗ g(y), φ (x+ y)

⟩
, (3.6)

,
⟨
f(x),

⟨
g(y), φ (x+ y)

⟩⟩
, (3.7)

provided supp(f(x) ⊗ g(y))∩ supp(φ (x+ y)) in U ×U is compact, and then
f ∗ g ∈ D′ (U), [28, p. 122]. If f ∈ E ′ (U) or g ∈ E ′ (U), or f ∈ D′

L and
g ∈ D′

L, or f ∈ D′
R and g ∈ D′

R, then f ∗ g is always defined by (3.6)–(3.7).
The convolution product of m distributions is associative if at least m− 1
distributions in this product belong to E ′ (U) or they all belong to either D′

L

or D′
R. It is well-known that under these same conditions the convolution

is a sequentially continuous operation, [28, p. 136].
(3) If h ∈ O′

C (U) and f ∈ S ′ (U), the convolution product h ∗ f = f ∗ h is
defined by (3.7) and h ∗ f ∈ S ′ (U), [23, vol. II, pp. 102–103].

(4) One can also define the convolution product of a test function with a dis-
tribution as D(U)×D′(U) → E(U) such that (φ, f) 7→ φ ∗ f = f ∗ φ, with
φ∗f defined by (φ ∗ f) (x) ,

⟨
f(y), φ (x− y)

⟩
, (f ∗ φ) (x). This definition

agrees with (3.6)–(3.7) if the test function φ is replaced by the regular dis-
tribution φ it generates, see [28, p. 132, Theorem 5.5-1]. This turns D′(U)
into a module over D(U). This operation is called regularization of a distri-
bution f ∈ D′(U), with respect to a mollifier φ ∈ D(U), and the resulting
smooth function is regarded as an approximation to f . In this sense, test
functions in D(U) can be thought of as “mollified” approximations of the
delta distribution δ.

(5) Fix any w ∈ D′ (U) and let D′
w (U) ⊂ D′ (U) be that subset of distributions

for which the convolution with w exists. The operator Tw : D′
w (U) →

D′ (U) such that f 7→ w ∗ f is called a convolution operator with kernel w.
A necessary and sufficient condition that an operator T , from a subset of
D′ (U) to D′ (U), is a convolution operator is that T is (i) single-valued, (ii)
linear, (iii) sequentially continuous and (iv) commutes with any translation
operator Ta (eq. (3.39)), [28, p. 147].

In engineering, a convolution operator w∗ is called a (time-invariant)
linear system and its kernel w is called the impulse response of the system.

3.2. Operations on distributions.

3.2.1. Generalized derivations. Let j ∈ Z[1,n]. Let h, f, g ∈ D′ (U), with h a reg-
ular distribution generated by a smooth function and g a distribution of compact
support.

(1) Generalized multiplication partial derivation. The generalized partial deriva-
tion Dj : D′ (U) → D′ (U) such that f 7→ Djf , is the continuous linear
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operator defined by

⟨Djf, φ⟩ , −⟨f, djφ⟩ . (3.8)

The symbol dj in the right-hand side of (3.8) stands for the ordinary partial
derivation in D (U) with respect to the j-th coordinate. The generalized
partial derivation is a derivation with respect to multiplication of distribu-
tions, as defined by (3.3), but not with respect to the convolution product,
as defined by (3.7),

Dj(h.f) = (Djh).f + h. (Djf) , (3.9)

Dj(f ∗ g) = (Djf) ∗ g = f ∗ (Djg). (3.10)

It is important to notice that in general, Dj is not a derivation with respect
to multiplication of distributions as defined by (3.2). If n = 1 we write D
for D1. We will call Dj the generalized multiplication partial derivation, in
order to distinguish it from the one defined in the next item.

(2) Generalized convolution partial derivation. The continuous operator Xj :
D′ (U) → D′ (U) such that f 7→ Xjf , defined by (xj is the j-th coordinate
function) ⟨

Xjf, φ
⟩
,
⟨
f, xjφ

⟩
, (3.11)

is also a derivation, now with respect to the convolution product, but not
with respect to multiplication. Indeed, one easily deduces from (3.3) and
(3.7) that,

Xj(h.f) = (Xjh).f = h.
(
Xjf

)
, (3.12)

Xj(f ∗ g) = (Xjf) ∗ g + f ∗ (Xjg). (3.13)

It is again important to notice that in general, Xj is not a derivation with
respect to convolution of distributions as defined by (3.5). If n = 1 we write
X for X1. We will call Xj the generalized convolution partial derivation.

(3) We have, ∀i, j ∈ Z[1,n],

Di ◦Xj −Xj ◦Di = δji Id, (3.14)

wherein δji are the components of the (1, 1)-unit tensor and Id : D′ (U) →
D′ (U) denotes the common identity operator (either realized as the mul-
tiplication operator Id = 1. or as the convolution operator Id = δ∗). For
further convenience we also define the following operators,

X ·D ,
n∑

i=1

Xi ◦Di, (3.15)

D ·X ,
n∑

i=1

Di ◦Xi, (3.16)

satisfying

D ·X−X ·D = n Id, (3.17)

with n the dimension of the base space U . In (3.15),
(
Xi ◦Di

)
f ,

Xi (Dif) = xi.
(
δ
(1)
i ∗ f

)
and in (3.16),

(
Di ◦Xi

)
f , Di

(
Xif

)
= δ

(1)
i ∗(

xi.f
)
. The operator defined in (3.15) is the generalized Euler operator.

3.2.2. Fourier transformation.
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A. Distributions of slow growth.

(1) Define the Fourier transformation FS : S (U) → S (V ) such that φ 7→ ψ ,
FSφ with

(FSφ) (χ) ,
∫
U

e−i2π(χ·x)φ (x) dx. (3.18)

The inverse transformation F−1
S : S (V ) → S (U) such that ψ 7→ φ = F−1

S ψ
is given by, [28, p. 178],(

F−1
S ψ

)
(x) =

∫
V

e+i2π(χ·x)ψ (χ) dχ. (3.19)

The Fourier transformation FS and its inverse F−1
S are linear homeomor-

phisms between S (U) and S (V ), [28, pp. 182–183].
Let e±i2π(χ·x) denote the regular distributions based on V × U , gener-

ated by the smooth functions e±i2π(χ·x) : V × U → C. The distributions
e±i2π(χ·x) are regular (Schwartz) kernels, [4, p. 471], [14, p. 68]. The
transformation FS (F−1

S ) is thus also given by right (left) contraction as
follows,

(FSφ) (χ) =
⟨
e−i2π(χ·x), φx

⟩
, (3.20)(

F−1
S ψ

)
(x) =

⟨
e+i2π(χ·x), ψχ

⟩
. (3.21)

(2) The Fourier transformation on the dual space FS′ : S ′ (V ) → S ′ (U) such
that f 7→ g = FS′f is defined by, ∀φ ∈ S (U),

⟨FS′f, φ⟩ , ⟨f,FSφ⟩ , (3.22)

The legitimacy of this definition stems from the fact that FS′f coincides
with the ordinary Fourier transformation of a function f ∈ L1

loc, due to
Parseval-Plancherel’s theorem, [28, p. 184]. The inverse transformation
F−1

S′ : S ′ (U) → S ′ (V ) such that g 7→ f = F−1
S′ g is readily given by,

∀ψ ∈ S (V ), ⟨
F−1

S′ g, ψ
⟩
=
⟨
g,F−1

S ψ
⟩
. (3.23)

The Fourier transformation FS′ and its inverse F−1
S′ are linear homeomor-

phisms between S ′ (V ) and S ′ (U), [23, vol II, pp. 105–107].
(3) The transformations FS′ and F−1

S′ are also linear homeomorphisms between
OM (V ) ⊂ S ′ (V ) and O′

C (U) ⊂ S ′ (U), that exchange the multiplication
product and the convolution product, [23, vol II, p. 124], i.e., the gener-
alized convolution theorem. In particular, FS′ and F−1

S′ are linear homeo-
morphisms between P (V ) and E ′

0 (U).

B. Ultradistributions.

(1) Define the Fourier transformation FZ : Z (U) → D (V ) such that ψ 7→ φ =
FZψ by

φ (χ) ,
∫
U

e−i2π(χ·x)ψ (x) dx. (3.24)

The inverse transformation F−1
D : D (V ) → Z (U) such that φ 7→ ψ = F−1

D φ
is given by

ψ (x) =

∫
V

e+i2π(χ·x)φ (χ) dχ. (3.25)
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The Fourier transformation FZ and its inverse F−1
D are homeomorphisms

between Z (U) and D (V ).
(2) The Fourier transformation on the dual space FD′ : D′ (V ) → Z ′ (U) such

that f 7→ g = FD′f is defined by, ∀ψ ∈ Z (U),

⟨FD′f, ψ⟩ , ⟨f,FZψ⟩ . (3.26)

The inverse transformation F−1
Z′ : Z ′ (U) → D′ (V ) such that g 7→ f =

F−1
Z′ g is readily given by, ∀φ ∈ D (V ),⟨

F−1
Z′ g, φ

⟩
=
⟨
g,F−1

D φ
⟩
. (3.27)

The Fourier transformation FD′ and its inverse F−1
Z′ are homeomorphisms

between D′ (V ) and Z ′ (U).
(3) We have

FD′Dj = +(2πi)XjFD′ , (3.28)

FD′Xj = − (2πi)
−1
DjFD′ . (3.29)

Herein are Dj , X
j generalized partial derivations with respect to the base

space U and Dj , Xj generalized partial derivations with respect to the base
space V .

The following inclusions of subspaces hold: Z (U) ⊂ S (U) ⊂ S ′ (U) ⊂ Z ′ (U),
[28, p. 201].

3.3. Extension of a partial distribution.

(1) Partial distribution. A linear and sequentially continuous functional f ,
which is defined ∀ψ ∈ Dr ⊂ D and is undefined ∀φ ∈ D\Dr, will be called
a partial distribution.

(2) Extension of a partial distribution. A distribution fε ∈ D′, defined ∀φ ∈ D,
such that ⟨fε, ψ⟩ = ⟨f, ψ⟩, ∀ψ ∈ Dr, will be called an extension of the
partial distribution f from Dr to D. The existence of a functional fε, that
is also a distribution, is guaranteed by the Hahn-Banach theorem, but fε is
in general not unique, [21, p. 56], [4, p. 424]. Let D′

r denote the continuous
dual of Dr. The subset of D′

r which maps Dr to zero is called the annihilator
of Dr and is denoted by D′⊥

r . Any two extensions fε,1 and fε,2 differ by a
generalized function g ∈ D′⊥

r . However, if the subspace Dr is dense in D,
then the extension fε is unique [4, p. 425].

Some authors call a distribution such as fε a regularization. This stems
from the fact that fε is usually obtained after applying a procedure to give
a meaning to the defining divergent integral for f and the integral is then
regarded as being regularized. We will reserve the term regularization of
a generalized function for its usual meaning, as defined in the previous
subsection, and use the term “extension of a partial distribution” for the
procedure described in this subsection.

(3) If a function f : U ⊂ R → C, is integrable on some but not all finite
intervals, then there exists a subspace Ds ⊂ D such that the integral in (3.1)
does not exist iff φ ∈ Ds. The functional (3.1) will then only be defined

on the subspace Dr , D\Ds. As an example, consider a function f with a
countable number of algebraic singularities at isolated points x0 ∈ Λ ⊂ R.
In this case, Ds is the subspace of test functions which do not vanish at
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a sufficient rate (depending on the degree of the singularities) at Λ. The
(closed) set Λ is called the singular support of f .

(4) More explicitly, let Λ = {0} be the singular support of a linear and se-
quentially continuous functional f ∈ D′, defined in terms of a function f
with an algebraic singularity of degree k ∈ Z+, such that xkf ∈ L1

loc (R,C).
Let (i) λ ∈ D (R) with support a neighborhood of Λ and such that all its
derivatives are zero at x = 0 or (ii) λ = 1. Then, an extension fε ∈ D′ of f
can be obtained as

⟨fε, φ⟩ =
∫ +∞

−∞
f(x) (Tp,qφ) (x)dx, (3.30)

wherein Tp,q : D → DZ[−k,−(p+1)]
such that φ 7→ Tp,qφ with

(Tp,qφ) (x) , φ(x)−
p+q∑
l=0

φ(l)(0)
xl

l!
λ (x)

(
1l<p + 1p≤l1[+(1− x2)

)
, (3.31)

∀p, q ∈ N : p + q = k − 1 and the step function 1[+ (x) = 1 iff x ≥ 0.
Indeed, for each allowed combination of p, q and λ the integral in (3.30) is
now a regular integral and it defines a linear and sequentially continuous
functional on D. Further, ∀ψ ∈ DZ[−k,−(p+1)]

, Tp,qψ = ψ and (3.30) reduces

to ⟨fε, ψ⟩ = ⟨f, ψ⟩, the value of which is independent of the choice we make
for p, q and λ. Hence, any fε given by (3.30), is an extension of f from
DZ[−k,−(p+1)]

to D. For any φ ∈ D\DZ[−k,−(p+1)]
, the value ⟨fε, φ⟩ depends

on the chosen extension. Any pair of extensions fε, constructed from (3.30),
differ by a linear combination of δ(l) distributions, with l ∈ Z[p,k−1], and
with coefficients depending on λ. Note that all fε obtained from (3.30) are
singular distributions. A remark on the notation: we will use the subscript
ε to denote any extension obtained through (3.30) and the subscript e will
be reserved for an extension that is an AHD.

(5) Let φ ∈ D. For the linear operator Tp,q, defined by (3.31), hold the com-
mutator relations,

Tp,q (dφ) = d (Tp+1,qφ) (3.32)

+

(p+1)+q∑
l=0

φ(l)(0)
xl

l!

(
1l<(p+1)

+1(p+1)≤l1[+(1− x2)

) (dλ) , (3.33)

(Tp,q (xφ)) = x (Tp−1,qφ) , (3.34)

and the scaling property, ∀r > 0,(
Tp,qφx/r

)
(x) = (Tp,qφx) (x/r)+

p+q∑
l=p

φ(l)(0)
(x/r)l

l!
λ1 (x/r)

(
1[+(1− (x/r)2)

−1[+(r
−2 − (x/r)2)

)
,

(3.35)

wherein λ1 (x/r) , λ (x), ∀x ∈ R.

3.4. Distributions depending on a parameter.

(1) Completeness. Due to the topology of the space D′ is the limit of any
sequence of distributions {fz ∈ D′ : z → a}, parametrized by a complex
number z, is again a unique distribution, denoted fa ∈ D′, and we can
write limz→a f

z = fa, [28, p. 36], [4, pp. 453-454]. This means that
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limz→a ⟨fz, φ⟩ = ⟨limz→a f
z, φ⟩ = ⟨fa, φ⟩ or more explicitly, that ∀ϵ > 0,

∃δ > 0 such that, whenever |z − a| < δ, |⟨fz − fa, φ⟩| < ϵ, ∀φ ∈ D.
(2) Continuity. A distribution fz is said to be Ck, k ∈ N, in a parameter

z ∈ Ω ⊆ C, iff dkz ⟨fz, φ⟩, ∀φ ∈ D, is a continuous function of z, ∀z ∈ Ω.
A distribution fa,b is said to be jointly Ck, k ∈ N, in two parameters
(a, b) ∈ Ω ⊆ C2, iff dma d

n
b

⟨
fa,b, φ

⟩
, ∀m,n ∈ N : m + n = k and ∀φ ∈ D, is

jointly continuous in a and b, ∀ (a, b) ∈ Ω.
(3) Monogenicy. A distribution fz, depending on a complex parameter z, is

called monogenic (also: complex analytic or holomorphic) in z ∈ Ω ⊆ C,
iff dz ⟨fz, φ⟩ exists everywhere in Ω, ∀φ ∈ D. It is necessary and sufficient
that the complex functions dz ⟨fz, φ⟩ exist, for the distribution Dzf

z to
exist and to be given by ⟨Dzf

z, φ⟩ = dz ⟨fz, φ⟩, ∀z ∈ Ω, [15, pp. 147-151].
Then, also ⟨fz, φ⟩ ∈ A (Ω,C). For any distribution fz monogenic in z ∈ Ω,
Dm

z f
z is C∞, ∀z ∈ Ω and ∀m ∈ N.

(4) Let fz be a monogenic distribution in z ∈ Ω ⊆ C. Combining the previous
item with the definitions of the generalized derivations D and X yields the
important properties,

DkDl
z f

z = Dl
zD

k fz, (3.36)

XkDl
z f

z = Dl
zX

k fz, (3.37)

∀z ∈ Ω and ∀k, l ∈ N. Equations (3.36)–(3.37) greatly simplify the calcula-
tion of generalized derivatives of AHDs.

3.5. Pullbacks of distributions. We here only consider pullbacks along diffeo-
morphisms.

(1) General. Let X,Y ⊆ Rn and T : X → Y such that x 7→ y = T (x)
denotes a C∞-diffeomorphism, and let φ ∈ D (X). The pullback T ∗f of
any f ∈ D′ (Y ) is defined, compatible with (3.1), by

⟨T ∗f, φ⟩ ,
⟨
f,
∣∣∣det (T−1

)′∣∣∣ (T−1
)∗
φ
⟩
, (3.38)

with
∣∣∣det (T−1

)′∣∣∣ the modulus of the Jacobian determinant of the inverse of

T , which exists ∀y ∈ Y by assumption. It can be shown that
∣∣∣det (T−1

)′∣∣∣(
T−1

)∗
φ ∈ D (Y ) and T ∗f ∈ D′ (X), [14, Theorem 7.1.1]. Hereafter, we

consider three particular diffeomorphisms from the base space U = Rn

to itself and write them in terms of the somewhat more explicit symbols
f(T (x)) , T ∗f and φ

(
T−1(y)

)
,
(
T−1

)∗
φ.

(2) Translation. For any x0 ∈ Rn denote by Tx0 : Rn → Rn translation over

x0 such that x 7→ Tx0x , x − x0. The translated distribution f(x−x0) ,
T ∗
x0
f ∈ D′ (Rn) of any f ∈ D′ (Rn) is given by⟨

f(x−x0), φ (x)
⟩
=
⟨
f(x), φ (x+ x0)

⟩
. (3.39)

A distribution is called periodic with period x0 ̸= 0 iff f(x−x0) = f(x).

