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BELL-BASED PARTIALLY DEGENERATE GENOCCHI

POLYNOMIALS AND THEIR APPLICATIONS

AYED AL E’DAMAT, WASEEM AHMAD KHAN, NAEEM AHMAD

Abstract. In this paper, firstly we introduce not only partially degenerate
Bell-Genocchi polynomials, but also a new generalization of degenerate Bell-

Genocchi polynomials. Secondly, we investigate some behaviors of these poly-

nomials. Furthermore, we establish some implicit summation formulae and
symmetry identities by making use of the generating function of partially de-

generate Bell-Genocchi polynomials. Finally, some results obtained here ex-

tend well-known summations and identities which we stated in the paper.

1. Introduction

Special polynomials and numbers possess much importance in multifarious areas
of science such as physics, mathematics, applied sciences, engineering and other
related research fields covering differential equations, number theory, functional
analysis, quantum mechanics, mathematical analysis, mathematical physics. Some
of the most significant polynomials in the theory of special polynomials are the
Bell, Euler, Bernoulli, Hermite, and Genocchi polynomials. Recently, many math-
ematicians namely Carlitz [4, 5], Nadeem et al. [26, 27], Khan et al. [10-18], and
Muhiuddin et al. [25] have studied and introduced various degenerate versions of
many special polynomials and numbers (like as degenerate Bernoulli polynomials,
degenerate Euler polynomials, degenerate Daehee polynomials, degenerate Fubini
polynomials, degenerate Stirling numbers of the first and second kind etc). In
this paper, we focus on partially degenerate Bell-Genocchi polynomial and num-
bers. The aim of this paper is to introduce a partially degenerate version of the
Bell-Genocchi polynomials and numbers, the so called partially degenerate Bell-
Genocchi polynomials and numbers, constructing from the degenerate exponential
function. We derive some explicit expressions and identities for those numbers and
polynomials.

Let p be a fixed prime number. Throughout this paper Zp, Qp and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
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algebraic closure of Qp, respectively. The p-adic norm |.|p is normalized as |p|p = 1
p .

Let
⋃
D(Zp) be the space of Cp-valued uniformly differentiable functions on Zp.

For f ∈
⋃
D(Zp), the p-adic invariant integral on Zp is defined as

I0(f) =

∫
Zp
f(x)dµ0(x) = lim

N→∞

pN−1∑
x=0

f(x)µ0(x+ pNZp)

= lim
N→∞

1

pN

pN−1∑
x=0

f(x), (see [7]). (1.1)

From (1.1), we note that

I0(fn)− I0(f) =

n−1∑
l=0

f ′(l), (n ∈ N), (see [7, 8,9]). (1.2)

For n ≥ 0, the Stirling numbers of the second kind are defined by

xn =

n∑
l=0

S2(n, l)(x)l, (see [19-24]). (1.3)

From (1.3), we see that

1

r!
(et − 1)r =

∞∑
n=r

S2(n, r)
tn

n!
. (1.4)

The classical Bernoulli polynomials Bn(x), the classical Euler polynomials En(x)
and the classical Genocchi polynomials Gn(x), each of degree n, are defined, re-
spectively, by the following generating functions (see [1, 2]):

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, , | t |< 2π (1.5)

2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
, , | t |< π (1.6)

and
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
, | t |< π. (1.7)

It is easy to see that

Bn(0) = Bn , En(0) = En, Gn(0) = Gn (n ∈ N).

The Daehee polynomials are defined by the generating function

log(1 + t)

t
(1 + t)x =

∞∑
n=0

Dn(x)
tn

n!
, (see [7]). (1.8)

When x = 0, Dn = Dn(0) are called the Daehee numbers.

In (2016), Jang et al. [11] introduced the partially degenerate Genocchi polyno-
mials which are defined by the generating function

2 log(1 + λt)
1
λ

et + 1
ext =

∞∑
n=0

Gn,λ(x)
tn

n!
. (1.9)
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When x = 0, Gn,λ = Gn,λ(0) are called the partially degenerate Genocchi numbers.