(3) Reflection. Let R : Rn → Rn such that x 7→ Rx , −x denote reflec-

tion with respect to the origin. The reflected distribution f(−x) , R∗f ∈
D′ (Rn) of any f ∈ D′ (Rn) is given by⟨

f(−x), φ (x)
⟩
=
⟨
f(x), φ (−x)

⟩
. (3.40)
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A distribution has even parity (is even) if f(−x) = f(x) and odd parity (is
odd) if f(−x) = −f(x). A useful identity is

((R∗f) ∗ φ) (x) =
⟨
f(y), φ (x+ y)

⟩
, (3.41)

wherein R∗ is the pullback of the reflection operator. From combining
(3.41) with (3.6)–(3.7), it readily follows that the adjoint operator of a

distributional convolution operator F ′ , f∗, is the test function convolution
operator F , (R∗f) ∗, which are such that

⟨F ′g, φ⟩ = ⟨g, Fφ⟩ . (3.42)

(4) Dilatation. For any r ∈ R+ denote by Ur : Rn → Rn dilatation by r such

that x 7→ Urx , rx. The dilated distribution f(rx) , U∗
r f ∈ D′ (Rn) of

any f ∈ D′ (Rn) is given by⟨
f(rx), φ (x)

⟩
= r−n

⟨
f(x), φ (x/r)

⟩
. (3.43)

A distribution is called self-similar with scaling factor r ̸= 1 iff f(rx) = f(x).

4. Associated homogeneous distributions

This section formally defines AHDs on R and reviews their general properties.

4.1. Definition.

(1) A distribution fz0 ∈ D′ is called a (positively) homogeneous distribution of
degree of homogeneity z ∈ C iff it satisfies for any r > 0,⟨

(fz0 )(x) , φ (x/r)
⟩
= rz+1

⟨
(fz0 )(x) , φ (x)

⟩
,∀φ ∈ D, (4.1)

or, using (3.43), (fz0 )(rx) = rz (fz0 )(x). A homogeneous distribution is also

called an associated homogeneous distribution of order m = 0. A homoge-
neous distribution of degree z = 0 is a self-similar distribution.

A distribution fzm ∈ D′ is called an associated (positively) homogeneous
distribution of degree of homogeneity z ∈ C and order of association m ∈
Z+ iff there exists a sequence of associated homogeneous distributions fzm−l

of degree of homogeneity z and order of association m− l, ∀l ∈ Z[1,m], not
depending on r and with fz0 ̸= 0, satisfying for any r > 0,⟨

(fzm)(x) , φ (x/r)
⟩
= rz+1

⟨(
fzm +

m∑
l=1

(ln r)
l

l!
fzm−l

)
(x)

, φ (x)

⟩
,∀φ ∈ D. (4.2)

The notion of order used here, is not to be confused with what is commonly
called the order of a distribution, see e.g., [28, p. 94].

(2) Comment. The following two main definitions of one-dimensional AHDs
can be found in the literature.

(i) The one originally given by Gel’fand and Shilov in [15, p. 84, eq.
(3)], and a close variant of it used in the books by Estrada and Kanwal, [7],
[8], both of which are eventually stated as

⟨fzm, φ (x/r)⟩ = rz+1
⟨(
fzm + (ln r) fzm−1

)
, φ (x)

⟩
, (4.3)

wherein fzm−1 in the right-hand side is an AHD of degree of homogeneity z
and order of association m− 1.
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(ii) The definition given by Shelkovich in [25, eq. (3.7)] and which
is equivalent to (4.1)–(4.2). Shelkovich calls his distributions Quasi As-
sociated Homogeneous Distributions (QAHDs), to distinguish them from
those defined by (4.3), which he calls Associated Homogeneous Distribu-
tions (AHDs). The point stressed in [25] is that definition (4.3) is self-
contradictory for m ≥ 2 and only produces HDs and AHDs of order 1.
E.g., for m = 2, (4.3) gives on the one hand

⟨fz2 , φ (x/r)⟩ = rz+1 ⟨(fz2 + (ln r) fz1 ) , φ (x)⟩ ,

while on the other hand, with r = ab,

⟨fz2 , φ (x/r)⟩
= az+1 ⟨(fz2 + (ln a) fz1 ) , φ (x/b)⟩ ,
= rz+1 ⟨(fz2 + (ln b) fz1 ) , φ (x)⟩+ rz+1 (ln a) ⟨(fz1 + (ln b) fz0 ) , φ (x)⟩ ,
= rz+1 ⟨(fz2 + (ln r) fz1 + (ln a) (ln b) fz0 ) , φ (x)⟩ .

The vacuous situation of the Gel’fand–Shilov definition is avoided by using
definition (4.2). This definition not only imposes a specific dependence on
r to fzm−1 in the right-hand side of (4.3), but also implies that the sum of
an AHD of order m and an AHD of order n, with 0 ≤ n ≤ m, both of the
same degree of homogeneity z, is again an AHD of order m and of degree
z. This property is essential to accommodate the action of the dilatation
operator on AHDs for orders m ≥ 2.

In this paper we use definition (4.2), but still call the resulting distribu-
tions AHDs, because the resulting distributions are already widely known
under this name and are essentially the same set as studied in [15, Chapter
I, Section 4]. Furthermore, the adjective quasi may be easily confused with
the same prefix in the name quasihomogeneous distributions, introduced in
[26], where this prefix refers to a more general form of homogeneity which
arises for higher-dimensional distributions. In [26], the equivalent of asso-
ciated homogeneous distributions in n dimensions are defined and called
almost quasihomogeneous distributions.

A more detailed discussion of the Gel’fand–Shilov and Shelkovich defini-
tions for one-dimensional distributions and the von Grudzinski definitions
for higher-dimensional distributions are given in Appendix A.1.

(3) Another comment is in order on the use of the words order (of association)
and degree (of homogeneity) of an AHD. We are forced to make a strict
distinction between these two terms in the theory of AHDs. What is usu-
ally called in the literature the “order of differentiation or integration”, is
actually a number related to the degree of the kernel of the integration con-
volution operator. It would therefore be more appropriate to speak of the
degree of differentiation or integration and of the degree of a differential
or integral equation. This matter is important to avoid a clash of ter-
minology, when considering generalizations of integral equations involving
associated homogeneous (i.e., power-log) kernels, which are characterized
by a particular order of association (power of the logarithm) and a degree
of homogeneity (power of the independent variable).

(4) We will denote the set of AHDs based on R, with degree of homogeneity
z ∈ C and order of association m ∈ N, by H′z

m(R). The set of all AHDs
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based on R with common degree of homogeneity z will be denotedH′z(R) ,
∪∀m∈NH′z

m(R). The set of all AHDs based on R with common order of

association m will be denoted H′
m(R) , ∪∀z∈CH′z

m(R). The set of all AHDs

based on R will be denoted by H′(R) , ∪∀m∈NH′
m(R). Since we will only

consider AHDs based on R, we will further drop (R) in this notation.
(5) The operator Xz. Differentiate (4.2) l times with respect to r, put r = 1,

use the definitions (3.8) and (3.11) of the generalized derivatives, and (3.17).
This yields the system, ∀l ∈ Z[1,m+1],

Xzf
z
m−(l−1) = fzm−l, (4.4)

wherein we set fz−1 , 0 and, with Id the identity operator,

Xz , X ·D− z Id . (4.5)

The system (4.4) can be used as an equivalent for definition (4.2), see [25].
System (4.4) generalizes Euler’s theorem on homogeneous functions, see
e.g., [17, p. 10], to AHDs. In particular, for any homogeneous distribution
fz0 ∈ D′ holds,

(X ·D) fz0 = zfz0 , (4.6)

so homogeneous distributions are eigendistributions of the generalized Euler
operator X ·D, as expected.

(6) The operator xz. We have, ∀fzm ∈ H′
m and ∀φ ∈ D,

⟨Xzf
z
m, φ⟩ = −

⟨
fzm, x−(z+1)φ

⟩
, (4.7)

xz , x · d− z Id . (4.8)

Hence, the adjoint of the operator Xz is the operator −x−(z+1). Applying
(4.7) to any homogeneous distribution fz0 , we see that the operator x−(z+1)

maps D to Dz ⊂ D, being that subspace which is the kernel (i.e., the pre-
image of 0) of any HD fz0 of degree z. Hence, H′

0 is the annihilator of
Dz.

4.2. General properties. The following properties of AHDs easily follow from
(4.2) or (4.4).

(1) AHDs of the same order m, but of different degrees {z1, ..., zk}, are linearly
independent.

(2) AHDs of the same degree z, but of different orders {m1, ...,mk}, are linearly
independent. Any such linear combination is again an AHD of degree z and
of order m ≤ max {m1, ...,mk}.

(3) Let fzm be an AHD of order m and which is monogenic in its degree z ∈
Ω ⊂ C. If fzm has an analytic extension (fzm)a.e. to a region Ω1 ⊃ Ω, then
(fzm)a.e. is an AHD of degree z and order m due to the uniqueness of the
process of analytic continuation, [15, p. 150].

(4) AHDs based on R are distributions of slow growth: H′ ⊂ S ′. A proof for
homogeneous distributions can be found in [6, pp. 154–155]. By using in
addition [9, Theorem 1], property 5(ii) in the next subsection, linearity and
induction, it follows that any AHD is a distribution of slow growth.
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4.3. Derivations.

(1) Let fap and gbq be AHDs on R, both monogenic in their degree in Ω ⊆ C,
and such that fap .g

b
q ∈ D′ and is monogenic in a + b ∈ Ω. We find that

Dz and, by (3.9), (3.12) and (4.5), that Xz are derivations with respect to
multiplication,

Dz

(
fap .g

b
q

)
z=a+b

=
(
Daf

a
p

)
.gbq + fap .

(
Dbg

b
q

)
, (4.9)

Xz

(
fap .g

b
q

)
z=a+b

=
(
Xaf

a
p

)
.gbq + fap .

(
Xbg

b
q

)
. (4.10)

(2) Let fa−1
p and gb−1

q be AHDs on R, both monogenic in their degree in Ω ⊆ C,
and such that fa−1

p ∗ gb−1
q ∈ D′ and is monogenic in a + b − 1 ∈ Ω. We

see that Dz and, by (3.13), (3.10), (3.17) and (4.5), that Xz are both also
derivations with respect to convolution,

Dz

(
fa−1
p ∗ gb−1

q

)
z=a+b−1

=
(
Dzf

z
p

)
z=a−1

∗ gb−1
q + fa−1

p ∗
(
Dzg

z
q

)
z=b−1

,(4.11)

Xz

(
fa−1
p ∗ gb−1

q

)
z=a+b−1

=
(
Xzf

z
p

)
z=a−1

∗ gb−1
q + fa−1

p ∗
(
Xzg

z
q

)
z=b−1

.(4.12)

(3) The following commutation relation hold:

XzDz −DzXz = Id . (4.13)

(4) Let fz ∈ D′ be a monogenic distribution in z ∈ Ω ⊆ C. The properties
(3.36)–(3.37), holding for Dz, can now be supplemented with the following
properties, holding for Xz, ∀k, l ∈ N,

DkX l
z f

z = X l
z−kD

k fz, (4.14)

XkX l
z f

z = X l
z+kX

k fz. (4.15)

(5) It is readily found from (4.4) and (4.13)–(4.15) that, if fzm is an AHD on R
of order m and monogenic in its degree z in Ω, then:

(i) Xzf
z
m is associated of order m− 1 and of the same degree z,

(ii) Dzf
z
m is associated of order m+ 1 and of the same degree z,

(iii) Dfzm is associated of the same order m and of degree z − 1, and
(iv) Xfzm is associated of the same order m and of degree z + 1.
Moreover, Xz and Dz are parity preserving operators and X and D are

parity exchanging operators.
(6) The results stated in 1–5 imply (by induction) the following.

(i) If fap .g
b
q exists as a distribution and neither fap nor gbq is a zero divisor,

then this multiplication product is associated of order m = p + q and of
degree a+ b.

Under these conditions, any injective multiplication operator with a
homogeneous kernel of degree 0 is a map from H′

m → H′
m. In partic-

ular, the parity reversal transformation (i.e., the multiplication operator

S , −i sgn ., see (5.4)) then preserves the degree of homogeneity and order
of association.

(ii) If fa−1
p ∗ gb−1

q exists as a distribution and neither fa−1
p nor gb−1

q is a
zero divisor, then this convolution product is associated of order m = p+ q
and of degree a+ b− 1.

Under these conditions, any injective convolution operator with a homo-
geneous kernel of degree −1 is a map from H′

m → H′
m. In particular, the
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Hilbert transformation (i.e., the convolution operator H , η∗, see (5.99))
then preserves the degree of homogeneity and order of association.

4.4. Fourier transformation. The Fourier transform of any distribution in D′

always exists as an element of the ultradistributions Z ′.

(1) By (3.28)–(3.29), we obtain

FD′Xz +X−(z+1)FD′ = 0. (4.16)

For any fzm satisfying Xzf
z
m = fzm−1, with f

z
m−1 some AHD of degree z and

order m− 1, (4.16) immediately gives

X−(z+1) (FD′fzm) = −FD′fzm−1, (4.17)

which implies (by induction) that FD′ maps any AHD based on R to an
AHD based on R, such that:

(i) the order of association m is preserved,
(ii) the degree of homogeneity z is mapped to − (z + 1),
(iii) the parity of the distribution is preserved.

Hence, FH′
m

: H′
m → H′

m such that fzm 7→ g
−(z+1)
m , FS′fzm is an

automorphism of H′
m. Also, FH′ : H′ → H′ is an automorphism of H′.

(2) By (3.26) and continuity with respect to the degree of homogeneity z, we
easily deduce that, when operating on any fzm ∈ H′, ∀k ∈ Z+,

FH′Dk
z = Dk

zFH′ . (4.18)

(3) Let fap and gbq be AHDs on R. By item 1,
(
F−1

H′ fap
)
and

(
F−1

H′ gbq
)
are also

AHDs on R. If
(
F−1

H′ fap
)
∗
(
F−1

H′ gbq
)
exists, define

fap .g
b
q , FH′

((
F−1

H′ f
a
p

)
∗
(
F−1

H′ g
b
q

))
. (4.19)

This definition is natural, since it coincides with the convolution theorem
in case one of the distributions F−1

H′ fap or F−1
H′ gbq is in E ′, [28, p. 206], or

more generally in O′
C , [23, vol. II, p. 124]. Then, it also coincides with the

multiplication defined in (3.3), since one of the distributions fap or gbq will be
in ZM or in OM . We see from [9, e.g., Theorem 6] that if −1 < Re (a) and
−1 < Re (b), then fap and gbq are regular AHDs. If

(
F−1

H′ fap
)
∗
(
F−1

H′ gbq
)
exists,

FH′
((
F−1

H′ fap
)
∗
(
F−1

H′ gbq
))

will be an AHD of degree a + b. If in addition

−1 < Re (a+ b), FH′
((
F−1

H′ fap
)
∗
(
F−1

H′ gbq
))

is also a regular AHD. Then
it follows from the generalized convolution theorem, that definition (4.19)
coincides with definition (3.2).

An example of a multiplication algebra of distributions, based on def-
inition (4.19), is the subset of ultradistributions, which are the Fourier
transform of a regular distribution, generated from a continuous function,
and which form, together with addition and convolution, an algebra over
C.

In [10]–[11], it was shown that for AHDs based on R, fap and gbq, the

convolution product fap ∗gbq always exists (either directly or as an extension
of a partial distribution). This result together with definition (4.19) then
paves the way to give a meaning to the multiplication of AHDs based on
R.
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5. Basic associated homogeneous distributions

5.1. Simple distributions.

(1) The zero distribution 0 is defined by ⟨0, φ⟩ , 0. It is a regular homogeneous
distribution of undefined degree, which is both even and odd.

(2) We introduce the step functions, 1± : R→ R such that

x 7→ 1+(x) ,

 1 if x > 0
c+ if x = 0
0 if x < 0

, (5.1)

x 7→ 1−(x) ,

 0 if x > 0
c− if x = 0
1 if x < 0

, (5.2)

wherein the parameters c± ∈ R are left unspecified. These two parametrized
sets of functions 1± give rise to two unique regular distributions 1± ∈ D′,
respectively, both of which are homogeneous distributions of degree 0.

The regular distributions

1 , 1+ + 1+, (5.3)

sgn , 1+ − 1+, (5.4)

are even and odd homogeneous distributions of degree 0, respectively. The
distribution 1 is called the one distribution. A constant distribution is a
distribution proportional to the distribution 1.

Applying (4.19) and (5.50) with z = 0 yields the following multiplication
products for the regular distributions 1±,

1+.1+ = 1+, (5.5)

1−.1− = 1−, (5.6)

1−.1+ = 0 = 1+.1−. (5.7)

The same multiplication products are also obtained from definition (3.2).
One should not confuse the multiplication product of distributions 1+.1+ =
1+ with the pointwise multiplication product of functions 1+.1+ = 1+. The
former is always true, while the latter depends on the value c+ and only
holds iff c+ ∈ {0, 1}.

(3) With φ ∈ D and k ∈ N, define distributions xk ∈ D′ by⟨
xk, φ

⟩
,
(
mk+1φ

)
(0), (5.8)

with mk+1 : D → P the operator of degree k such that

φ 7→
(
mk+1φ

)
, (−1)k

∫ +∞

−∞
(x− τ)kφ (τ) dτ = (−1)k

(
xk ∗ φ

)
. (5.9)

Hence,
(
mk+1φ

)
(0) is the k-th moment of φ. Clearly, ∀k ∈ N: (i) xk ∈ P

and supp
(
xk
)
= R, (ii) xk is a homogeneous distribution of degree k.

From the definitions (3.11), (5.8) and (3.3) it follows that the generalized
convolution derivative of degree k, Xk, is the multiplication operator with
kernel xk, i.e., Xk = xk.. Hence, xk = Xk1. In particular for k = 0,
x0 = 1. The one distribution is an identity element in any distributional
multiplication algebra.
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Further, since x is a regular distribution and because the pointwise mul-
tiplication of functions x is associative, we have that, ∀f ∈ D′ and ∀k, l ∈ N,

Xk
(
X lf

)
=
(
XkX l

)
f = Xk+lf. (5.10)

The distributions xk, ∀k ∈ N, are regular distributions. Obviously, each
element of P is a finite linear combination of xk distributions.

(4) With φ ∈ D and k ∈ N, define distributions δ(k) ∈ D′ by⟨
δ(k), φ

⟩
, (−1)k

(
dkφ

)
(0), (5.11)

with dk : D → D the ordinary derivative of degree k in D. Note that,
∀k ∈ N: (i) δ(k) ∈ E ′

0 with supp
(
δ(k)

)
= {0}, (ii) δ(k) is a homogeneous

distribution of degree −(k + 1).
From the definitions (3.8), (5.11) and (3.7) follows that the generalized

ordinary derivative of degree k, Dk, is the convolution operator with ker-
nel δ(k), i.e., Dk = δ(k)∗. Hence, δ(k) = Dkδ. In particular for k = 0,
δ(0) , δ is called the delta distribution and it is an identity element in any
distributional convolution algebra.