The Bell polynomials Beln(x) are defined by the generating function (see [3, 6])

ex(e
t−1) =

∞∑
n=0

Beln(x)
tn

n!
. (1.10)

When x = 1, Beln = Beln(1), (n ≥ 0) are called the Bell numbers. From (1.2)
and (1.9), we note that

Beln(x) =

n∑
k=0

S2(k, n)xk, (n ≥ 0). (1.11)

Recently, Duran et al. [6] introduced the generalized Bell-Bernoulli polynomials

for two variables BelB
(α)
n (x, y) defined by(
t

et − 1

)α
ext+y(e

t−1) =

∞∑
n=0

BelB
(α)
n (x, y)

tn

n!
. (1.12)

When x = y = 0 in (1.12), BelB
(α)
n = BelB

(α)
n (0, 0) are called the generalized Bell-

Bernoulli numbers.
From (1.12), we note that

∞∑
n=0

BelB
(α)
n (x, y)

tn

n!
=

(
t

et − 1

)α
ext+y(e

t−1)

=

∞∑
n=0

(
n∑

m=0

B
(α)
n−mBelm(x, y)

)
tn

n!
. (1.13)

Comparing the coefficients of above equation, we get

BelB
(α)
n (x, y) =

n∑
m=0

B
(α)
n−mBelm(x, y).

For each k ∈ N0, Tk(n) [14] defined by

Tk(n) =

n∑
j=0

(−1)jjk (1.14)

is called the alternating sum. The exponential generating function for Tk(n) is

∞∑
k=0

Tk(n)
tk

k!
=

1− (−et)(n+1)

et + 1
. (1.15)

Inspired and motivated by [6], in this paper, we introduce not only partially
degenerate Bell-Genocchi polynomials but also a new generalization of partially
degenerate Bell-Genocchi polynomials and then give some of their applications.
We also derive some implicit summation formula and general symmetry identities.
For obtaining implicit summation formula and general symmetry identities, we use
the proof techniques of Khan et al. [13, 14].
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2. Bell-based partially degenerate Genocchi polynomials

In this section, we assume that λ, t ∈ Cp with | λt |p < p−
1
p−1 . The partially

degenerate Bell-Genocchi polynomials are defined by the generating function as

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1) =

∞∑
n=0

BelGn,λ(x, y)
tn

n!
. (2.1)

When x = y = 0 in (2.1), BelGn,λ = BelGn,λ(0, 0) are called the partially degen-
erate Bell-Genocchi numbers.

Theorem 2.1. For n ≥ 0, we have

BelGn,λ(x, y) =

n∑
m=0

(
n

m

)
Gn−m,λBelm(x, y). (2.2)

Proof. From (2.1), we note that

∞∑
n=0

BelGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1)

=

( ∞∑
n=0

Gn,λ
tn

n!

)( ∞∑
m=0

Belm(x, y)
tm

m!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
Gn−m,λBelm(x, y)

)
tn

n!
. (2.3)

Comparing the coefficients of t, we obtain (2.2).
�

Theorem 2.2 For n ≥ 0, we have

BelGn,λ(x, y) =

n∑
m=0

(
n

m

)
(−λ)m

m+ 1
m!BelGn−m(x, y). (2.4)

Proof. From (2.1), we have

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1) =
log(1 + λt)

λt

2t

et + 1
ext+y(e

t−1)

=

( ∞∑
m=0

(−1)m

m+ 1
(λt)m

)( ∞∑
n=0

BelGn(x, y)
tn

n!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
(−λ)m

m+ 1
m!BelGn−m(x, y)

)
tn

n!
. (2.5)

In view of (2.1) and (2.4), we get the required theorem. �

Theorem 2.3. For n ≥ 0, we have

BelGn,λ(x, y) =

n∑
m=0

(
n

m

)
λmDmBelGn−m(x, y). (2.6)
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Proof. From (1.7) and (2.1), we have

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1) =
log(1 + λt)

λt

2t

et + 1
ext+y(e

t−1)

=

( ∞∑
m=0

Dm
(λt)m

m!

)( ∞∑
n=0

BelGn(x, y)
tn

n!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
λmDmBelGn−m(x, y)

)
tn

n!
. (2.7)

By (2.1) and (2.7), we get the desired result. �

Theorem 2.4. For n ≥ 1, we have

BelGn,λ(x, y) = n

n−1∑
m=0

(
n− 1

m

)
λmDmBelEn−m−1(x, y). (2.8)

Proof. From (2.1), we observe that
∞∑
n=1

BelGn,λ(x, y)
tn

n!
= t

log(1 + λt)

λt

2

et + 1
ext+y(e

t−1)

= t

( ∞∑
m=0

Dm
(λt)m

m!

)( ∞∑
n=0

BelEn(x, y)
tn

n!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
λmDmBelEn−m(x, y)

)
tn+1

n!

=

∞∑
n=1

(
n−1∑
m=0

n

(
n− 1
m

)
λmDmBelEn−m−1(x, y)

)
tn

n!
. (2.9)

Therefore, by (2.1) and (2.9), we get the desired result. �

Theorem 2.5. For n ≥ 0, we have

BelGn,λ(x+ 1, y) =

n∑
m=0

(
n

m

)
BelGn−m,λ(x, y). (2.10)

Proof. Using the generating function (2.1), we have
∞∑
n=0

BelGn,λ(x+ 1, y)
tn

n!
−
∞∑
n=0

BelGn,λ(x, y)
tn

n!

=
2 log(1 + λt)

1
λ

et + 1
e(x+1)t+y(et−1) − 2 log(1 + λt)

1
λ

et + 1
ext+y(e

t−1)

=
2 log(1 + λt)

1
λ

1 + et
ext+y(e

t−1)(et − 1)

=

∞∑
n=0

BelGn,λ(x, y)
tn

n!

∞∑
m=0

tm

m!
−
∞∑
n=0

BelGn,λ(x, y)
tn

n!

=

∞∑
n=0

n∑
m=0

(
n

m

)
BelGn−m,λ(x, y)

tn

n!
−
∞∑
n=0

BelGn,λ(x, y)
tn

n!
. (2.11)
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Comparing the coefficients of tn

n! on both sides of the above equation, we get the
result (2.10). �

Theorem 2.6. For n ∈ N ∪ {0}, we have

BelGn,λ(x, y) =

n∑
m=0

(
n

m

)
Gn−m

m∑
k=0

(
m

k

)
λm−kDm−kBelk(x, y). (2.12)

Proof. Rewriting (2.1) to get
∞∑
n=0

BelGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1) =

(
2t

et + 1

)(
log(1 + λt)

λt

)
ext+y(e

t−1)

=

( ∞∑
n=0

Gn
tn

n!

)( ∞∑
m=0

Dm
(λt)m

m!

)( ∞∑
k=0

Belk(x, y)
tk

k!

)
.

An application of manipulation of series yields

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
Gn−m

m∑
k=0

(
m

k

)
Dm−kλ

m−kBelk(x, y)

)
tn

n!
. (2.13)

Equating the coefficients of tn

n! in above equation, we get the result (2.12). �

Theorem 2.7. For n ≥ 0, we have

BelGn,λ(x, y) = dn−1
d−1∑
a=0

BelGn,λd

(
a+ x

d
, y

)
. (2.14)

Proof. From (2.1), we have
∞∑
n=0

BelGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1)

=
2 log(1 + λt)

1
λ

edt + 1
ey(e

t−1)
d−1∑
a=0

e(a+x)t

=

∞∑
n=0

(
dn−1

d−1∑
a=0

BelGn,λd

(
a+ x

d
, y

))
tn

n!
. (2.15)

Equating the coefficients of tn

n! in above equation, we get the result (2.14). �

3. Conclusion

We assume that d ∈ N with d ≡ 1(mod2), let χ be a Dirichlet character with
conductor d. The Bell-based generalized partially degenerate Genocchi polynomials
attached to χ, are given by the generating function