Further, since convolution of any number of compact support distribu-
tions with one of arbitrary support is always associative, we have that,
∀f ∈ D′ and ∀k, l ∈ N,

Dk
(
Dlf

)
=
(
DkDl

)
f = Dk+lf. (5.12)

The δ(k), ∀k ∈ N, are singular distributions. Further, it can be shown
that each element of E ′

0 is a finite linear combination of δ(k) distributions,
[28, p. 96].

(5) For completeness we also define the regular distributions, ∀k,m ∈ N,⟨
xk lnm |x| , φ

⟩
,

∫ +∞

−∞

(
xk lnm |x|

)
φ(x)dx, (5.13)

⟨
xk sgn lnm |x| , φ

⟩
,

∫ +∞

−∞

(
xk sgn(x) lnm |x|

)
φ(x)dx, (5.14)

both of which are AHD of order m and degree k.
(6) Notice that −i sgn . : S → O′

C such that φ 7→ −i sgn .φ, is the classical
parity reversal transformation on S (the transformation in the spectral
(frequency) domain that is equivalent to the Hilbert transformation in the

original (time) domain). We will call the multiplication operator Sk+1 ,
−ixk sgn . : D′

Sk+1 ⊂ D′ → D′ the generalized parity reversal transformation

of degree k, wherein D′
Sk+1 is that subset of D′ for which Sk+1 is defined.

By definition (4.19), we have the distributional relation (for a simple
proof see [10, Appendix]),(

−ixk sgn
)
.
(
−ixl sgn

)
= −xk+l, (5.15)

which for k = l = 0 states the well-known anti-involution property of
the distributional Hilbert transformation, here expressed in the spectral
domain. This makes the kernel −i sgn a generator of complex structure in
those associative distributional multiplication algebras where S is defined.

5.2. The distributions xz±.
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5.2.1. Definition. Let x ∈ R and z ∈ C. The distributions xz± ∈ D′ are defined in
the half plane −1 < Re(z) as regular distributions in terms of the integrals, [15, p.
48], ⟨

xz±, φ
⟩
,
∫ +∞

−∞
(|x|z 1±(x))φ(x)dx, (5.16)

and supp(xz±) = {0} ∪ R±. Equations such as (5.16), which contain double signs
in either side, are to be understood as double equations: one equation holding for
the upper signs and the other holding for the lower signs.

Notice that xz±, given by (5.16), can be regarded as a distributional multiplication
|x|z .1± for the regular distributions |x|z (i.e., for −1 < Re(z)) and 1±, as the
notation suggests.

5.2.2. Analytic continuation and extension. The process of analytic continuation
of distributions goes back to M. Riesz. The functional (5.16) can be rewritten in
the following equivalent form, ∀k ∈ Z+,

⟨
xz±, φ

⟩
=

∫ +∞

−∞
(|x|z 1±(x))

(
φ(x)−

k−1∑
l=0

φ(l)(0)
xl

l!

)
1[+(1− x2)dx

+

∫ +∞

−∞
(|x|z 1±(x))φ(x)1−(1− x2)dx (5.17)

+
k−1∑
l=0

(±1)l

l! φ(l)(0)

z + l + 1
, (5.18)

the right-hand side of which is now valid for − (k + 1) < Re(z) and z /∈ Z[−k,−1].
The expression (5.18), holding ∀k ∈ Z+, thus uniquely extends the definition of xz±
to all z ∈ C\Z−. The so obtained distributions xz±, for Re(z) ≤ −1 and z /∈ Z−,
are no longer regular distributions.

The analytic continuation process leading to (5.18) also extends the meaning of
the distributional multiplication |x|z .1±, defined above for −1 < Re(z), now to all
z ∈ C\Z−. In this sense, it is still legitimate to regard xz± as a product, notwith-
standing the fact that after continuation xz± is no longer a regular distribution.

Expression (5.18) can be further rearranged in the form,

⟨
xz±, φ

⟩
=

⟨
(∓1)k−1

(k−1)! δ
(k−1), φ

⟩
z + k

+ 1p≤k−2

k−2∑
l=p

⟨
(∓1)l

l! δ(l), φ
⟩

z + l + 1

+

∫ +∞

−∞
(|x|z 1±(x)) (Tp,qφ) (x)dx, (5.19)

now holding in the strip− (k + 1) < Re(z) < −p and z /∈ {−k,− (k − 1) , ...,− (p+ 1)}.
Herein we used (3.31) with λ = 1 and we can choose p, q ∈ N subject to the condi-
tion p+ q = k − 1. Expression (5.19) shows that the distributions xz± are complex
analytic for all z, except at the points z = −k ∈ Z−, which are simple poles with
residues x−k

±,−1, read off as

x−k
±,−1 =

(∓1)k−1δ(k−1)

(k − 1)!
. (5.20)
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Denote by xz±,a(z=−k) the analytic part of the Laurent series of xz± about the point

z = −k. From (5.19) follows

⟨
xz±,a(z=−k), φ

⟩
= 1p≤k−2

k−2∑
l=p

⟨
(∓1)l

l! δ(l), φ
⟩

z + l + 1
(5.21)

+

∫ +∞

−∞
(|x|z 1±(x)) (Tp,qφ) (x)dx, (5.22)

=

∫ +∞

−∞
(|x|z 1±(x)) (Tk−1,0φ) (x)dx. (5.23)

Define new distributions xz±,ε, complex analytic in − (k + 1) < Re(z) < −p and
∀φ ∈ D, by ⟨

xz±,ε, φ
⟩

,
∫ +∞

−∞
(|x|z 1±(x)) (Tp,qφ) (x)dx, (5.24)

∀p, q ∈ N : p + q = k − 1 and Tp,q given by (3.31), but now with general λ. We
have

⟨
xz±,ε, ψ

⟩
=
⟨
xz±, ψ

⟩
, ∀ψ ∈ DZ[−k,−(p+1)]

. Thus, xz±,ε are extensions of xz±
from DZ[−k,−(p+1)]

to D. We see from (5.23) and (5.24) that xz±,a(z=−k) is just the

extension (or regularization of the integral in (5.16) at z = −k in the sense of [15,
p. 10]), corresponding to p = k − 1 and q = 0 and λ = 1. In particular at the

pole z = −k, x−k
±,a(z=−k) , x−k

±,0 is the extension of the partial distribution x−k
± ,

obtained with p = k − 1, q = 0 and λ = 1, and given by⟨
x−k
±,0, φ

⟩
=

∫ +∞

−∞

(
|x|−k

1±(x)
)
(Tk−1,0φ) (x)dx. (5.25)

The distribution x−k
±,0 (called a “pseudo-function” in [23, vol. I, p. 41]) will be

called the analytic finite part of xz± at z = −k. It is easily shown that x−k
±,0 is

identical to Hadamard’s finite part FpH x−k
± , provided this is defined for xz+ by⟨

Fp
H
x−k
+ , φ

⟩
, lim

ε→0

( ∫ +∞
ε

x−kφ(x)dx

+
∑k−2

l=0
φ(l)(0)

l!
ε−k+l+1

−k+l+1 + φ(k−1)(0)
(k−1)! ln ε

)
,

and similarly for xz−. The above development neatly explains how Hadamard’s
approach, of only retaining a finite part of a divergent integral at an isolated sin-
gularity, is actually equivalent to the introduction of a particular extension of the
partial distribution x−k

± .
Choosing different values for p and q in (5.24) yield extensions that differ by a

linear combination of δ(l) distributions, ∀l ∈ Z[p,k−1]. Demanding that an extension

x−k
±,ε of the partial homogeneous distribution x−k

± is again a homogeneous distribu-
tion is not sufficient to make this extension unique. For we can always add a term
cδ(k−1) to x−k

±,0, with arbitrary c ∈ C, without changing its degree of homogeneity

and the distribution x−k
±,e , x−k

±,0 + cδ(k−1) is an equally acceptable extension from

D{−k} to D, besides x−k
±,0. This can be made more explicit by checking the homo-

geneity of the distributions xz±,ε, defined in (5.24), using (4.1). Invoking (3.35), we
get⟨

xz±,ε, φx/r

⟩
= rz+1

⟨
xz±,ε, φx

⟩
+ rz+1

p+q∑
l=p

(±1)
l φ

(l)(0)

l!

∫ 1

1/r

yz+lλ (ry) dy. (5.26)
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If 0 ≤ p < k − 1, xz±,ε are not homogeneous extensions of xz±. If p = k − 1, (5.26)
takes the form ⟨

xz±,e, φx/r

⟩
= rz+1

⟨
xz±,e + cδ(k−1), φx

⟩
, (5.27)

for some c ∈ C (depending on λ). Eq. (5.27) shows that xz±,e are homogeneous

of degree z and of first order of association. This also holds at z = −k for x−k
±,0.

Putting c , b− a, we can state the rescaling property of x−k
±,0 equivalently as⟨

x−k
±,0 + aδ(k−1), φx/r

⟩
= r−k+1

⟨
x−k
±,0 + bδ(k−1), φx

⟩
, (5.28)

with arbitrary a, b ∈ C. This shows that under a rescaling any extension x−k
±,e is

mapped into another extension x−k
±,e′ . We thus see that the concept of homogeneity

of a homogeneous extension x−k
±,e requires that we regard x−k

±,e as an equivalence set
of distributions, which is a subtlety that is rarely mentioned in the literature. A
hint at it was given by Hörmander in [16, p. 71], when he wrote that for P

(
x−k
±
)

“the homogeneity is partly lost”.
For instance if k = 1, we get for the analytic finite part x−1

±,0 the following

particular extension of the partial distribution x−1
± ,⟨

x−1
±,0, φ

⟩
=

∫ 1

0

φ(±x)− φ(0)

x
dx+

∫ +∞

1

φ(±x)
x

dx, (5.29)

while x−1
±,e is its most general extension of homogeneous degree, given by⟨
x−1
±,e, φ

⟩
=

∫ 1

0

φ(±x)− φ(0)

x
dx+

∫ +∞

1

φ(±x)
x

dx+ cφ(0), (5.30)

with arbitrary c ∈ C.

5.2.3. Associated distributions. For −1 < Re(z), the integral in (5.16) generates a
complex analytic function of z, so we have Dm

z x
z
± = xz± lnm |x|, ∀m ∈ N, where⟨

xz± lnm |x| , φ
⟩
=

∫ +∞

−∞
(|x|z 1±(x) lnm |x|)φ(x)dx. (5.31)

The distribution xz± lnm |x|, given by (5.31), defines the distributional multiplication
xz±. ln

m |x| for the regular distributions xz± (i.e., for −1 < Re(z)) and lnm |x|, as
the notation suggests.

In particular, letting z = k in (5.31) gives us the coefficients, ∀m ∈ N, of the
Taylor series of xz± about the ordinary points z = k ∈ N. For − (k + 1) < Re(z)
and z /∈ Z[−k,−1] we obtain from (5.18), ∀k ∈ Z+ and ∀m ∈ N,⟨

xz± lnm |x| , φ
⟩

=

∫ +∞

−∞
(|x|z 1±(x) lnm |x|)

(
φ(x)−

k−1∑
l=0

φ(l)(0)
xl

l!

)
1[+(1− x2)dx

+

∫ +∞

−∞
(|x|z 1±(x) lnm |x|)φ(x)1−(1− x2)dx (5.32)

+ (−1)
m

k−1∑
l=0

(±1)l

l! φ(l)(0)

(z + l + 1)
m+1 . (5.33)
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The analytic continuation process leading to (5.33) can be used to extend the
distributional multiplication xz±. ln

m |x|, defined above for −1 < Re(z), now to all
z ∈ C\Z−. In this sense, it is still legitimate to regard xz± lnm |x| as a multiplication
product.

Further, from (5.19) we get the expression

⟨
xz± lnm |x| , φ

⟩
= (−1)

m

⟨
(∓1)k−1

(k−1)! δ
(k−1), φ

⟩
(z + k)

m+1 (5.34)

+10≤p≤k−2 (−1)
m

k−2∑
l=p

⟨
(∓1)l

l! δ(l), φ
⟩

(z + l + 1)
m+1

+

∫ +∞

−∞
(|x|z 1±(x) lnm |x|) (Tp,qφ) (x)dx, (5.35)

with Tp,q given by (3.31) and λ = 1, holding in 0 < |z + k| < 1. Denote by

x−k
±,0 ln

m |x| the constant term of the analytic part of the Laurent series of xz± lnm |x|
about the point z = −k. We get from (5.35), ∀m ∈ N,⟨

x−k
±,0 ln

m |x| , φ
⟩

= 10≤p≤k−2 (−1)
m

k−2∑
l=p

⟨
(∓1)l

l! δ(l), φ
⟩

(−k + l + 1)
m+1 (5.36)

+

∫ +∞

−∞

(
|x|−k

1±(x) ln
m |x|

)
(Tp,qφ) (x)dx,

=

∫ +∞

−∞

(
|x|−k

1±(x) ln
m |x|

)
(Tk−1,0φ) (x)dx. (5.37)

The distributions x−k
±,0 ln

m |x|, as given by (5.37), are extensions of xz± lnm |x| at the
pole z = −k, in the sense of (3.30), for the particular values p = k − 1 and q = 0.
Combining (5.19) and (5.37) gives us the Laurent series of xz± about z = −k in the
form

xz± =

(∓1)k−1

(k−1)! δ
(k−1)

z + k
+

+∞∑
m=0

x−k
±,0 ln

m |x| (z + k)m

m!
, (5.38)

holding in 0 < |z + k| < 1.
Regarded as distributions, the limz→−kD

m
z x

z
± does not exist, but we do have

limz→−kD
m
z x

z
±,ε =

(
Dm

z x
z
±,ε

)
z=−k

= x−k
±,ε ln

m |x|, due to (5.24). From⟨
xz±,ε ln

m |x| , φ
⟩

,
⟨
Dm

z x
z
±,ε, φ

⟩
,

= Dm
z

⟨
xz±,ε, φ

⟩
(5.39)

=

∫ +∞

−∞
(|x|z 1±(x) lnm |x|) (Tp,qφ) (x)dx, (5.40)

and Tp,q given by (3.31) but now with general λ, and the continuity of xz±,ε at

z = −k, we see that we can regard x−k
±,ε ln

m |x| as the distributional multiplication

of x−k
±,ε and lnm |x|, with this product being defined by (5.40).

The distributions Dm
z x

z
± = xz± lnm |x|, with z ∈ C\Z−, are AHDs of order m and

degree z, while x−k
±,e ln

m |x| , x−k
±,e. ln

m |x|, ∀k ∈ Z+, are AHDs of order m+ 1 and
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degree −k. The extensions x−k
±,e ln

m |x| are again to be understood as associated
homogeneous equivalence sets, in the sense of the previous subsection. This is made
more explicit, now by starting from (4.2) and invoking result [13, eq. (20)], as

⟨
x−k
±,e. ln

m |x| , φx/r

⟩
= r−k+1

⟨
x−k
±,e. ln

m |x|+ (ln r) f−k
m , φx

⟩
, (5.41)

wherein f−k
m is associated of order m. Again the extensions in the left-hand

and right-hand members of (5.41) are different elements of the equivalence set

x−k
±,e ln

m |x|.

5.2.4. Generalized multiplication derivatives. For − (1− n) < Re(z), we apply def-
inition (3.8), the associativity property (5.12) and induction to (5.16). This results
in, ∀n ∈ Z+,

Dnxz± = (±1)
n
z(n) x

z−n
± , (5.42)

with z(n) given by (2.7). The generalized derivatives Dn
(
xz± lnm |x|

)
, ∀n ∈ Z+ and

for − (1− n) < Re(z), now easily follow from the commutation of Dn and Dm
z .

This yields

Dn
(
xz± lnm |x|

)
= Dm

z

(
(±1)

n
z(n) x

z−n
±
)
,

= (±1)
n
xz−n
±

m∑
p=0

(
m
p

) (
Dm−p

z z(n)
)
lnp |x| . (5.43)

By analytic continuation, this holds ∀z ∈ C\
(
Z− ∪ Z[0,n−1]

)
.

The generalized derivatives D (1± lnm |x|), ∀m ∈ N, are found by first applying
definition (3.8) to (5.31) with z = 0. We get

D (1± lnm |x|) = ±1m=0δ ± 1m>0mx−1
±,0 ln

m−1 |x| . (5.44)

For z = −k ∈ Z− and ∀m ∈ N, we start from the extension (5.37) and use (3.33)
with λ = 1. This gives⟨

D
(
x−k
±,0 ln

m |x|
)
, φ
⟩

= −
⟨
x−k
±,0 ln

m |x| , dφ
⟩
,

= −
∫ +∞

−∞

(
|x|−k

1±(x) ln
m |x|

)
d (Tk,0φ) (x)dx.(5.45)

By partial integration of (5.45) we deduce the following expression, holding ∀k ∈ Z+

and ∀m ∈ N,

D
(
x−k
±,0 ln

m |x|
)

= ±1m=0
(∓1)

k

k!
δ(k)

± (−k) x−(k+1)
±,0 lnm |x| ± 1m>0mx

−(k+1)
±,0 lnm−1 |x| .(5.46)

From this result with m = 0 follows, using (5.12) and induction, that, ∀k, n ∈ Z+,

Dn
(
(k − 1)!x−k

±,0

)
= − (∓1)

k−1
(Hk−1+n −Hk−1) δ

(k−1+n)

+(∓1)
n
(k − 1 + n)!x

−(k+n)
±,0 , (5.47)

wherein Hk , 1k>0

∑k
p=1

1
p are the harmonic numbers. Eq. (5.47) generalizes the

result [15, p. 87, eq. (5)] and (5.46) appears to be new.
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5.2.5. Generalized convolution derivatives. For −1 < Re(z), we apply definition
(3.11), the associativity property (5.10) and induction to (5.31). We get, ∀n ∈ Z+

and ∀m ∈ N,

Xn
(
xz± lnm |x|

)
= (±1)

n
xz+n
± lnm |x| . (5.48)

By analytic continuation, this holds ∀z ∈ C\Z−.
For z = −k ∈ Z− and ∀m,n ∈ N, we start from the extension (5.37) and use

(3.34) together with T0,0 (xφ) = xφ. By induction we get,

Xn
(
x−k
±,0 ln

m |x|
)
= 1k≤n (±1)

n
xn−k
± lnm |x|+1n<k (±1)

n
x
−(k−n)
±,0 lnm |x| . (5.49)

5.2.6. Fourier transforms. The Fourier transform of the distributions xz±, ∀z ∈
C\Z−, is easily obtained from (6.36) as (F is from here on shorthand for FH′)

F
[
(2πx)

z
±
]
= Φ−z

χ∓i0. (5.50)

More generally, ∀m ∈ N and ∀z ∈ C\Z−, we have by the commutativity of the F
and Dz operators,

F
[
Dm

z x
z
±
]
= (−1)

m
(2π)

−z
m∑

p=0

(
m
p

)
lnm−p (2π)

(
Dp

wΦ
w
χ∓i0

)
w=−z

. (5.51)

The distributions Dm
z Φz

χ±i0 are given by (6.111).