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+y(e
t−1) =

∞∑
n=0

BelGn,χ,λ(x, y)
tn

n!
. (3.1)

When x = y = 0 in (3.1), BelGn,χ,λ = BelGn,χ,λ(0, 0) are called the generalized
partially degenerate Bell-Genocchi numbers attached to χ.
Note that

lim
λ→0

BelGn,χ,λ(x, y) = BelGn,χ(x, y) , (n ∈ N ∪ {0}).
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Theorem 3.1. For n ∈ N ∪ {0}, we have

BelGn,χ,λ(x, y) =

n∑
m=0

(
n

m

)
λmDmBelGn−m,χ(x, y). (3.2)

Proof. From (3.1), we have

∞∑
n=0

BelGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+y(e
t−1)

=

(
log(1 + λt)

λt

)(
2t

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+y(e
t−1)

)

=

( ∞∑
m=0

Dm
λmtm

m!

)( ∞∑
n=0

BelGn,χ(x, y)
tn

n!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
Dmλ

m
BelGn−m,χ(x, y)

)
tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we get the
desired result. �

Theorem 3.2. For n ∈ N ∪ {0}, we have

BelGn,χ,λ(x, y) = dn−1
d−1∑
a=0

(−1)aχ(a)BelGn,λd

(
a+ x

d
, y

)
. (3.3)

Proof. From (3.1), we have

∞∑
n=0

BelGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+y(e
t−1)

=
1

d

d−1∑
a=0

(−1)aχ(a)
2 log(1 + λt)

d
λ

edt + 1
e(

a+x
d )dt+y(et−1)

=
1

d

d−1∑
a=0

(−1)aχ(a)

∞∑
n=0

BelGn,λd

(
a+ x

d
, y

)
(dt)n

n!

=

∞∑
n=0

(
dn−1

d−1∑
a=0

(−1)aχ(a)BelGn,λd

(
a+ x

d
, y

))
tn

n!
.

Equating the coefficients of t
n

n! on both sides of the above equation, we get the result
(3.3). �

Theorem 3.3. For n ∈ N ∪ {0}, we have

BelGn,χ,λ(x, y) =

n∑
m=0

(
n

m

)
Gn−m,χ,λ(x)Belm(y). (3.4)
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Proof. By (3.1), we observe that

∞∑
n=0

BelGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+y(e
t−1)

=

(
2 log(1 + λt)

1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t

)
ey(e

t−1)

=

( ∞∑
n=0

Gn,χ,λ(x)
tn

n!

)( ∞∑
m=0

Belm(y)
tm

m!

)

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
Gn−m,χ,λ(x)Belm(y)

)
tn

n!
.

Equating the coefficients of t
n

n! on both sides of the above equation, we get the result
(3.4). �

Theorem 3.4. For n ∈ N ∪ {0}, we have

BelGn,χ,λ(x, y) =

n∑
m=0

(
n
m

)
Gn−m,χ,λBelm(x, y). (3.5)

Proof. Using (3.1), we see

∞∑
n=0

BelGn,χ,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)e(a+x)t+y(e
t−1)

=

(
2 log(1 + λt)

1
λ

edt + 1

d−1∑
a=0

(−1)aχ(a)eat

)
ext+y(e

t−1)

=

( ∞∑
l=0

Gl,χ,λ
tl

l!

)( ∞∑
n=0

xn
tn

n!

)( ∞∑
m=0

Belm(x, y)
tm

m!

)

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
Gn−m,χ,λBelm(x, y)

)
tn

n!
.

Equating the coefficients of tn on both sides of the above equation, we get the result
(3.5). �

4. Summation Formulae

In this section we give implicit formula of partially degenerate Bell-Genocchi
polynomials by making use of generating function technique. We start following
theorem as.