The Fourier transform of the distributions x−k
±,0 ln

m |x|, ∀k ∈ Z+ and ∀m ∈ N, is
obtained as follows. Use (5.38), the Laurent series of the distributions Φ−z

χ∓i0 about

their simple pole −z = k, the Taylor series of (2π)
−z

about the ordinary point

−z = k, and the Fourier transform pair F
[
δ(k−1)

]
= (2πiχ)

k−1
. This results in

F
[
x−k
±,0 ln

m |x|
]

= (−1)
m+1 lnm+1 (2π)

m+ 1

(∓2πiχ)
k−1

(k − 1)!

+ (2π)
k
(−1)

m
m∑

p=0

(
m
p

)
lnm−p (2π)

(
Dp

kΦ
k
χ∓i0

)
0
. (5.52)

In particular for m = 0, using (6.109), (5.52) reduces to

F
[
x−k
±,0

]
= (∓πi) 1

2

(∓2πiχ)
k−1

(k − 1)!
sgn− (∓2πiχ)

k−1

(k − 1)!
(ln |2πχ| − ψ (k)) . (5.53)

The distributions
(
Dp

kΦ
k
χ±i0

)
0
are given by (6.112)–(6.113). Expressions (5.52)–

(5.53) are new.
We will call the xz± homogeneous half-line kernels and the Dm

z x
z
±, ∀m ∈ Z+,

associated homogeneous half-line kernels. The distributions Dm
z x

z
± will turn out to

be convenient basis distributions for the set of AHDs, in order to easily compute
multiplication products.

5.3. The even distribution |x|z.
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5.3.1. Definition. The even distribution |x|z ∈ D′ is defined ∀z ∈ C\Z− by the
sum, [15, p. 50],

|x|z , xz+ + xz−, (5.54)

and supp(|x|z) = R. From (5.54) and (5.19) follows, for −k ∈ Zo,−,

⟨|x|z , φ⟩ =

⟨
2ok

(k−1)!δ
(k−1), φ

⟩
z + k

+

∫ +∞

−∞
|x|z (Tk−1,0φ) (x)dx. (5.55)

The distribution |x|z can be analytically extended to all z ∈ C, except for the points
z = −(2p+ 1) ∈ Zo,−, which are simple poles with residue

|x|−(2p+1)
−1 = 2

δ(2p)

(2p)!
. (5.56)

Each distribution denoted by(
x−(2p+1) sgn

)
0
, |x|−(2p+1)

0 , x
−(2p+1)
+,0 + x

−(2p+1)
−,0 , (5.57)

is an extension of the distribution |x|z at its poles. At the ordinary points z =
−2p ∈ Ze,−],

x−2p , |x|−2p , x−2p
+,0 + x−2p

−,0 . (5.58)

From (5.54) and (5.19) follows, for −k ∈ Zo,−, that

⟨|x|z sgn, φ⟩ =

⟨
2ok

(k−1)!δ
(k−1), φ

⟩
z + k

+

∫ +∞

−∞
(|x|z sgn(x)) (Tk−1,0φ) (x)dx, (5.59)

holding in the strip − (k + 2) < Re(z) < − (k − 2) and z ̸= −k.

5.3.2. Associated distributions. We have Dm
z |x|z = |x|z lnm |x|, ∀z ∈ C\Zo,− and

∀m ∈ N. For − (k + 1) < Re(z) and z /∈ Z[−k,−1] ∩ Zo,− we obtain from (5.33),
∀k ∈ Z+ and ∀m ∈ N,

⟨|x|z lnm |x| , φ⟩

=

∫ +∞

−∞
(|x|z lnm |x|)

(
φ(x)−

k−1∑
l=0

φ(l)(0)
xl

l!

)
1[+(1− x2)dx

+

∫ +∞

−∞
(|x|z lnm |x|)φ(x)1−(1− x2)dx (5.60)

+ (−1)
m

k−1∑
l=0

2el
l! φ

(l)(0)

(z + l + 1)
m+1 . (5.61)

From (5.59) follows, for −k ∈ Zo,−,⟨(
x−k sgn

)
0
lnm |x| , φ

⟩
=

∫ +∞

−∞

(
x−k sgn(x) lnm |x|

)
(Tk−1,0φ) (x)dx, (5.62)

and for the ordinary points −k ∈ Ze,−],⟨
x−k lnm |x| , φ

⟩
=

∫ +∞

−∞

(
x−k lnm |x|

)
(Tk−1,0φ) (x)dx. (5.63)
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5.3.3. Generalized multiplication derivatives. From (5.54), (5.44) and (5.43) follows

D (lnm |x|) = 1m>0mx−1 lnm−1 |x| , (5.64)

and, ∀z ∈ C\ (−N),

D (|x|z lnm |x|) = z |x|z−1
sgn lnm |x|+ 1m>0m |x|z−1

sgn lnm−1 |x| . (5.65)

Combining (5.46) with (5.57) gives the generalized multiplication derivatives, for
−k = −(2p+ 1) ∈ Zo,−,

D
(
|x|−(2p+1)

0 lnm |x|
)

= −1m=02
δ(2p+1)

(2p+ 1)!
− (2p+ 1)

(
|x|−(2p+2)

sgn
)
0
lnm |x|

+1m>0m
(
|x|−(2p+2)

sgn
)
0
lnm−1 |x| , (5.66)

and combining (5.46) with (5.58) gives, for −k = −2p ∈ Ze,−],

D
(
|x|−2p

lnm |x|
)
= − (2p) |x|−(2p+1)

sgn lnm |x|+1m>0m |x|−(2p+1)
sgn lnm−1 |x| .

(5.67)
Expressions (5.66)–(5.67) are new results.

5.3.4. Generalized convolution derivatives. From (5.54) and (5.48) follows, ∀z ∈
C\Z− and ∀m,n ∈ N,

Xn (|x|z lnm |x|) = |x|z+n
(en1 + on sgn) ln

m |x| . (5.68)

Combining (5.49) with (5.76) gives the generalized multiplication derivatives, for
−k = −(2p+ 1) ∈ Zo,− and ∀m,n ∈ N,

Xn
(
|x|−(2p+1)

0 lnm |x|
)
=

(
12p+1≤nx

n−(2p+1) sgn
+1n<2p+1

(
x−(2p+1−n) sgn

)
0

)
lnm |x| , (5.69)

and combining (5.49) with (5.77) gives, for −k = −2p ∈ Ze,−] and ∀m,n ∈ N,

Xn
(
|x|−2p

lnm |x|
)
= xn−2p lnm |x| . (5.70)

The |x|z lnm |x|, with z ∈ C\Zo,−, are AHDs of order m and degree z and

|x|−(2p+1)
0 lnm |x|, ∀p ∈ N, are AHDs of order m+ 1 and degree −(2p+ 1).

5.3.5. Fourier transforms. The Fourier transform of the distribution |x|z, ∀z ∈
C\Zo,−, is easily obtained from (5.54), (5.50) and (6.106) as

F [|2πx|z] = Φ−z
e . (5.71)

More generally, ∀m ∈ N and ∀z ∈ C\Zo,−, we have by the commutativity of the F
and Dz operators,

F [|x|z lnm |x|] = (2π)
−z

(−1)
m

m∑
p=0

(
m
p

)
lnm−p (2π) (Dp

wΦ
w
e )w=−z . (5.72)

The distributions Dm
z Φz

e are given by (6.56).



30 G. FRANSSENS

Adding both Fourier transform in (5.52) gives, ∀p ∈ N,

F
[
|x|−(2p+1)

0 lnm |x|
]

= − (−1)
m
2
lnm+1 (2π)

m+ 1

(2πiχ)
2p

(2p)!

+ (−1)
m
(2π)

2p+1
m∑

p=0

(
m
p

)
lnm−p (2π)

(
(Dp

wΦ
w
e )w=2p+1

)
0
. (5.73)

The distributions
(
(Dp

wΦ
w
e )w=2p+1

)
0
are given by (6.58). Eq. (5.73) is new.

We will call the distribution |x|z a homogeneous even kernel and the distributions
Dm

z |x|z sgn, ∀m ∈ Z+, associated homogeneous even kernels.

5.4. The odd distribution |x|z sgn.

5.4.1. Definition. The odd distribution |x|z sgn is defined ∀z ∈ C\Z− by the differ-
ence, [15, p. 50],

|x|z sgn , xz+ − xz−, (5.74)

and supp(|x|z sgn) = R. The distribution |x|z sgn can be analytically extended to
all z ∈ C, except for the points z = − (2p+ 2) ∈ Ze,−, which are simple poles with
residue (

|x|−(2p+2)
sgn
)
−1

=
−2δ(2p+1)

(2p+ 1)!
. (5.75)

Each distribution denoted by(
x−(2p+2) sgn

)
0
,
(
|x|−(2p+2)

sgn
)
0
, x

−(2p+2)
+,0 − x

−(2p+2)
−,0 (5.76)

is an extension of the distribution |x|z sgn at its poles. At the ordinary points
z = −(2p+ 1) ∈ Zo,−,

x−(2p+1) , |x|−(2p+1)
sgn , x

−(2p+1)
+,0 − x

−(2p+1)
−,0 . (5.77)

For similar reasons as given above for the distributions xz± lnm |x|, the distri-
bution |x|z sgn defines the multiplication of the distributions |x|z and sgn, ∀z ∈
C\Ze,−.

From (5.74) and (5.19) follows, for −k ∈ Ze,−, that

⟨|x|z sgn, φ⟩ =

⟨
− 2ek

(k−1)!δ
(k−1), φ

⟩
z + k

+

∫ +∞

−∞
(|x|z sgn(x)) (Tk−1,0φ) (x)dx, (5.78)

holding in the strip − (k + 2) < Re(z) < − (k − 2) and z ̸= −k.

5.4.2. Associated distributions. We haveDm
z (|x|z sgn) = |x|z sgn lnm |x|, ∀z ∈ C\Ze,−

and ∀m ∈ N. For − (k + 1) < Re(z) and z /∈ Z[−k,−1]∩ Ze,− we obtain from (5.33),
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∀k ∈ Z+ and ∀m ∈ N,

⟨|x|z sgn lnm |x| , φ⟩

=

∫ +∞

−∞
(|x|z sgn(x) lnm |x|)

(
φ(x)−

k−1∑
l=0

φ(l)(0)
xl

l!

)
1[+(1− x2)dx

+

∫ +∞

−∞
(|x|z sgn(x) lnm |x|)φ(x)1−(1− x2)dx (5.79)

+ (−1)
m

k−1∑
l=0

2ol
l! φ

(l)(0)

(z + l + 1)
m+1 . (5.80)

From (5.78) follows, for the ordinary points −k ∈ Zo,−,⟨
x−k lnm |x| , φ

⟩
=

∫ +∞

−∞

(
x−k lnm |x|

)
(Tk−1,0φ) (x)dx, (5.81)

and for −k ∈ Ze,−,⟨(
x−k sgn

)
0
lnm |x| , φ

⟩
=

∫ +∞

−∞

(
x−k sgn(x) lnm |x|

)
(Tk−1,0φ) (x)dx. (5.82)

5.4.3. Generalized multiplication derivatives. From (5.74), (5.44) and (5.43) follows

D (sgn lnm |x|) = 1m=02δ + 1m>0m |x|−1
0 lnm−1 |x| , (5.83)

and, ∀z ∈ C\ (−N),

D (|x|z sgn lnm |x|) = z |x|z−1
lnm |x|+ 1m>0m |x|z−1

lnm−1 |x| . (5.84)

Combining (5.46) with (5.77) gives the generalized multiplication derivatives, for
−k = −(2p+ 1) ∈ Zo,−,

D
(
|x|−(2p+1)

sgn lnm |x|
)
= −(2p+1) |x|−(2p+2)

lnm |x|+1m>0m |x|−(2p+2)
lnm−1 |x| ,

(5.85)
and combining (5.46) with (5.76) gives, for −k = − (2p+ 2) ∈ Ze,−,

D
((

|x|−(2p+2)
sgn
)
0
lnm |x|

)
= 1m=02

δ(2p+2)

(2p+ 2)!
− (2p+ 2) |x|−(2p+3)

0 lnm |x| (5.86)

+1m>0m |x|−(2p+3)
0 lnm−1 |x| . (5.87)

Expressions (5.85)–(5.87) are new results.

5.4.4. Generalized convolution derivatives. From (5.74) and (5.48) follows, ∀z ∈
C\Z− and ∀m,n ∈ N,

Xn (|x|z sgn lnm |x|) = |x|z+n
(on1 + en sgn) ln

m |x| . (5.88)

Combining (5.49) with (5.58) gives the generalized multiplication derivatives, for
−k = −(2p+ 1) ∈ Zo,− and ∀m,n ∈ N,

Xn
(
|x|−(2p+1)

sgn lnm |x|
)
= xn−(2p+1) lnm |x| , (5.89)
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and combining (5.49) with (5.57) gives, for −k = − (2p+ 2) ∈ Ze,− and ∀m,n ∈ N,

Xn
((

|x|−(2p+2)
sgn
)
0
lnm |x|

)
=

(
12p+2≤nx

n−(2p+2) sgn+1n<2p+2

(
x−(2p+2−n) sgn

)
0

)
lnm |x| , (5.90)

which is a new expression.
The |x|z sgn lnm |x|, with z ∈ C\Ze,−, are AHDs of order m and degree z and(

x−(2p+2) sgn
)
0
lnm |x|, ∀p ∈ N, are AHDs of order m+ 1 and degree − (2p+ 2).

5.4.5. Fourier transforms. The Fourier transform of the distribution |x|z sgn, ∀z ∈
C\Ze,−, is easily obtained from (5.74), (5.50) and (6.106) as

F [|2πx|z sgn] = −iΦ−z
o . (5.91)

More generally, ∀m ∈ N and ∀z ∈ C\Ze,−, we have by the commutativity of the F
and Dz operators,

F [|x|z sgn lnm |x|] = −i (2π)−z
(−1)

m
m∑

p=0

(
m
p

)
lnm−p (2π) (Dp

wΦ
w
o )w=−z . (5.92)

The distributions Dm
z Φz

o are given by (6.57).
Subtracting both Fourier transform in (5.52) gives, ∀p ∈ N,

F
[(

|x|−(2p+2)
sgn
)
0
lnm |x|

]
= (−1)

m
2
lnm+1 (2π)

m+ 1

(2πiχ)
2p+1

(2p+ 1)!

− (−1)
m
i (2π)

2p+2
m∑

p=0

(
m
p

)
lnm−p (2π)

(
(Dp

wΦ
w
o )w=2p+2

)
0
. (5.93)

The distributions
(
(Dp

wΦ
w
o )w=2p+2

)
0
are given by (6.61). Eq. (5.93) is new.

We will call the distribution |x|z sgn a homogeneous odd kernel and the distri-
butions Dm

z |x|z sgn, ∀m ∈ Z+, associated homogeneous odd kernels.

5.5. The distributions η
(k)
±,0. Combining the definitions in (5.63) and (5.81), we

see that the distributions x−k lnm |x|, ∀k ∈ Z+ and ∀m ∈ N, are given by⟨
x−k lnm |x| , φ

⟩
=

∫ +∞

−∞

(
x−k lnm |x|

)
(Tk−1,0φ) (x)dx. (5.94)

Further, combining the definitions in (5.62) and (5.82), gives for the distributions(
x−k sgn

)
0
lnm |x|, ∀k ∈ Z+ and ∀m ∈ N,

⟨(
x−k sgn

)
0
lnm |x| , φ

⟩
=

∫ +∞

−∞

(
x−k sgn(x) lnm |x|

)
(Tk−1,0φ) (x)dx. (5.95)

Note that x−k lnm |x| is an AHD of order m, which is an analytic continuation,
and

(
x−k sgn

)
0
lnm |x| an AHD of orderm+1, which is an extension, both of degree

−k.
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The well-known distribution x−1 ∈ D′, sometimes written as the pseudo-function
Pf 1

x or as Cauchy’s principal value Pv 1
x , is the particular case of (5.94) with m = 0

and k = 1, and thus given by

⟨
x−1, φ

⟩
=

∫ +∞

0

φ(x)− φ(−x)
x

dx. (5.96)

Similarly, from (5.95) we get the particular case,

⟨(
x−1 sgn

)
0
, φ
⟩
=

∫ +∞

0

φ(x) + φ(−x)− 2φ(0)1[+(1− x)

x
dx. (5.97)

5.5.1. Definition. We shall find it convenient to define the following distributions,
∀k ∈ N and using (5.47),

η
(k)
±,0 , Dkη±,0 , Dk

(
1

π
x−1
±,0

)
= − 1

π
Hkδ

(k) +
1

π
(∓1)kk!x

−(k+1)
±,0 . (5.98)

The η
(k)
±,0 are AHDs of first order and degree −(k+1) with supp(η

(k)
±,0) = {0}∪R±.

Further, using (5.98), (5.58), (5.77), (5.57) and (5.76), we define the linear com-
binations

η(k) , η
(k)
+,0 − η

(k)
−,0 =

1

π
(−1)kk!x−(k+1), (5.99)(

η(k) sgn
)
0

, η
(k)
+,0 + η

(k)
−,0 +

2

π
Hkδ

(k) =
1

π
(−1)kk!

(
x−(k+1) sgn

)
0
.(5.100)

Like δ(k) is also η(k) a homogeneous distribution of degree −(k+1), while
(
η(k) sgn

)
0

is an AHD of first order and degree −(k + 1). We will call η the eta distribution
and (5.99) shows that πη = Pf 1

x .
Notice that HS : S → OM such that φ 7→ η ∗ φ is the classical Hilbert trans-

formation on S. The transformation η∗ is the one that phase shifts the positive
frequencies in φ by −π/2 and the negative frequencies by +π/2, while −η∗ shifts
the positive frequencies by +π/2 and the negative frequencies by −π/2 (for the
Fourier transformation defined by (3.18). For these reasons, we will call the con-

volution operator Hk , η(k)∗ : D′
Hk ⊂ D′ → D′ for k > 0 the generalized Hilbert

(multiplication) derivative of degree k (with D′
Hk the subset of D′ where Hk is

defined).
We have the distributional relation (for a simple proof see [10, Appendix]),

η(k) ∗ η(l) = −δ(k+l), (5.101)

which for k = l = 0 states the well-known anti-involution property of the distri-
butional Hilbert transformation H , H0. This makes η a generator of complex
structure in those associative distributional convolution algebras where H is de-
fined.

Further, as is shown in [9, eq. (14)], a general homogeneous distribution of degree
− (k + 1) is a linear combination of δ(k) and η(k).

All these facts place η on the same level of importance as δ and justify the
introduction of a proper name and symbol for this important distribution.
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5.5.2. Associated distributions. From (5.94) and (5.95) follows, ∀k,m ∈ N,⟨
η(k) lnm |x| , φ

⟩
=

1

π
(−1)kk!

∫ +∞

−∞

(
x−(k+1) lnm |x|

)
(Tk,0φ) (x)dx, (5.102)

⟨(
η(k) sgn

)
0
lnm |x| , φ

⟩
=

1

π
(−1)kk!

∫ +∞

−∞

(
x−(k+1) sgn(x) lnm |x|

)
(Tk,0φ) (x)dx. (5.103)

5.5.3. Generalized multiplication derivatives. From the definition (5.98) follows,
∀k, n ∈ N,

Dnη
(k)
±,0 = η

(k+n)
±,0 . (5.104)

Combining (5.67) with (5.85) and (5.66) with (5.87), respectively, gives the gen-
eralized multiplication derivatives, ∀k ∈ N,

D
(
η(k) lnm |x|

)
= η(k+1) lnm |x| − 1m>0

m

k + 1
η(k+1) lnm−1 |x| , (5.105)

and

D
((
η(k) sgn

)
0
lnm |x|

)
= −1m=0

2

π

δ(k+1)

k + 1

+
(
η(k+1) sgn

)
0

(
lnm |x| − 1m>0

m

k + 1
lnm−1 |x|

)
. (5.106)

These are new expressions.

5.5.4. Generalized convolution derivatives. Using (6.34), (5.49) and (5.98) we ob-
tain, ∀k, n ∈ N,

(−X)
n
η
(k)
±,0 = 1k<n

1

π
(∓1)n−kk!x

n−(k+1)
±

+1n≤k
k!

(k − n)!

(
− 1

π
(Hk −Hk−n) δ

(k−n) + η
(k−n)
±,0

)
.(5.107)

Combining (5.70) with (5.89) and (5.69) with (5.90), respectively, gives the gen-
eralized multiplication derivatives, ∀k,m, n ∈ N,

Xn
(
η(k) lnm |x|

)
=

(
1k<n

1

π
(−1)kk!xn−(k+1) + 1n≤k(−1)n

k!

(k − n)!
η(k−n)

)
lnm |x| ,

(5.108)
and

Xn
((
η(k) sgn

)
0
lnm |x|

)
=

(
1k<n

1
π (−1)kk!xn−(k+1) sgn

+1n≤k (−1)n k!
(k−n)!

(
η(k−n) sgn

)
0

)
lnm |x| .

(5.109)
These are also new expressions.
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5.5.5. Fourier transforms. From (5.72) and (5.92) follows, ∀k ∈ Z+ and ∀m ∈ N,

F
[
x−k lnm |x|

]
= (2π)

k
(−1)

m
m∑

p=0

(
m
p

)
lnm−p (2π)

(
ekD

p
kΦ

k
e − iokD

p
kΦ

k
o

)
. (5.110)

From (5.73) and (5.93) follows, ∀k ∈ Z+ and ∀m ∈ N,

F
[(
x−k sgn

)
0
lnm |x|

]
= − (−1)

m
2
lnm+1 (2π)

m+ 1

(−2πiχ)
k−1

(k − 1)!

+ (−1)
m
(2π)

k
m∑

p=0

(
m
p

)
lnm−p (2π)

(
ok
(
Dp

kΦ
k
e

)
0
− iek

(
Dp

kΦ
k
o

)
0

)
.(5.111)

This is a new result.
In particular for m = 0 and ∀k ∈ Z+, (5.110)–(5.111) become

F
[
x−k

]
= −iπ (−2πiχ)

k−1

(k − 1)!
sgn, (5.112)

F
[(
x−k sgn

)
0

]
= −2

(−2πiχ)
k−1

(k − 1)!
(ln (2π)− ψ(k) + ln |χ|) . (5.113)

From this immediately follows by (5.99) and (5.100), ∀k ∈ N, that

F
[
η(k)

]
= −i (2πiχ)k sgn, (5.114)

F
[(
η(k) sgn

)
0

]
= − 2

π
(2πiχ)

k
(ln (2π)− ψ(k + 1) + ln |χ|) . (5.115)

Herein is ψ(k + 1) = −γ +Hk, with γ the Euler-Mascheroni constant and Hk the
harmonic numbers.

Using (6.37), (5.114)–(5.115), (5.99) and (5.100) gives, ∀k ∈ N,

F
[
η
(k)
±,0

]
= − 1

π
(2πiχ)

k
(
(ln (2π) + γ) 1± i

π

2
sgn+ ln |χ|

)
. (5.116)

5.6. The sets H′−1
0 and H′0

0 . Linear combinations of the delta and eta distri-
butions and their Fourier transforms generate the following interesting subsets of
homogeneous distributions.

5.6.1. The set H′−1
0 . Define the subset of distributions

H′−1
0 ,

{
ω ∈ D′ : ω , pδ + qη, ∀p, q ∈ C

}
. (5.117)

The set H′−1
0 is a two-dimensional linear space of homogeneous distributions of

degree −1 over C. In addition, by the usual algebra axioms,
(
H′−1

0 ,+, ∗;C
)
becomes

an associative convolution algebra over C. Moreover,
(
H′−1

0 ,+, ∗;R
)
is also an

associative convolution algebra over R, isomorphic to the bicomplex numbers, [19].
The structure

(
H′−1

0 ,+, ∗
)
contains the following two proper, prime and principal

ideals: I−1
0,+ ,

{
1
2 (δ + iη) ∗ ω : ω ∈ H′−1

0

}
and I−1

0,− ,
{

1
2 (δ − iη) ∗ ω : ω ∈ H′−1

0

}
,

whose elements are zero divisors. Since
(
H′−1

0 ,+, ∗
)
is an associative and commu-

tative ring with identity δ and I−1
0,± are prime ideals,

(
H′−1

0 /I−1
0,±,+, ∗

)
are integral

domains.
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Define the map exp∗ : H′−1
0 → H′−1

0 such that ω 7→ exp∗(ω) with

exp∗(ω) ,
+∞∑
k=0

ω∗k

k!
,

= ep (cos(q)δ + sin(q)η) . (5.118)

Herein we used ω∗0 , δ, ω∗1 , ω, ω∗2 , ω ∗ ω, etc.. The relation (5.118) is the
distributional equivalent of Euler’s formula. We will call distributions of the form
exp∗(qη) = cos(q)δ+sin(q)η, distributional convolution phase factors with phase q.
In particular, we retrieve from (5.118) the distributional convolution equivalent of
Euler’s identity,

exp∗ (πη) + δ = 0. (5.119)

Further, ∀ωa, ωb ∈ H′−1
0 holds that

exp∗(ωa) ∗ exp∗(ωb) = exp∗(ωa + ωb), (5.120)

and in particular, ∀ω ∈ H′−1
0 ,

exp∗ (−ω) ∗ exp∗(+ω) = δ. (5.121)

5.6.2. The set H′0
0 . Define the subset of distributions

H′0
0 ,

{
ω ∈ D′ : ω , p1 + q (−i sgn) ,∀p, q ∈ C

}
. (5.122)

The Fourier transformation FH′ and its inverse F−1
H′ are homeomorphisms be-

tween H′0
0 and H′−1

0 , so
(
H′0

0 ,+, .
)
is isomorphic to

(
H′−1

0 ,+, ∗
)
. The structure(

H′0
0 ,+, .

)
contains the following two proper, prime and principal ideals: I00,+ ,{

1+.ω : ω ∈ H′0
0

}
and I00,− ,

{
1−.ω : ω ∈ H′0

0

}
, whose elements are zero divisors.

Since
(
H′0

0 ,+, .
)
is an associative and commutative ring with identity 1 and I00,±

are prime ideals,
(
H′0

0 /I
0
0,±,+, .

)
are integral domains.

Define the map exp· : H′0
0 → H′0

0 such that ω 7→ exp·(ω) with

exp·(ω) ,
+∞∑
k=0

ω·k

k!
,

= ep (cos(q)1 + sin(q) (−i sgn)) . (5.123)

Herein we used ω·0 , δ, ω·1 , ω, ω·2 , ω.ω, etc.. The relation (5.123) is another
distributional equivalent of Euler’s formula. We will call distributions of the form
exp·(qη) = cos(q)1+sin(q) (−i sgn), distributional multiplication phase factors with
phase q. In particular, we retrieve from (5.123) the distributional multiplication
equivalent of Euler’s identity,

exp· (−iπ sgn) + 1 = 0. (5.124)

Further, ∀ωa, ωb ∈ H′0
0 holds that

exp·(ωa). exp·(ωb) = exp·(ωa + ωb), (5.125)

and in particular, ∀ω ∈ H′0
0 ,

exp· (−ω) . exp· (+ω) = 1. (5.126)

5.7. The distributions ln(x± i0).
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5.7.1. Definition. Define ∀x ∈ R\ {0} the functions,

ln(x± i0) , lim
ε→0

ln(x± iε),

= ln |x| ± iπ1−. (5.127)

The function ln |x| : R\ {0} → R and the set of functions 1− (see (5.2)) are lo-
cally integrable in R, so the set of functions ln(x ± i0) generate a unique regular
distribution, of first order of association and degree 0, also denoted by ln(x± i0).

More generally, ∀m ∈ N and ∀x ∈ R\ {0}, the regular distribution lnm(x± i0) is
defined as the m-th power of ln(x± i0) and we can derive the useful distributional
identity,

lnm(x± i0) = 1+ lnm |x|+ 1−

m∑
p=0

(
m
p

)
(±iπ)p lnm−p |x| . (5.128)

For each m, the set of functions lnm(x± i0) define a unique regular distribution, of
m-th order of association and degree 0, also denoted by lnm(x± i0).

5.7.2. Generalized multiplication derivatives. The generalized multiplication deriva-
tives of the distributions ln(x± i0) are, ∀k ∈ Z+,

Dk ln(x± i0) = (−1)k−1(k − 1)!(x± i0)−k, (5.129)

with the distributions (x± i0)z defined in (5.135) below. Substituting (5.127) and
(5.139) in (5.129) yields

Dk ln |x| = +πη(k−1), (5.130)

Dk1− = −δ(k−1). (5.131)

5.7.3. Generalized convolution derivatives. The generalized convolution derivatives
of the distributions ln(x± i0) are, ∀k ∈ Z+,

Xk ln(x± i0) = xk. ln(x± i0) = xk ln |x| ± iπ (−1)
k
xk− = Dk(x± i0)k, (5.132)

wherein we used (5.155) below.

5.7.4. Fourier transforms. From (5.168) with z = 0, (6.12) and (6.18)–(6.19) we
find, ∀m ∈ N,

F [lnm(x± i0)]

= (−1)
m

(
m∑

p=0

(
m
p

)
(Log (∓2πi))

m−p cp+1 (0)

p+ 1

)
δ + 10<m (−1)

m
m

(
m−1∑
p=0

(
m−1
p

) p∑
q=0

(
p
q

)
(Log (∓2πi))

m−1−p cp−q+1 (0)

p− q + 1
lnq |x|

)
x−1
±,0,(5.133)

again a new result. In (5.133), Log (∓2πi) = ln (2π)∓iπ/2. In particular form = 1,

F [ln(x± i0)] = − (ln (2π) + γ ∓ iπ/2) δ − x−1
±,0. (5.134)

5.8. Complex kernels (x± i0)z.
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5.8.1. Definition. The distributions (x± i0)z ∈ D′ are defined by [15, p. 59],

(x± i0)z , xz+ + e±iπzxz−, (5.135)

= e±i(π/2)z (cos (πz/2) |x|z ∓ i sin (πz/2) (|x|z sgn)) , (5.136)

and supp((x± i0)z) = R. An equivalent form is

(x± i0)z = ez ln(x±i0). (5.137)

Proof. By Maclaurin’s series of the exponential and (5.127) holds

ez ln(x±i0) =
+∞∑
p=0

lnp(x± i0)
zp

p!
,

=
+∞∑
p=0

(1+ ln |x|+ 1− (ln |x| ± iπ))
p z

p

p!
.

By (5.5)–(5.6) and the associativity of the multiplication product of regular distri-
butions, we get

ez ln(x±i0) =

+∞∑
p=0

(1+. ln
p |x|+ 1−. (ln |x| ± iπ)

p
)
zp

p!
,

=

(
+∞∑
p=0

lnp |x| z
p

p!

)
.1+ +

(
+∞∑
p=0

(ln |x| ± iπ)
p z

p

p!

)
.1−,

= ez ln|x|.1+ + ez(ln|x|±iπ).1−.

First for −1 < Re(z) and (5.16) and thereafter by analytic continuation, we obtain

ez ln(x±i0) = xz+ + e±iπzxz−.

�
We have from (5.135),

(x± i0)k = xk,∀k ∈ N. (5.138)

Hence, the distributions (x ± i0)z are linearly independent ∀z ∈ C\N and linearly
dependent ∀z ∈ N.

At z = −k ∈ Z−, from (5.147) below follows

(x± i0)−k = ∓iπ (−1)k−1

(k − 1)!
δ(k−1) + x−k, (5.139)

= ∓iπ (−1)k−1

(k − 1)!

(
δ(k−1) ± iη(k−1)

)
. (5.140)

Herein is x−k given by (5.94) with m = 0 and η(k−1) by (5.99).
The expressions (5.139) for k = 1 are known as Sokhotskii-Plemelj equations,

[18, p. 28], and

Φ0
x±i0 , ∓ 1

2πi
(x± i0)−1 =

1

2
(δ ± iη) (5.141)

are called Heisenberg distributions (also denoted by δ±), [18, p. 27]. Obviously,
Φ0

x±i0 are the two extensions, complex analytic on R, of the delta distribution. A
distribution complex analytic on R, is the generalization of what in physics and
engineering is called an “analytic signal” (a particular complex function defined on
R with prescribed real part, which is the boundary value of a complex analytic
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function in the upper or lower half plane). Also, ±iΦ0
x±i0 are the two extensions,

complex analytic on R, of the eta distribution.

5.8.2. Associated distributions. From (5.38) and (5.37) we get the Laurent series of
xz± about the point z = −k ∈ Z−. Substitution of these series in (5.135) gives the
Taylor series about the point z = −k ∈ Z−,

⟨(x± i0)z, φ⟩

=

+∞∑
m=0

(
(±iπ)m+1

m+ 1

⟨
−(−1)k−1

(k − 1)!
δ(k−1), φ

⟩)
(z + k)

m

m!

+
+∞∑
m=0

∫ +∞

−∞

(
|x|−k

1+(x) ln
m |x|

+(−1)k
∑m

p=0

(
m
p

)
(±iπ)p |x|−k

1−(x) ln
m−p |x|

)

(Tk−1φ) (x)dx
(z + k)

m

m!
. (5.142)

The quantity in parentheses in the integrand of the integral in (5.142) becomes,
∀x ∈ R\ {0},

|x|−k
1+(x) ln

m |x|+ (−1)k
m∑

p=0

(
m
p

)
(±iπ)p |x|−k

1−(x) ln
m−p |x|

= x−k

(
sgn (x) 1+(x) ln

m |x| −
m∑

p=0

(
m
p

)
(±iπ)p sgn (x) 1−(x) lnm−p |x|

)
,

= x−k

(
1+(x) ln

m |x|+
m∑

p=0

(
m
p

)
(±iπ)p 1−(x) lnm−p |x|

)
. (5.143)

By (5.128), the expression in parentheses is just lnm(x± i0) so (5.142) simplifies to

⟨(x± i0)z, φ⟩

=
+∞∑
m=0

(±iπ)m+1

m+ 1

⟨
−(−1)k−1

(k − 1)!
δ(k−1), φ

⟩
(z + k)

m

m!

+
+∞∑
m=0

∫ +∞

−∞
x−k lnm(x± i0) (Tk−1,0φ) (x)dx

(z + k)
m

m!
. (5.144)

Define distributions x−k lnm(x± i0), ∀k ∈ Z+ and ∀m ∈ N, by⟨
x−k lnm(x± i0), φ

⟩
,
∫ +∞

−∞
x−k lnm(x± i0) (Tk−1,0φ) (x)dx. (5.145)

Substituting (5.143) in the integrand of (5.145) and identifying with (5.37) gives

x−k lnm(x± i0) = x−k
+,0 ln

m |x|+ (−1)k
m∑

p=0

(
m
p

)
(±iπ)p x−k

−,0 ln
m−p |x| . (5.146)

Now (5.144) yields the Taylor series of (x± i0)z about z = −k ∈ Z−,

(x± i0)z =
+∞∑
m=0

(
− (±iπ)m+1

m+ 1

(−1)k−1

(k − 1)!
δ(k−1) + x−k lnm(x± i0)

)
(z + k)

m

m!
.

(5.147)
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Expression (5.147) shows that z ∈ Z− are ordinary points, so the distributions
(x± i0)z are entire in z.

(i) At z = −k ∈ Z−, we can read off from (5.147) the associated distributions of
order m and degree −k,

(Dm
w (x± i0)w)w=−k = − (±iπ)m+1

m+ 1

(−1)k−1

(k − 1)!
δ(k−1) + x−k lnm(x± i0). (5.148)

Equation (5.148) is the generalization of the Sokhotskii-Plemelj equations for AHDs
of all orders of association and for all negative integer degrees and appears to be
new.

(ii) ∀z ∈ C\Z−, (5.135) gives

Dm
z (x± i0)z =

(
Dm

z x
z
+

)
+ e±iπz

m∑
p=0

(
m
p

)
(±iπ)p

(
Dm−p

z xz−
)
. (5.149)

By (5.31), Dm
z x

z
± = xz± lnm |x|, ∀z ∈ C\Z−, so that (5.149) can be written as

Dm
z (x± i0)z = xz+ lnm |x|+ e±iπz

m∑
p=0

(
m
p

)
(±iπ)p xz− lnm−p |x| . (5.150)

By the meaning given to the distributional multiplication product |x|z .1±, ∀z ∈
C\Z−, and by invoking (5.5)–(5.7), (5.150) is seen to be equivalent to

Dm
z (x± i0)z =

(
xz+ + e±iπzxz−

)
.