Theorem 4.1. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGk+l,λ(z, y) =

k,l∑
n,p=0

(
k
n

)(
l
p

)
(z − x)n+pBelGk+l−p−n,λ(x, y). (4.1)
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Proof. We replace t by t + u and rewrite the generating function (2.1) as

2 log(1 + λ(t+ u))
1
λ

e(t+u) + 1
ey(e

t+u−1) = e−x(t+u)
∞∑

k,l=0

BelGk+l,λ(x, y)
tkul

k!l!
, (see [18]).

(4.2)
Replacing x by z in the above equation and equating the resulting equation to the
above equation, we get

e(z−x)(t+u)
∞∑

k,l=0

BelGk+l,λ(x, y)
tk

k!

ul

l!
=

∞∑
k,l=0

BelGk+l,λ(z, y)
tk

k!

ul

l!
. (4.3)

On expanding exponential function, (4.3) gives

∞∑
N=0

[(z − x)(t+ u)]N

N !

∞∑
k,l=0

BelGk+l,λ(x, y)
tk

k!

ul

l!
=

∞∑
k,l=0

BelGk+l,λ(z, y)
tk

k!

ul

l!
, (4.4)

which on using formula [18]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
, (4.5)

in the left hand side becomes
∞∑

n,p=0

(z − x)n+ptnup

n!p!

∞∑
k,l=0

BelGk+l,λ(x, y)
tk

k!

ul

l!
=

∞∑
k,l=0

BelGk+l,λ(z, y)
tk

k!

ul

l!
(4.6)

∞∑
n,p=0

n,p∑
k,l=0

(z − x)n+p

n!p!
BelGk+l−n−p,λ(x, y)

tk

(k − n)!

ul

(l − p)!

=

∞∑
k,l=0

BelGk+l,λ(z, y)
tk

k!

ul

l!
. (4.7)

Finally, on equating the coefficients of the powers of t and u in the above equa-
tion, we get the required result. �

Remark 4.1. By taking l = 0 in equation (4.1), we immediately deduce the fol-
lowing result.

Corollary 4.1. The next implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGk,λ(z, y) =

k∑
n=0

(
k
n

)
(z − x)nBelGk−n,λ(x, y). (4.8)

Remark 4.2. On replacing z by z + x and setting y = 0 in Theorem 4.1, we
immediately deduce the following result.

Corollary 4.2. The next implicit summation formulae involving partially degen-
erate Genocchi polynomials Gn,λ(x) holds true:

Gk+l,λ(z + x) =

k,l∑
n,p=0

(
k
n

)(
l
p

)
(z)n+pGk+l−p−n,λ(x) (4.9)
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whereas by setting z = 0 in Theorem 4.1, we get another result involving partially
degenerate Genocchi polynomials of one and two variables.

Gk+l,λ(y) =

k,l∑
n,p=0

(
k
n

)(
l
p

)
(−x)n+pBelGk+l−p−n,λ(x, y). (4.10)

Remark 4.3. Along with the above results we will exploit extended forms of
partially degenerate Genocchi polynomials by setting y = 0 in the Theorem 4.1 to
get

Gk+l,λ(z) =

k,l∑
n,p=0

(
k
n

)(
l
p

)
(z − x)n+pGk+l−p−n,λ(x). (4.11)

Theorem 4.2. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGn,λ(x+ z, y + u) =

n∑
m=0

(
n
m

)
BelGn−m,λ(z, u)Belm(x, y). (4.12)

Proof. Replacing x by x + z and y by y + u in (2.1), we have
∞∑
n=0

BelGn,λ(x+ z, y + u)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
e(x+z)t+(y+u)(et−1)

=

( ∞∑
n=0

BelGn,λ(z, u)
tn

n!

)( ∞∑
m=0

Belm(x, y)
tm

m!

)
.

Finally replacing n by n −m and comparing the coefficients of tn

n! , we get the
desired result (4.12). �

Theorem 4.3. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGn,λ(y, x) =

n∑
l=0

l∑
k=0

(
n

l

)
Gn−l,λ(x)ykS2(l, k). (4.13)

Proof. Using (2.1), we get
∞∑
n=0

BelGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1)

=

∞∑
n=0

Gn,λ(x)
tn

n!

∞∑
l=0

l∑
k=0

ykS2(l, k)
tl

l!

=

∞∑
n=0

(
n∑
l=0

l∑
k=0

(
n

l

)
Gn−l,λ(x)ykS2(l, k)

)
tn

n!
.

On comparing the coefficients of tn, we get (4.13). �

Theorem 4.4. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGn,λ(x, y) =

n∑
m=0

(
n
m

)
Gn−m,λ(x− z)Belm(z, y). (4.14)
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Proof. We exploit (2.1) and rewrite (2.1) as

2 log(1 + λt)
1
λ

et + 1
e(x−z)tezt+y(e

t−1) =

∞∑
n=0

Gn,λ(x− z) t
n

n!

∞∑
m=0

Belm(z, y)
tm

m!
(4.15)

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
Gn−m,λ(x− z)Belm(z, y)

)
tn

n!
.

Finally comparing the coefficients of powers of t in above equation gives the result
(4.14). �

Theorem 4.5. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGn,λ(x+ 1, y) =

n∑
m=0

(
n
m

)
BelGn−m,λ(x, y). (4.16)

Proof. Replacing x by x+ 1 in (2.1), we get
∞∑
n=0

BelGn,λ(x+ 1, y)
tn

n!
=

2 log(1 + λt)
1
λ

1 + et
e(x+1)t+y(et−1)

=

(
2 log(1 + λt)

1
λ

et + 1
ext+y(e

t−1)

)
et

=

∞∑
n=0

BelGn,λ(x, y)
tn

n!

∞∑
m=0

tm

m!
.

Replacing n by n−m in the above equation and then comparing the coefficients of
tn

n! , we get the desired result (4.16). �

Theorem 4.6. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials BelGn,λ(x, y) holds true:

BelGn,λ(x+ 1, y) + BelGn,λ(x, y) = 2n

n−1∑
m=0

(
n− 1
m

)
(−λ)mm!

m+ 1
Beln−1−m(x, y).

(4.17)

Proof. Using the generating function (2.1), we have
∞∑
n=0

BelGn,λ(x+1, y)
tn

n!
+

∞∑
n=0

BelGn,λ(x, y)
tn

n!
=

2 log(1 + λt)
1
λ

et + 1
e(x+1)t+y(et−1)+

2 log(1 + λt)
1
λ

et + 1
ext+y(e

t−1)

= 2 log(1 + λt)
1
λ ext+y(e

t−1)

= 2t

(
log(1 + λt)

λt

)
ext+y(e

t−1)

= 2t

( ∞∑
m=0

(−1)m(λt)m

m+ 1

)( ∞∑
n=0

Beln(x, y)
tn

n!

)

= 2

∞∑
n=0

n∑
m=0

(
n
m

)
(−λ)mm!

m+ 1
Beln−m(x, y)

tn+1

n!
.

Comparing the coefficients of tn

n! in above equation, we get the result (4.17). �
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5. Symmetry identities

Recently Khan et al. [13, 14] have established some interesting symmetry iden-
tities for various polynomials. Here, we present certain symmetry identities for the
partially degenerate Bell-Genocchi polynomials BelGn,λ(x, y) in the following form.

Theorem 5.1. For each pair of integers a and b and all integers n ≥ 0, the following
symmetry identity holds true:

n∑
m=0

(
n
m

)
bman−mBelGn−m,λ(bx, y)BelGm,λ(ax, y)

=

n∑
m=0

(
n
m

)
ambn−mBelGn−m,λ(ax, y)BelGm,λ(bx, y). (5.1)

Proof. Let

A(t) =
(2 log(1 + λt)

a
λ )(2 log(1 + λt)

b
λ )

(eat + 1)(ebt + 1)
e2abxt+y(e

at−1)+y(ebt−1). (5.2)

Then the expression A(t) is symmetric in a and b and can be expressed into series
in two ways to obtain

A(t) =

∞∑
n=0

BelGn,λ(bx, y)
(at)n

n!