(
1+ lnm |x|+

m∑
p=0

(
m
p

)
(±iπ)p 1− lnm−p |x|

)
.

(5.151)
By (5.135) and (5.128), (5.151) reduces to

Dm
z (x± i0)z = (x± i0)z. lnm(x± i0), (5.152)

which also serves as the equation that gives meaning to the distributional multipli-
cation (x ± i0)z. lnm(x ± i0) and which will be denoted by (x ± i0)z lnm(x ± i0),
∀z ∈ C\Z−. Expression (5.152) now makes it legitimate to write, ∀z ∈ C\Z−,

Dm
z (x± i0)z = Dm

z e
z ln(x±i0) = (x± i0)z lnm(x± i0). (5.153)

The distributions Dm
z (x± i0)z, ∀z ∈ C and ∀m ∈ N, are AHDs of order m, which

are entire in their degree z.
In particular at z = k ∈ N,

Dm
k (x± i0)k = xk lnm(x± i0). (5.154)

with xk lnm(x± i0) , (x± i0)k. lnm(x± i0). This result can be expressed in terms
of the generalized convolution derivative as

Dm
k (x± i0)k = Xk lnm(x± i0). (5.155)

The multiplication product (x ± i0)−k. lnm(x ± i0) is defined using (4.19). At
z = −k ∈ Z−, and in view of the result [13, eq. (24)], eqs. (5.148) and (5.139)
show that, ∀k,m ∈ Z+,

(Dm
w (x± i0)w)w=−k ̸= (x± i0)−k. lnm(x± i0). (5.156)

For this reason, we will not denote (Dm
w (x± i0)w)w=−k by (x ± i0)−k lnm(x ± i0)

(as is done in [15, p. 98]), since the latter notation is prone to interpretational
error.
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Interesting linear combinations of these AHDs are,

Dm+1
z (x+ i0)z −Dm+1

z (x− i0)z

=

m+1∑
p=0

(
m+1
p

) (
(+iπ)

p
e+iπz − (−iπ)p e−iπz

)
xz− lnm+1−p |x| , (5.157)

and

Dm+1
z (x+ i0)z +Dm+1

z (x− i0)z

= 2
(
xz+ lnm+1 |x|

)
+

m+1∑
p=0

(
m+1
p

) (
(+iπ)

p
e+iπz + (−iπ)p e−iπz

)
xz− lnm+1−p |x| . (5.158)

Notice that for ∀z ∈ N, (5.157) reduces to an AHDs of order m.

5.8.3. Generalized multiplication derivatives. From (5.135) and (5.42) follows, ∀n ∈
Z+,

Dn(x± i0)z = z(n)(x± i0)z−n. (5.159)

From the commutativity of D and Dz follows immediately

Dn (Dm
z (x± i0)z) = (x± i0)z−n

m∑
p=0

(
m
p

) (
Dm−p

z z(n)
)
lnp(x± i0). (5.160)

By analytic continuation, (5.159) holds ∀z ∈ C and (5.160), with its right-hand side
given in the form of a multiplication product of distributions, holds ∀z ∈ C\Z−.

At z = −k ∈ C\Z−, (5.148) yields

Dn
(
(Dm

w (x± i0)w)w=−k

)
= − (±iπ)m+1

m+ 1

(−1)k−1

(k − 1)!
δ(k−1+n)+Dn

(
x−k lnm(x± i0)

)
.

(5.161)
The last term in (5.161) can be worked out further using (5.146) and (5.46).

5.8.4. Generalized convolution derivatives. From (5.135) and (5.48) follows, ∀n ∈
Z+ and ∀m ∈ N,

Xn ((x± i0)z lnm(x± i0)) = (x± i0)z+n lnm(x± i0). (5.162)

By analytic continuation, (5.162) holds ∀z ∈ C\Z−.
At z = −k ∈ C\Z−, (5.148) yields

Xn
(
(Dm

w (x± i0)w)w=−k

)
= − (±iπ)m+1

m+ 1
1n≤k−1

(−1)k−1−nδ(k−1−n)

(k − 1− n)!
+Xn

(
x−k lnm(x± i0)

)
,(5.163)

wherein we used (6.34). The last term in (5.163) can be worked out further using
(5.146) and (5.49).



42 G. FRANSSENS

5.8.5. Fourier transforms. Inverting the result (6.36) below, gives for the Fourier
transform of the distributions (x± i0)z−1, ∀z ∈ C,

F [(x± i0)z] = (2π)
−z
e∓i(π/2)(−z)Φ−z

± . (5.164)

In particular for z = k ∈ N,

F
[
xk
]
= (−2πi)

−k
δ(k). (5.165)

In terms of the distributions (χ± i0)−(z+1), (5.164) becomes

F [(x+ i0)z] =
(2π)

−z

Γ(−z)
e−i(π/2)(−z) 1

2

(
(χ+ i0)−(z+1)

+(χ− i0)−(z+1)

)
, (5.166)

F [(x− i0)z] =
−i

sin (πz)

(2π)
−z

Γ(−z)
e+i(π/2)(−z) 1

2

(
(χ+ i0)−(z+1)

−(χ− i0)−(z+1)

)
.(5.167)

More generally, we obtain by (4.18), ∀z ∈ C and ∀m ∈ Z+,

F [Dm
z (x± i0)z] = (−1)

m
(2π)

−z
e∓i(π/2)(−z)

m∑
p=0

(
m
p

)
(Log (∓2πi))

m−p (
Dp

wΦ
w
±
)
w=−z

.

(5.168)
In (5.168), Log (∓2πi) = ln (2π)∓ iπ/2.

We will call (x± i0)z homogeneous complex kernels and Dm
z (x± i0)z, ∀m ∈ Z+,

associated homogeneous complex kernels. The distributions Dm
z (x± i0)z are useful

to study complex analytic extensions of AHDs based on the real axis, to functions
on the complex plane.

6. Normalized associated homogeneous distributions

In addition to the basic AHDs considered in the previous section, one introduces
normalizations of some of these distributions to make them entire in their degree
and/or to give them another convenient property.

6.1. Normalized half-line kernels Φz
±.

6.1.1. Definition. Let Γ denote the gamma function and ψ , (dΓ) /Γ the digamma
function, [1, p. 258, 6.3.1]. The normalized distributions Φz

± ∈ D′, defined by (e.g.,
[23, vol I, p. 43] or [15, p. 115])

Φz
± , xz−1

±
Γ(z)

, (6.1)

are entire functions of z. Notice that Φz
± are homogeneous distributions of degree

z − 1.
They take the special values, ∀k, l ∈ N,

Φ−k
± = (±1)kδ(k) = (±δ(1))∗k, (6.2)

Φl+1
± =

xl±
l!

= (1±)
∗(l+1). (6.3)

Herein is f∗0 , δ, f∗1 , f , f∗2 , f ∗ f , etc.. The distributions Φz+1
± are lin-

early independent ∀z ∈ C\Z− and linearly dependent ∀z ∈ Z−. The distributions

(±1)kΦ−k
± are the convolution kernels for the generalized derivative operators of de-

gree k ∈ N, Dk : D′ → D′ such that f 7→ Dkf = (±1)kΦ−k
± ∗ f . Also, the distribu-

tions Φk
± are the convolution kernels for the generalized primitive operators of degree
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k ∈ Z+, I
k
−∞ : D′

R → D′ and Ik+∞ : D′
L → D′ such that f 7→ Ik∓∞f = (±1)kΦk

± ∗ f .
In particular we find that, e.g., with φ ∈ D,(

Ik∓∞φ
)
(x) =

∫ x

∓∞

(x− χ)
k−1

(k − 1)!
φ (χ) dχ, (6.4)

which shows that Ik∓∞ are just the classical Riemann-Liouville operators for k-times
iterated integration (from ∓∞, respectively). We will call I−∞ (integrating from
−∞ to x) a “forward primitive” operator and I+∞ (integrating from +∞ to x) a
“backward primitive” operator.

At z = l + 1, ∀l ∈ N, the distributions Φz
± are related to the even and odd

distributions, introduced in the previous section, by the convenient relations,

Φl+1
+ − (−1)l+1Φl+1

− =
xl

l!
, (6.5)

Φl+1
+ + (−1)l+1Φl+1

− =
xl sgn

l!
. (6.6)

The Φz
± satisfy the following well-known properties, [15, p. 116],

Φa
± ∗ Φb

± = Φa+b
± , ∀a, b ∈ C, (6.7)

which implies in particular, ∀z ∈ C and ∀k ∈ N,

(±D)kΦz
± = Φz−k

± , (6.8)

(±I∓)kΦz
± = Φz+k

± . (6.9)

The homogeneous normalized half-line kernels Φz
± are fundamental for distribution-

ally defining complex degree Riemann-Liouville (so called “fractional”) integration
over half-lines, [23, vol II, p.30], [22, p. 145].

Further, it is a direct consequence of (3.42) that the convolution operators Φz
±∗

are mutual adjoints. More precisely, ∀fL ∈ D′
L, ∀fR ∈ D′

R, ∀z ∈ C and ∀φ ∈ D,
holds ⟨

Φz
+ ∗ fR, φ

⟩
=

⟨
fR, λRL

(
Φz

− ∗ φ
)⟩
, (6.10)⟨

Φz
− ∗ fL, φ

⟩
=

⟨
fL, λLR

(
Φz

+ ∗ φ
)⟩
. (6.11)

Note that Φz
−∗φ ∈ DL (Φz

+∗φ ∈ DR), hence supp (fR)∩supp
(
Φz

− ∗ φ
)
(supp (fL)∩

supp
(
Φz

+ ∗ φ
)
) is finite. This makes it possible, to place in the right-hand side of

(6.10) ((6.11)) any λRL ∈ D (λLR ∈ D) that equals 1 over supp (fR)∩supp
(
Φz

− ∗ φ
)

(supp (fL) ∩ supp
(
Φz

+ ∗ φ
)
), without changing the numerical value of both func-

tionals. The test function λRL (λLR) in (6.10) ((6.11)) is necessary in order to
have λRL

(
Φz

− ∗ φ
)
∈ D (λLR

(
Φz

+ ∗ φ
)
∈ D), as required by the fact that fR ∈ D′

(fL ∈ D′).

6.1.2. Associated distributions. (i) The coefficients of the Taylor series of Φz
± about

z = −k, denoted
(
Dm

z Φz
±
)
z=−k

, are obtained from the Laurent series of xz−1
± (5.38)

and the Taylor series of 1/Γ about z = −k. The result is, ∀m ∈ Z+ and ∀k ∈ N,

(
Dm

wΦw
±
)
w=−k

=
(∓1)k

k!

cm+1 (−k)
m+ 1

δ(k) +
m−1∑
p=0

(
m
p

)
cm−p (−k) x−(k+1)

±,0 lnp |x| .

(6.12)
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The functions cq are defined by

cq (z) , (dq (1/Γ)) (z) , (6.13)

=
(−1)

q

2πi

∫
C

(
(−t)−z

lnq (−t)
)
e−td (−t) , (6.14)

and the contour C is as in [27, p. 245]. At integer values holds, ∀k ∈ N,

cq (−k) =
1

π
(−1)kk! (−1)

q
Im

(
lim

u→k+1
(Du + ψ(u)− iπ)

q
1

)
, (6.15)

cq (k + 1) =
1

k!
lim

u→k+1
(Du − ψ(u))

q
1. (6.16)

Some convenient expressions for the constants cq are

c0 (−k) = 0 and c0 (k + 1) =
1

k!
, (6.17)

c1 (−k) = (−1)kk! and c1 (k + 1) = − 1

k!
ψ (k + 1) , (6.18)

c2 (−k) = −2(−1)kk!ψ(k + 1) and c2 (k + 1) =
1

k!

(
ψ2 (k + 1)
−ψ′ (k + 1)

)
.(6.19)

Interesting linear combinations are, ∀m ∈ Z+ and ∀k ∈ N,

(
Dm

wΦw
+

)
w=−k

−(−1)k
(
Dm

wΦw
−
)
w=−k

=
m−1∑
p=0

(
m
p

)
cm−p (−k) x−(k+1) lnp |x| , (6.20)

(
Dm

wΦw
+

)
w=−k

+ (−1)k
(
Dm

wΦw
−
)
w=−k

= 2
(−1)k

k!

cm+1 (−k)
m+ 1

δ(k) +
m−1∑
p=0

(
m
p

)
cm−p (−k)

(
x−(k+1) sgn

)
0
lnp |x| .(6.21)

(ii) The distributions Dm
z Φz

±, are given by, ∀m ∈ N and ∀z ∈ C\ (−N),

Dm
z Φz

± =

m∑
p=0

(
m
p

)
cm−p (z) x

z−1
± lnp |x| . (6.22)

Special linear combinations for z = k ∈ Z+ are

Dm
k Φk

+ − (−1)kDm
k Φk

− =
m∑

p=0

(
m
p

)
cm−p (k) x

k−1 lnp |x| , (6.23)

Dm
k Φk

+ + (−1)kDm
k Φk

− =
m∑

p=0

(
m
p

)
cm−p (k) x

k−1 sgn lnp |x| . (6.24)

The distributions Dm
z Φz

±, ∀m ∈ Z+ and ∀z ∈ C, are entire functions of z, AHDs
of order m and degree z − 1, and, since Dm

z Φz
+ and Dm

z Φz
− have different support,

are linearly independent. Notice that (6.20) are AHDs of order m− 1, while (6.21)
are of order m.
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In particular for m = 1, and using c1 (−k) = (−1)kk! and c2 (−k) = −2(−1)kk!
ψ(k + 1), we get from (6.12),(

DwΦ
w
±
)
w=−k

= (±1)k
(
γδ(k) + πη

(k)
±,0

)
, (6.25)(

DwΦ
w
+

)
w=−k

− (−1)k
(
DwΦ

w
−
)
w=−k

= πη(k), (6.26)(
DwΦ

w
+

)
w=−k

+ (−1)k
(
DwΦ

w
−
)
w=−k

= −2ψ(k + 1)δ(k) + π
(
η(k) sgn

)
0
,(6.27)

(γ = Hk − ψ(k + 1) is the Euler-Mascheroni constant) and from (6.22), ∀l ∈ N,(
DwΦ

w
±
)
w=l+1

=
xl±
l!

(ln |x| − ψ (l + 1)) , (6.28)(
DwΦ

w
+

)
w=l+1

− (−1)l+1
(
DwΦ

w
−
)
w=l+1

=
xl

l!
(ln |x| − ψ (l + 1)) , (6.29)(

DwΦ
w
+

)
w=l+1

+ (−1)l+1
(
DwΦ

w
−
)
w=l+1

=
xl sgn

l!
(ln |x| − ψ (l + 1)) .(6.30)

Another interesting combination is(
D2

wΦ
w
+

)
w=−k

− (−1)k
(
D2

wΦ
w
−
)
w=−k

= 2πη(k) (ln |x| − ψ(k + 1)) . (6.31)

6.1.3. Generalized multiplication derivatives. We have, ∀k,m ∈ N and ∀z ∈ C,
(±D)k

(
Dm

z Φz
±
)
= Dm

z

(
(±D)kΦz

±
)
= Dm

z−kΦ
z−k
± . (6.32)

6.1.4. Generalized convolution derivatives. We have, ∀k ∈ N and for 0 < Re (z),

(±X)
k
Φz

± = z(k)Φz+k
± , (6.33)

with z(k) given by (2.4). By analytic continuation, (6.33) holds ∀z ∈ C. In partic-
ular for z = −l ∈ −N, we retrieve a well-known formula,

(−X)
k δ

(l)

l!
= 1k≤l

δ(l−k)

(l − k)!
. (6.34)

Also, ∀k,m ∈ N and ∀z ∈ C,

(±X)
k (
Dm

z Φz
±
)
= Dm

z

(
(±X)

k
Φz

±

)
= Dm

z

(
z(k)Φz+k

±

)
. (6.35)

6.1.5. Fourier transforms. The Fourier transform of the distributions Φz
± was de-

rived in [15, p. 172] and reads for our sign choice in (3.24), ∀z ∈ C,

F
[
Φz

±
]
= e±i(π/2)(−z) ((2πχ)∓ i0)

−z
. (6.36)

In particular, ∀k ∈ N,
F
[
δ(k)

]
= (2πiχ)

k
. (6.37)

In terms of the distributions Φz
± themselves we get

F
[
Φz

±
]
= (2π)

−z
Γ(1− z)

(
e∓i(π/2)zΦ1−z

+ + e±i(π/2)zΦ1−z
−

)
. (6.38)

More generally, ∀z ∈ C and ∀m ∈ Z+, we obtain from (6.36) and by the com-
mutativity of the F and Dz operators,

F
[
Dm

z Φz
±
]
= (−1)

m
e±i(π/2)(−z)

m∑
p=0

(
m
p

)
(±i(π/2))m−p

(Dp
w ((2πχ)∓ i0)

w
)w=−z .

(6.39)
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We will call the Φz
± homogeneous normalized half-line kernels and the Dm

z Φz
±,

∀m ∈ Z+, associated homogeneous normalized half-line kernels. The distributions
Dm

z Φz
± are convenient to easily calculate generalized derivatives and primitives of

AHDs.

6.2. Normalized parity kernels of the first kind Φz
e,o.

6.2.1. Definition. We will need the even and odd distributions

Φz
e , 1

2

Φz
+ +Φz

−
cos ((π/2)z)

, (6.40)

Φz
o , 1

2

Φz
+ − Φz

−
sin ((π/2)z)

. (6.41)

By construction, supp(Φz
e) = supp(Φz

o) = R.
Using the Taylor series (2.10)–(2.11), we obtain the following series expansions

of Φz
e,o about z = k ∈ Z+,

Φz
e =

ok(−1)(k+1)/2 1
π

xk−1

(k−1)!

z − k
+

+∞∑
m=0

(iπ/2)m

m! ek(−1)k/2Em

(
Dk

iπ/2

)
1
2

(
Φk

+ +Φk
−
)

+iok(−1)(k+1)/2Bm+1

(
Dk

iπ/2

)
1
2

(
Φk

+ +Φk
−
)
 (z − k)m, (6.42)

Φz
o =

ek(−1)k/2 1
π

xk−1

(k−1)!

z − k
+

+∞∑
m=0

(iπ/2)m

m! ok(−1)(k−1)/2Em

(
Dk

iπ/2

)
1
2

(
Φk

+ − Φk
−
)

+iek(−1)k/2Bm+1

(
Dk

iπ/2

)
1
2

(
Φk

+ − Φk
−
)
 (z − k)m. (6.43)

The Taylor series of Φz
e,o about z = −k ∈ −N are obtained as

Φz
e =

+∞∑
m=0

(iπ/2)
m

m! ek (−1)
k
2

(
Em

(
Dz

iπ/2

)
1
2

(
Φz

+ +Φz
−
))

z=−k

+iok (−1)
k−1
2

(
Bm+1

(
Dz

iπ/2

)
1
2

(
Φz

+ +Φz
−
))

z=−k

 (z + k)
m
,(6.44)

Φz
o =

+∞∑
m=0

(iπ/2)
m

m! ok (−1)
k+1
2

(
Em

(
Dz

iπ/2

)
1
2

(
Φz

+ − Φz
−
))

z=−k

+iek (−1)
k
2

(
Bm+1

(
Dz

iπ/2

)
1
2

(
Φz

+ − Φz
−
))

z=−k

 (z + k)
m
. (6.45)

(i) We see that Φz
e is complex analytic ∀z ∈ C, except for simple poles at z =

2p+ 1 ∈ Zo,+, with residues(
Φ2p+1

e

)
−1

=
(−1)p+1

π

x2p

(2p)!
. (6.46)
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The analytic finite part at a pole is(
Φ2p+1

e

)
0

=
(−1)p+1

π

((
DzΦ

z
+

)
z=2p+1

+
(
DzΦ

z
−
)
z=2p+1

)
, (6.47)

=
(−1)p+1

π

x2p

(2p)!
(ln |x| − ψ(2p+ 1)) . (6.48)

At the ordinary points z = 2p+ 2 ∈ Ze,+, is

Φ2p+2
e =

(−1)p+1

2

x2p+1 sgn

(2p+ 1)!
. (6.49)

In addition, Φz
e has removable singularities at z ∈ Zo,−. Using (6.2), (5.58), (5.99)

and the properties of the gamma function, we get for Φz
e at z = −k ∈ −N,

Φ−k
e = ek(−1)k/2δ(k) + ok(−1)(k−1)/2η(k). (6.50)

(ii) Also, Φz
o is complex analytic ∀z ∈ C, except for simple poles at z = 2p + 2,

∀p ∈ N, with residues (
Φ2p+2

o

)
−1

=
(−1)p+1

π

x2p+1

(2p+ 1)!
. (6.51)

The analytic finite part at a pole is(
Φ2p+2

o

)
0

=
(−1)p+1

π

((
DzΦ

z
+

)
z=2p+2

−
(
DzΦ

z
−
)
z=2p+2

)
, (6.52)

=
(−1)p+1

π

x2p+1

(2p+ 1)!
(ln |x| − ψ(2p+ 2)) . (6.53)

At the ordinary points z = 2p+ 1, ∀p ∈ N, is

Φ2p+1
o = − (−1)p+1

2

x2p sgn

(2p)!
. (6.54)

In addition, Φz
o has removable singularities at z ∈ Ze,−]. Using (6.2), (5.77), (5.99)

and the properties of the gamma function, we get for Φz
o at z = −k ∈ −N,

Φ−k
o = −ok(−1)(k−1)/2δ(k) + ek(−1)k/2η(k). (6.55)

The distributions Φz
e and Φz

o are known in fractional calculus theory as the
kernels of the convolution operators that generate the Riesz potential Φz

e ∗ φ and
conjugate Riesz potential Φz

o ∗ φ, of a function φ ∈ D, [22, p. 214]. Hence, the
Riesz potential and conjugate Riesz potential are just regularizations, in the sense
of [28, p. 132], of the distributions Φz

e and Φz
o, respectively.

6.2.2. Associated distributions. At z ∈ C\Z and ∀m ∈ Z+, we obtain from (6.106)
the associated distributions

Dm
z Φz

e = Dm
z

1

2

Φz
+ +Φz

−
cos ((π/2)z)

, z ∈ C\Zo,+, (6.56)

Dm
z Φz

o = Dm
z

1

2

Φz
+ − Φz

−
sin ((π/2)z)

, z ∈ C\Ze,+. (6.57)
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From (6.42)–(6.43) we can read off, ∀m, p ∈ N,(
(Dm

wΦw
e )w=2p+1

)
0

= (−1)p+1(iπ/2)mi

(
Bm+1

(
Dw

iπ/2

)
1

2

(
Φw

+ +Φw
−
))

w=2p+1

,(6.58)

(Dm
wΦw

o )w=2p+1 = (−1)
p
(iπ/2)m

(
Em

(
Dw

iπ/2

)
1

2

(
Φw

+ − Φw
−
))

w=2p+1

,(6.59)

and

(Dm
wΦw

e )w=2p+2 = (−1)
p+1

(iπ/2)m
(
Em

(
Dw

iπ/2

)
1

2

(
Φw

+ +Φw
−
))

w=2p+2

,(6.60)

(
(Dm

wΦw
o )w=2p+2

)
0

= (−1)p+1(iπ/2)mi

(
Bm+1

(
Dw

iπ/2

)
1

2

(
Φw

+ − Φw
−
))

w=2p+2

.(6.61)

Herein are
(
(Dm

wΦw
e )w=2p+1

)
0
and

(
(Dm

wΦw
o )w=2p+2

)
0
the analytic finite parts of

Dm
z Φz

e and Dm
z Φz

o at their respectively poles. Also from (6.44)–(6.45), we have at
z = −k ∈ −N,

(Dm
wΦw

e )w=−k

= (iπ/2)
m

 ek (−1)
k/2
(
Em

(
Dw

iπ/2

)
1
2

(
Φw

+ +Φw
−
))

w=−k

+iok (−1)
(k−1)/2

(
Bm+1

(
Dw

iπ/2

)
) 12
(
Φw

+ +Φw
−
))

w=−k

 ,(6.62)

(Dm
wΦw

o )w=−k

= (iπ/2)
m

 ok (−1)
(k+1)/2

(
Em

(
Dw

iπ/2

)
1
2

(
Φw

+ − Φw
−
))

w=−k

+iek (−1)
k/2
(
Bm+1

(
Dw

iπ/2

)
1
2

(
Φw

+ − Φw
−
))

w=−k

 . (6.63)

Expressions (6.58)–(6.63) are new.
The distributions Dm

z Φz
e,o (or where they are not defined,

(
Dm

z Φz
e,o

)
0
) are, ∀m ∈

N and ∀z ∈ C, linearly independent, of degree z − 1 and associated of order m
(m+ 1).

6.2.3. Generalized multiplication derivatives. From (6.40)–(6.41) and (6.8) follows,
∀k ∈ N and ∀z ∈ C\Z+,

DkΦz
e = ek(−1)k/2Φz−k

e − ok(−1)(k−1)/2Φz−k
o , (6.64)

DkΦz
o = ek(−1)k/2Φz−k

o + ok(−1)(k−1)/2Φz−k
e . (6.65)

Then, by the commutativity of the Dk and Dm
z operators, we get

Dk (Dm
z Φz

e) = ek(−1)k/2 (Dm
wΦw

e )w=z−k − ok(−1)(k−1)/2 (Dm
wΦw

o )w=z−k ,(6.66)

Dk (Dm
z Φz

o) = ek(−1)k/2 (Dm
wΦw

o )w=z−k + ok(−1)(k−1)/2 (Dm
wΦw

e )w=z−k .(6.67)

Further, from (6.32), (6.8) and (6.58)–(6.63) follows, ∀m,n, p ∈ N,

Dn
(
(Dm

wΦw
e )w=2p+1

)
0

= (−1)p+1(iπ/2)mi

(
Bm+1

(
Dw

iπ/2

)
1

2

(
Φw

+ + (−1)
n
Φw

−
))

w=2p+1−n

,(6.68)



ASSOCIATED HOMOGENEOUS DISTRIBUTIONS 49

Dn
(
(Dm

wΦw
0 )w=2p+1

)
= (−1)

p
(iπ/2)m

(
Em

(
Dw

iπ/2

)
1

2

(
Φw

+ − (−1)
n
Φw

−
))

w=2p+1−n

, (6.69)

Dn
(
(Dm

wΦw
e )w=2p+2

)
= (−1)

p+1
(iπ/2)m

(
Em

(
Dw

iπ/2

)
1

2

(
Φw

+ + (−1)
n
Φw

−
))

w=2p+2−n

, (6.70)

Dn
(
(Dm

wΦw
o )w=2p+2

)
0

= (−1)p+1(iπ/2)mi

(
Bm+1

(
Dw

iπ/2

)
1

2

(
Φw

+ − (−1)
n
Φw

−
))

w=2p+2−n

,(6.71)

and, ∀m,n, k ∈ N,

Dn
(
(Dm

wΦw
e )w=−k

)
= (iπ/2)m

 ek(−1)k/2Em

(
Dw

iπ/2

)
+iok(−1)(k−1)/2Bm+1

(
Dw

iπ/2

)  1

2

(
Φw

+ + (−1)
n
Φw

−
)
w=−(k+n)

,(6.72)

Dn
(
(Dm

wΦw
o )w=−k

)
= (iπ/2)m

 ok(−1)(k+1)/2Em

(
Dw

iπ/2

)
+iek(−1)k/2Bm+1

(
Dw

iπ/2

)  1

2

(
Φw

+ − (−1)
n
Φw

−
)
w=−(k+n)

.(6.73)

These are new results.

6.2.4. Generalized convolution derivatives. Combining (6.40)–(6.41) with (6.33) gives,
∀k,m ∈ N and ∀z ∈ C\Z+,

Xk (Dm
z Φz

e) = Dm
z

(
z(k)

(
ek (−1)

k/2
Φz+k

e + ok (−1)
(k−1)/2

Φz+k
o

))
, (6.74)

Xk (Dm
z Φz

o) = Dm
z

(
z(k)

(
−ok (−1)

(k−1)/2
Φz+k

e + ek (−1)
k/2

Φz+k
o

))
.(6.75)

From (6.58)–(6.61) and (6.35) together with (2.20)–(2.21), (6.46), (6.51) and
(6.58)–(6.61) we get, ∀k,m, p ∈ N,

X
(
(Dm

wΦw
e )w=2p+1

)
0

= 1m=0

(
Φ2p+2

o

)
−1

+ (2p+ 1)
(
(Dm

wΦw
o )w=2p+2

)
0

+10<mm
((
Dm−1

w Φw
o

)
w=2p+2

)
0
, (6.76)

X (Dm
wΦw

o )w=2p+1

= − (2p+ 1) (Dm
wΦw

e )w=2p+2 − 10<mm
(
Dm−1

w Φw
e

)
w=2p+2

; (6.77)

and

X (Dm
wΦw

e )w=2p+2

= (2p+ 2) (Dm
wΦw

o )w=2p+3 + 10<mm
(
Dm−1

w Φw
o

)
w=2p+3

, (6.78)
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X
(
(Dm

wΦw
o )w=2p+2

)
0

= −1m=0

(
Φ2p+3

e

)
−1

− (2p+ 2)
(
(Dm

wΦw
e )w=2p+3

)
0

−10<mm
((
Dm−1

w Φw
e

)
w=2p+3

)
0
. (6.79)

6.2.5. Fourier transforms. We easily obtain from (6.101)–(6.102),

F [Φz
e] = |2πχ|−z

,∀z ∈ C\Zo,+, (6.80)

F [Φz
o] = −i |2πχ|−z

sgn,∀z ∈ C\Ze,+. (6.81)

More generally, we obtain from (6.80)–(6.81) and by the commutativity of the F
and Dz operators, ∀m ∈ Z+,

(i) ∀z ∈ C\Zo,+,

F [Dm
z Φz

e] = Dm
z |2πχ|−z

= (−1)
m
(2π)

−z
m∑

p=0

(
m
p

)
lnm−p (2π) (Dp

w |χ|w)w=−z ,

(6.82)
(ii) ∀z ∈ C\Ze,+,

F [Dm
z Φz

o] = −iDm
z

(
|2πχ|−z

sgn
)

= − (−1)
m
i (2π)

−z
m∑

p=0

(
m
p

)
lnm−p (2π) (Dp

w |χ|w sgn)w=−z .(6.83)

From (6.119) and (6.106) follows, ∀m ∈ N,

F
[(
Dm

k Φk
e

)
0

]
= (−1)

m

 (
(2πχ)

−k
sgn
)
0
lnm |2πχ|

+2 lnm+1(2π)
m+1

(2π)−kδ(k−1)

(k−1)!

 ,∀k ∈ Zo,+, (6.84)

and

F
[(
Dm

k Φk
o

)
0

]
= − (−1)

m
i

 (
(2πχ)

−k
sgn
)
0
lnm |2πχ|

−2 lnm+1(2π)
m+1

(2π)−kδ(k−1)

(k−1)!

 ,∀k ∈ Ze,+. (6.85)

Expressions (6.84)–(6.85) are new.
We will call the Φz

e,o homogeneous normalized parity kernels (of the first kind)
and the Dm

z Φz
e,o, ∀m ∈ Z+, associated homogeneous normalized parity kernels (of

the first kind). The distributions Dm
z Φz

e,o play a fundamental role in the construc-
tion of a convolution algebra of AHDs, [12].

6.3. Normalized parity kernels of the second kind Φz
e,o.

6.3.1. Definition. The normalized distributions defined by

Φz
e , πz/2 |x|z−1

Γ(z/2)
, (6.86)

Φz
o , πz/2 |x|z−1

sgn

Γ((z + 1)/2)
, (6.87)

are entire functions of z. They take the special values:
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(i) at z ∈ −N, ∀p ∈ N,

Φ−k
e =

{
π−p−1/2 x−(2p+2)

Γ(−p−1/2) if k = 2p+ 1,
(−1)p

πp
p!

(2p)!δ
(2p) if k = 2p,

(6.88)

Φ−k
o = π−1/2

{
− (−1)p

πp
p!

(2p+1)!δ
(2p+1) if k = 2p+ 1,

π−p+1/2 x−(2p+1)

Γ(−p+1/2) if k = 2p,
(6.89)

(ii) at z = k ∈ Z+, ∀p ∈ N,

Φk
e =

{
22pπpp! x2p

(2p)! if k = 2p+ 1,

πp+1 x2p+1 sgn
p! if k = 2p+ 2,

(6.90)

Φk
o = π+1/2

{
πp x2p sgn

p! if k = 2p+ 1,

22p+1πpp! x2p+1

(2p+1)! if k = 2p+ 2,
(6.91)

Notice that Φz
e,o are homogeneous distributions of degree z − 1 and are linearly

independent ∀z ∈ C.

6.3.2. Associated distributions. The distributions Dm
z Φz

e,o are, ∀m ∈ Z+ and ∀z ∈
C, AHDs of order m, linearly independent and entire in their degree z − 1.

The coefficients of the Taylor series of Φz
e,o about z = −k, ∀k ∈ N, denoted

(Dm
wΦw

e )w=−k ((Dm
wΦw

o )w=−k), are obtainable from the Laurent series (5.38) of

|x|z−1
(|x|z−1

sgn) and the Taylor series of πz/2/Γ (z/2) (πz/2/Γ((z + 1)/2)) about
z = −k. The coefficients of the Taylor series of Φz

e,o about z = k, ∀k ∈ Z+,

denoted Dm
k Φk

e (Dm
k Φk

o), are obtainable from the Taylor series coefficients (5.31) of

|x|z−1
(|x|z−1

sgn) and the Taylor series of πz/2/Γ (z/2) (πz/2/Γ((z + 1)/2)) about
z = k. We will not need their explicit expressions.

6.3.3. Generalized multiplication derivatives. From (6.86)–(6.87), (5.65), (5.84) and
the duplication formula for the gamma function follows, ∀k ∈ N and ∀z ∈ C,

DkΦz
e = 2kπk/2

(
ek ((z − 1)/2)(k/2) Φ

z−k
e

+ok ((z − k) /2) ((z − 1)/2)((k−1)/2) Φ
z−k
o

)
, (6.92)

DkΦz
o = 2kπk/2

(
ek (z/2− 1)(k/2) Φ

z−k
o

+ok(z/2− 1)((k−1)/2)Φ
z−k
e

)
. (6.93)

Also, ∀m ∈ N and ∀z ∈ C,

D (Dm
z Φz

e) = Dm
z (DΦz

e ) = π1/2 (z − 1)Dm
z Φz−1

o +mπ1/2Dm−1
z Φz−1

o ,(6.94)

D (Dm
z Φz

o) = Dm
z (DΦz

o) = 2π1/2Dm
z Φz−1

e . (6.95)

6.3.4. Generalized convolution derivatives. Combining (6.86)–(6.87) with (5.68) and
(5.88) gives, ∀k ∈ N and ∀z ∈ C,

XkΦz
e = π−k/2

(
ek (z/2)

(k/2)
Φz+k

e + ok (z/2)
((k+1)/2)

Φz+k
o

)
, (6.96)

XkΦz
o = π−k/2

(
ek ((z + 1) /2)

(k/2)
Φz+k

o + ok (z/2)
((k−1)/2)

Φz+k
e

)
.(6.97)
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Also, ∀m ∈ N and ∀z ∈ C,
X (Dm

z Φz
e) = Dm

z (XΦz
e) = Dm

z

(
(z/2)Φz+1

o

)
(6.98)

= π−1/2 1

2

(
zDm

z Φz+1
o +mDm−1

z Φz+1
o

)
, (6.99)

X (Dm
z Φz

o) = Dm
z (XΦz

o) = π−1/2Dm
z Φz+1

e . (6.100)

6.3.5. Fourier transforms. Expanding the distributions Φz
e,o in terms of Φz

± and
using (6.36) leads to the very simple Fourier transformation rules, ∀z ∈ C,

F [Φz
e ] = Φ1−z

e , (6.101)

F [Φz
o] = −iΦ1−z

o . (6.102)

More generally, ∀z ∈ C and ∀m ∈ Z+, we obtain from (6.101)–(6.102) and by
the commutativity of the F and Dz operators,

F [Dm
z Φz

e ] = (−1)
m
(Dm

wΦw
e ) (1− z) , (6.103)

F [Dm
z Φz

o] = − (−1)
m
i (Dm

wΦw
o ) (1− z) . (6.104)

We will call the Φz
e,o homogeneous normalized parity kernels of the second kind

and the Dm
z Φz

e,o, ∀m ∈ Z+, associated homogeneous normalized parity kernels of
the second kind. The distributions Dm

z Φz
e,o play a fundamental role in the repre-

sentation of AHDs based on R, which are complex analytic with respect to their
degree in some region Ω ⊆ C, [9, Theorem 7]. Also, as the results (6.101)–(6.102)
show, they are the preferred basis distributions to expand AHDs in, in order to
trivially calculate Fourier transforms.