∞∑
m=0

BelGm,λ(ax, y)
(bt)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
bman−mBelGn−m,λ(bx, by)BelGm,λ(ax, y)

)
tn

n!
. (5.3)

Similarly, A(t) can be written as

A(t) =

∞∑
n=0

BelGn,λ(ax, y)
(bt)n

n!

∞∑
m=0

BelGm,λ(bx, y)
(at)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n
m

)
ambn−mBelGn−m,λ(ax, y)BelGm,λ(bx, y)

)
tn

n!
. (5.4)

By comparing the coefficients of tn on the right hand sides of the last two equations,
we get the identity (5.1). �

Remark 5.1. Replacing y = 0 in Theorem 5.1, we get

Corollary 5.1. Let a, b > 0 with a 6= b and x ∈ R and n ≥ 0, the following
symmetry identity holds true:

n∑
m=0

(
n
m

)
bman−mGn−m,λ(bx)Gm,λ(ax)

=

n∑
m=0

(
n
m

)
ambn−mGn−m,λ(ax)Gm,λ(bx). (5.5)

Remark 5.2. Replacing b = 1 in Theorem 5.1, we get
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Corollary 5.2. Let a, b > 0 with a 6= b and x, y ∈ R and n ≥ 0, the following
symmetry identity holds true:

n∑
m=0

(
n
m

)
an−mBelGn−m,λ(bx, y)BelGm,λ(ax, y)

=

n∑
m=0

(
n
m

)
amBelGn−m,λ(ax, y)BelGm,λ(x, y). (5.6)

Theorem 5.2. For each pair of integers a and b and all integers n ≥ 1, the following
symmetry identity holds true:

n∑
k=0

(
n
k

)
an−kbk

a−1∑
i=0

b−1∑
j=0

(−1)i+jBelGn−k,λ

(
bx1 +

b

a
i+ j, y

)
BelGk,λ(ax2, y)

=

n∑
k=0

(
n
k

)
bn−kak

b−1∑
i=0

a−1∑
j=0

(−1)i+jBelGn−k,λ

(
ax1 +

a

b
i+ j, y

)
BelGk,λ(bx2, y).

(5.7)

Proof. Consider

B(t) =
(2 log(1 + λt)

a
λ )(2 log(1 + λt)

b
λ )(eabt + 1)2

(eat + 1)2(ebt + 1)2
eab(x1+x2)t+y(e

at−1)+y(ebt−1)

(5.8)

=
2 log(1 + λt)

a
λ

eat + 1
eabx1t+y(e

at−1)
(
eabt + 1

ebt + 1

)
2 log(1 + λt)

b
λ

ebt + 1
eabx2t+y(e

bt−1)
(
eabt + 1

eat + 1

)

=
2 log(1 + λt)

a
λ

eat + 1
eabx1t+y(e

at−1)

(
a−1∑
i=0

(−1)iebti

)
2 log(1 + λt)

b
λ

ebt + 1
eabx2t+y(e

bt−1)

b−1∑
j=0

(−1)jeatj


=

2 log(1 + λt)
a
λ

eat + 1
eabx1t+y(e

at−1)

a−1∑
i=0

b−1∑
j=0

(−1)i+je(bx+
b
a i+j)at

( ∞∑
k=0

BelGk,λ(ay, y)
(bt)k

k!

)

=

 ∞∑
n=0

a−1∑
i=0

b−1∑
j=0

(−1)i+jBelGn,λ

(
bx1 +

b

a
i+ j, y

)
(at)n

n!

( ∞∑
k=0

BelGk,λ(ax2, y)
(bt)k

(k)!

)
,

B(t) =

∞∑
n=0

 n∑
k=0

(
n
k

)
an−kbk

a−1∑
i=0

b−1∑
j=0

(−1)i+jBelGn−k,λ

(
bx1 +

b

a
i+ j, y

)
BelGk,λ(ax2, y)

 tn

n!
.