6.4. Normalized complex kernels Φz
x±i0. We finally define a pair of normalized

basis AHDs, which are very convenient to calculate convolutions of AHDs and
also to trivially calculate the Hilbert transform of an AHD, and which were not
considered in [15].

6.4.1. Definition. Define the distributions

Φz
x±i0 , 1

2π
Γ(1− z)e∓i(π/2)(z−1)(x± i0)z−1, (6.105)

=
1

2
(Φz

e ± iΦz
o) , (6.106)

=
±i
2

1

sin (πz)

(
e∓i(π/2)zΦz

+ − e±i(π/2)zΦz
−

)
. (6.107)

For z = 0, Φz
x±i0 reduce to the Heisenberg distributions. The Φz

x±i0 are homo-
geneous distributions of degree z − 1, complex analytic ∀z ∈ C, except for simple
poles at z = k ∈ Z+ with residues(

Φk
x±i0

)
−1

=
(±i)k+1

2π

xk−1

(k − 1)!
, (6.108)

and analytic finite parts(
Φk

x±i0

)
0
=

1

2
(±i)k

(
1

2

xk−1 sgn

(k − 1)!
+

±i
π

xk−1

(k − 1)!
(ln |x| − ψ(k))

)
. (6.109)

At the ordinary points z = −k ∈ −N, they take the values

Φ−k
x±i0 =

1

2
(±i)−k

(
δ(k) ± iη(k)

)
. (6.110)
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6.4.2. Associated distributions. At z ∈ C\Z and ∀m ∈ Z+, we obtain from (6.106)
the associated distributions

Dm
z Φz

x±i0 =
1

2
(Dm

z Φz
e ± iDm

z Φz
o) . (6.111)

At z ∈ Z and ∀m ∈ Z+, D
m
z Φz

x±i0 are readily found by combining (6.106) with
(6.58)–(6.63). We obtain, ∀p, k ∈ N,((

Dm
wΦw

x±i0

)
w=2p+1

)
0

=
1

2

 (−1)p+1(iπ/2)miBm+1

(
Dw

iπ/2

)
1
2

(
Φw

+ +Φw
−
)

±i (−1)
p
(iπ/2)mEm

(
Dw

iπ/2

)
1
2

(
Φw

+ − Φw
−
)


w=2p+1

, (6.112)

((
Dm

wΦw
x±i0

)
w=2p+2

)
0

=
1

2

 (−1)
p+1

(iπ/2)mEm

(
Dw

iπ/2

)
1
2

(
Φw

+ +Φw
−
)

±i(−1)p+1(iπ/2)miBm+1

(
Dw

iπ/2

)
1
2

(
Φw

+ − Φw
−
)


w=2p+2

;(6.113)

and (
Dm

wΦw
x±i0

)
w=−k

= (iπ/2)
m 1

2


ek (−1)

k/2
Em

(
Dw

iπ/2

)
1
2

(
Φw

+ +Φw
−
)

±iok (−1)
(k+1)/2

Em

(
Dw

iπ/2

)
1
2

(
Φw

+ − Φw
−
)

+ok (−1)
(k−1)/2

iBm+1

(
Dw

iπ/2

)
) 12
(
Φw

+ +Φw
−
)

±iek (−1)
k/2

iBm+1

(
Dw

iπ/2

)
1
2

(
Φw

+ − Φw
−
)


w=−k

.(6.114)

6.4.3. Generalized multiplication derivatives. From (6.106) and (6.66)–(6.67) fol-
lows, ∀z ∈ C\Z+,

Dk
(
Dm

z Φz
x±i0

)
= e±ikπ/2

(
Dm

wΦw
x±i0

)
w=z−k

. (6.115)

The distributions Dn
(
Dm

k Φk
x±i0

)
0
, ∀n,m ∈ N and ∀k ∈ Z+, are readily obtained

as linear combinations of (6.68)–(6.71).

6.4.4. Generalized convolution derivatives. From (6.105) and (6.74)–(6.75) follows,
∀z ∈ C\Z+,

Xk
(
Dm

z Φz
x±i0

)
= e∓ikπ/2Dm

z

(
z(k)Φz+k

x±i0

)
. (6.116)

The distributions Xn
(
Dm

k Φk
x±i0

)
0
, ∀n,m ∈ N and ∀k ∈ Z+, are readily obtained

as linear combinations of (6.76)–(6.79).

6.4.5. Fourier transforms. We easily obtain from (6.105) and (5.164), ∀z ∈ C\Z+,

F
[
Φz

x±i0

]
= (2πχ)

−z
± . (6.117)

More generally, ∀m ∈ N and ∀z ∈ C\Z+, we have by the commutativity of the F
and Dz operators, that

F
[
Dm

z Φz
x±i0

]
= (−1)

m
(2π)

−z
m∑

p=0

(
m
p

)
lnm−p (2π)

(
Dp

wχ
w
±
)
w=−z

. (6.118)
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The Fourier transforms of the distributions
(
Dm

k Φk
x±i0

)
0
, ∀m ∈ N and ∀k ∈ Z+,

are obtained as follows. Use (5.38), the Laurent series of the distributions Φz
x±i0

about their simple pole z = k, the Taylor series of (2π)
−z

about the ordinary point

z = k, and the Fourier transform pair F
[
(−2πix)

k−1
]
= δ(k−1). This results in

F
[(
Dm

k Φk
x±i0

)
0

]
= (−1)

m

(
(2πχ)

−k
±,0 ln

m |2πχ|+ (∓1)k−1 ln
m+1 (2π)

m+ 1

(2π)
−k
δ(k−1)

(k − 1)!

)
.(6.119)

We will call Φz
x±i0 homogeneous normalized complex kernels and Dm

z Φz
x±i0,

∀m ∈ Z+, associated homogeneous normalized complex kernels. The distributions
Dm

z Φz
x±i0 simplify the calculation of convolution products of AHDs (due to [10,

Theorem 12] and [12, Corollary 5]) and the calculation of the Hilbert transform of
an AHD (due to [10, eq. (60)] and [12, eq. (50)]).

Appendix A. Appendix

A.1. Definitions of AHDs.

A.1.1. Gel’fand–Shilov. The definition of (one-dimensional) AHDs, in the sense of
Gel’fand and Shilov as given in [15, Ch. I, Section 4.1], arises in the following way.

(i) A HD fz0 , of degree of homogeneity z, is defined to be an eigendistribution of
any dilatation operator Ur, r > 0, with eigenvalue rz, [15, p. 82].

(ii) Generalized functions fz1 , f
z
2 , . . . , f

z
k , . . . are said to be associated with the

eigendistribution fz0 of Ur iff

Urf
z
0 = cfz0 , (A.1)

Urf
z
k = cfzk + dfzk−1,∀k ∈ Z+, (A.2)

wherein c and d are functions of r but are independent of k. According to (i),
choosing c = rz makes fz0 in (A.1) a HD.

(iii) Now d is calculated for the case k = 1. It is proved in [15, p. 83] that, up
to a constant factor, d = rz ln r.

(iv) By setting d = rz ln r for all k ∈ Z+ in (A.2), eqs. (A.1)–(A.2) take the form

Urf
z
0 = rzfz0 , (A.3)

Urf
z
k = rzfzk + rz ln r fzk−1,∀k ∈ Z+. (A.4)

(v) In [15], HDs are defined by (A.3) and AHDs for all orders of association
k ∈ Z+ are defined by (A.4), [15, p. 84, eq. (3)]. Eqs. (A.3)–(A.4) were derived
from eqs. (A.1)–(A.2) by calculation of c and d. Hence, Definition (A.3)–(A.4) is
equivalent to Definition (A.1)–(A.2) with c = rz and d = rz ln r.

(vi) In [25, Section 4] it was shown that Definition (A.3)–(A.4) is self contra-
dictory for k ≥ 2. The conclusion is that an AHD of order of association k is
reproduced by the dilatation operator Ur, ∀r > 0, up to an AHD of order of asso-
ciation k − 1, only for k = 1. Transferring the notion of associated eigenvector to
AHDs, in the sense of Gel’fand and Shilov, is thus impossible for k ≥ 2.

Other inconsistencies in the definition of AHDs have appeared in the literature.
For a discussion, see [25].
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A.1.2. Shelkovich. Since the set of AHDs, in the sense of Gel’fand and Shilov, does
not contain any members with order of association m ≥ 2, a more general definition
was introduced in [25], resulting in the set of Quasi Associated Homogeneous Dis-
tributions (QAHDs). It was shown by Shelkovich that his set of QAHDs coincides
with the set of distributions discussed in [15, Ch. I, Section 4.1], [25, Theorem 3.2].

(i) A distribution fzm ∈ D′ (R) is said to be a QAHD of degree of homogeneity
z ∈ C and order of association m ∈ N iff for any r > 0,

Urf
z
m = rzfzm +

m∑
k=1

hk (r) f
z
m−k, (A.5)

wherein fzm−k is a QAHD of degree of homogeneity z and order of association m−k
and hk are differentiable functions. For m = 0, the sum is assumed to be empty.
Definition (A.5) is a natural generalization of the notion of associated eigenvector
(A.2).

(ii) Next, it was proved in [25, Theorems 3.1, 3.2 and eqs. (3.21)–(3.22)] that
Definition (A.5) is equivalent to

Urf
z
m = rzfzm +

m∑
k=1

rz lnk r fzm−k, (A.6)

wherein fzm−k is an AHD, as discussed in [15, Ch. I, Section 4.1], of degree of
homogeneity z and order of association m−k. The relation (A.6) can thus be used
as an equivalent definition of QAHDs.

Definition (4.2), used in this paper, is equivalent to (A.6) and defines a set of
distributions, which are also called Associated Homogeneous Distributions (AHDs).
The here considered set of AHDs is thus coinciding with Shelkovich’s set of QAHDs
and, due to [25, Theorem 3.2], is also coinciding with the distributions discussed
(but not properly defined) in [15, Ch. I, Section 4.1].

A.1.3. von Grudzinski. For completeness we give here the higher-dimensional def-
initions corresponding to HDs and AHDs, as given in [26].

A distribution fz ∈ D′ (Rn) is said to be quasihomogeneous of degree z ∈ C and

of type p , (p1, . . . , pn) ∈ Rn\ {0} iff for any r > 0, [26, p. 77],⟨
fz, φ ◦M1/r

⟩
= rz+n ⟨fz, φ⟩ ,∀φ ∈ D (Rn) , (A.7)

wherein Mrx , (rp1x1, . . . , r
pnxn), x ∈ Rn. A quasihomogeneous distribution of

degree z and of type p , (1, . . . , 1) is called a homogeneous distribution of degree
z.

A distribution fzm ∈ D′ (Rn) is said to be almost quasihomogeneous of degree

z ∈ C, of type p , (p1, . . . , pn) ∈ Rn\ {0} and of order ≤m ∈ Z+ iff for any r > 0
there exists distributions fzm−1, . . . , f

z
0 such that, [26, p. 94 and eq. (1.37)],

⟨
fzm, φ ◦M1/r

⟩
= rz+n

⟨
fzm +

m∑
k=1

lnk r

k!
fzm−k , φ

⟩
,∀φ ∈ D (Rn) . (A.8)

The definitions (A.7)–(A.8) essentially reduce to (A.5)–(A.6) for n = 1.
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A.2. Conversion of basis AHDs. For the seven pairs of special homogeneous

distributions, Φz
±, (x± i0)z−1, Φz

e,o, Φ
z
e,o,

(
|x|z−1

, |x|z−1
sgn
)
, Φz

x±i0 and xz−1
± , it

is convenient to have expressions to convert one set into another. This is particularly
useful to convert from one structure theorem to another, see [9].

A.2.1. Expressions in terms of Φz
±.



[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



[
1 0
0 1

]
Γ(z)

[
1 −e+iπz

1 −e−iπz

]
1
2

[ 1

cos(π
2 z)

1

cos(π
2 z)

+ 1

sin(π
2 z)

− 1

sin(π
2 z)

]
2z−1π(z−1)/2

[
Γ
(
z+1
2

)
Γ
(
z+1
2

)
Γ
(
z
2

)
−Γ
(
z
2

)]
Γ(z)

[
1 +1
1 −1

]
i

2 sin(πz)

[
+e−iπ

2 z −e+iπ
2 z

−e+iπ
2 z +e−iπ

2 z

]
Γ(z)

[
1 0
0 1

]



[
Φz

+

Φz
−

]
.

A.2.2. Expressions in terms of (x± i0)z−1.



[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



1
2

[ 1
Γ(z)

1
Γ(z)

− 1
πiΓ(1− z) + 1

πiΓ(1− z)

]
[
1 0
0 1

]
Γ(1−z)

2π

[
+ie−iπ

2 z −ie+iπ
2 z

e−iπ
2 z e+iπ

2 z

]
1
2π

z/2

+ ie
−i(π

2
z)

Γ( z
2 ) sin(

π
2 z)

− ie
+i(π

2
z)

Γ( z
2 ) sin(

π
2 z)

e
−i(π

2
z)

Γ( z+1
2 ) cos(π

2 z)
e
+i(π

2
z)

Γ( z+1
2 ) cos(π

2 z)


1
2

+ie−i π
2

z

sin(π
2 z)

−ie+i π
2

z

sin(π
2 z)

e−i π
2

z

cos(π
2 z)

e+i π
2

z

cos(π
2 z)


Γ(1−z)
2πi

[
−e−iπ

2 z 0
0 +e+iπ

2 z

]
1

2i sin(πz)

[
−e−iπz e+iπz

−1 1

]



[
(x+ i0)z−1

(x− i0)z−1

]
.
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A.2.3. Expressions in terms of Φz
e,o.



[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



[
cos
(
π
2 z
)

+sin
(
π
2 z
)

cos
(
π
2 z
)

− sin
(
π
2 z
)]

π
Γ(1−z)

[
−ie+iπ

2 z e+iπ
2 z

+ie−iπ
2 z e−iπ

2 z

]
[
1 0
0 1

]
2zπ(z+1)/2

[ 1

Γ( 1−z
2 )

0

0 1

Γ(1− z
2 )

]
2Γ(z)

[
cos
(
π
2 z
)

0
0 sin

(
π
2 z
)]

1
2

[
1 +i
1 −i

]
Γ(z)

[
cos
(
π
2 z
)

+sin
(
π
2 z
)

cos
(
π
2 z
)

− sin
(
π
2 z
)]



[
Φz

e

Φz
o

]
.

A.2.4. Expressions in terms of Φz
e,o.



[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



2−zπ−(z−1)/2

[ 1

Γ( z+1
2 )

+ 1

Γ( z
2 )

1

Γ( z+1
2 )

− 1

Γ( z
2 )

]

π−z/2

[
−ie+i(π

2 z)Γ
(
z
2

)
sin
(
π
2 z
)

e+i(π
2 z)Γ

(
z+1
2

)
cos
(
π
2 z
)

+ie−i(π
2 z)Γ

(
z
2

)
sin
(
π
2 z
)

e−i(π
2 z)Γ

(
z+1
2

)
cos
(
π
2 z
)]

2−zπ−(z+1)/2

[
Γ
(
1−z
2

)
0

0 Γ
(
1− z

2

)][
1 0
0 1

]
π−z/2

[
Γ(z/2) 0

0 Γ((z + 1)/2)

]
2−(z+1)π−(z+1)/2

[
Γ
(
1−z
2

)
iΓ
(
1− z

2

)
Γ
(
1−z
2

)
−iΓ

(
1− z

2

)]
1
2π

−z/2

[
Γ (z/2) Γ ((z + 1)/2)
Γ (z/2) −Γ ((z + 1)/2)

]



[
Φz

e

Φz
o

]
.
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A.2.5. Expressions in terms of |x|z−1
, |x|z−1

sgn.



[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



1
2Γ(z)

[
1 +1
1 −1

]
[
−ie+iπ

2 z sin
(
π
2 z
)

e+iπ
2 z cos

(
π
2 z
)

+ie−iπ
2 z sin

(
π
2 z
)

e−iπ
2 z cos

(
π
2 z
)]

1
2Γ(z)

[ 1

cos(π
2 z)

0

0 1

sin(π
2 z)

]

πz/2

[
1

Γ(z/2) 0

0 1
Γ((z+1)/2)

]
[
1 0
0 1

]
1

4Γ(z)

 1

cos(π
2 z)

+i

sin(π
2 z)

1

cos(π
2 z)

−i

sin(π
2 z)


1
2

[
1 +1
1 −1

]



[
|x|z−1

|x|z−1
sgn

]
.

A.2.6. Expressions in terms of Φz
x±i0.



[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



[
e−iπ

2 z e+iπ
2 z

e+iπ
2 z e−iπ

2 z

]
− 2πi

Γ(1−z)

[
+e+iπ

2 z 0
0 −e−iπ

2 z

]
[
1 1
−i +i

]
2zπ(z+1)/2

[ 1

Γ( 1−z
2 )

1

Γ( 1−z
2 )

− i

Γ(1− z
2 )

i

Γ(1− z
2 )

]
2Γ(z)

[
cos
(
π
2 z
)

cos
(
π
2 z
)

−i sin
(
π
2 z
)

+i sin
(
π
2 z
)][

1 0
0 1

]
Γ(z)

[
e−iπ

2 z e+iπ
2 z

e+iπ
2 z e−iπ

2 z

]



[
Φz

x+i0

Φz
x−i0

]
.



ASSOCIATED HOMOGENEOUS DISTRIBUTIONS 59

A.2.7. Expressions in terms of xz−1
± .

[
Φz

+

Φz
−

]
[
(x+ i0)z−1

(x− i0)z−1

]
[
Φz

e

Φz
o

]
[
Φz

e

Φz
o

]
[

|x|z−1

|x|z−1
sgn

]
[
Φz

x+i0

Φz
x−i0

]
[
xz−1
+

xz−1
−

]



=



1
Γ(z)

[
1 0
0 1

]
[
1 −e+iπz

1 −e−iπz

]
1

2Γ(z)

[ 1

cos(π
2 z)

1

cos(π
2 z)

+ 1

sin(π
2 z)

− 1

sin(π
2 z)

]

πz/2

[
1

Γ(z/2)
1

Γ(z/2)
1

Γ((z+1)/2) − 1
Γ((z+1)/2)

]
[
1 +1
1 −1

]
−Γ(1−z)

2πi

[
+e−iπ

2 z −e+iπ
2 z

−e+iπ
2 z +e−iπ

2 z

]
[
1 0
0 1

]



[
xz−1
+

xz−1
−

]
.
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