(5.9)
On the other hand, we have

B(t) =

∞∑
n=0

 n∑
k=0

(
n
k

)
bn−kak

b−1∑
i=0

a−1∑
j=0

(−1)i+jBelGn−k,λ

(
ax2 +

a

b
i+ j, y

)
BelGk,λ(bx2, y)

 tn

n!
.

(5.10)

By comparing the coefficients of t
n

n! on the right hand sides of the last two equations,
we arrive at the desired result. �
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Theorem 5.3. For each pair of integers a and b and all integers n ≥ 0, the following
symmetry identity holds true:

n∑
k=0

(
n
k

)
an−kbk

a−1∑
i=0

b−1∑
j=0

(−1)i+jBelGn−k,λ

(
bx1 +

b

a
i, y

)
BelGk,λ

(
ax2 +

a

b
j, y
)

=

n∑
k=0

(
n
k

)
bn−kak

b−1∑
i=0

a−1∑
j=0

(−1)i+jBelGn−k,λ

(
ax1 +

a

b
i, y
)
BelGk,λ

(
bx2 +

b

a
j, y

)
.

(5.11)

Proof. The proof is analogous to Theorem 5.2 but we need to write equation (5.8)
in the form

C(t) =

(
2 log(1 + λt)

a
λ

eat + 1
eabx1t+y(e

at−1)
a−1∑
i=0

(−1)iebti

)2 log(1 + λt)
b
λ

ebt + 1
eabx2t+y(e

bt−1)
b−1∑
j=0

(−1)jeatj


C(t) =

a−1∑
i=0

b−1∑
j=0

(−1)i+j
∞∑
n=0

anBelGn,λ

(
bx1 +

b

a
i, y

)
tn

n!

∞∑
k=0

bkBelGk,λ

(
ax2 +

a

b
j, y
) tk
k!
.

(5.12)
On the other hand ”equation” (5.8) can be shown equal to

C(t) =

b−1∑
i=0

a−1∑
j=0

(−1)i+j
∞∑
n=0

bnBelGn,λ

(
ax1 +

a

b
i, y
) tn
n!

∞∑
k=0

akBelGk,λ

(
bx2 +

b

a
j, y

)
tk

k!
.

(5.13)

Next making change of index and by equating the coefficients of tn

n! to zero in
(5.12) and (5.13), we get the result (5.11). �

Theorem 5.4. For each pair of integers a and b and all integers n ≥ 0, the following
symmetry identity holds true:

n∑
k=0

(
n
k

)
an−kbkBelGn−k,λ (bx1, y)

k∑
i=0

(
k
i

)
Ti(a− 1)BelGk−i,λ(ax2, y)

=

n∑
k=0

(
n
k

)
akbn−kBelGn−k,λ (ax1, y)

k∑
i=0

(
k
i

)
Ti(b− 1)BelGk−i,λ(bx2, y),

(5.14)
where the sum of alternative integer powers Tk(n) is given by (1.15).

Proof. We now use

D(t) =
(2 log(1 + λt)

a
λ )(2 log(1 + λt)

b
λ )(1− (−ebt)a)eab(x1+x2)t+y(e

at−1)+y(ebt−1)

(eat + 1)(ebt + 1)2
,

to find that

D(t) =
(2 log(1 + λt)

a
λ )

eat + 1
eabx1t+y(e

at−1)
(

1− (−ebt)a

ebt + 1

)
(2 log(1 + λt)

b
λ )

ebt + 1
eabx2t+y(e

bt−1)

=

( ∞∑
n=0

BelGn,λ(bx1, y)
(at)n

n!

)( ∞∑
i=0

Ti(a− 1)
(bt)i

i!

)( ∞∑
k=0

BelGk,λ(ax2, y)
(bt)k

k!

)
.
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Using a similar plan, we get

D(t) =

( ∞∑
n=0

BelGn,λ(ax1, y)
(bt)n

n!

)( ∞∑
i=0

Ti(b− 1)
(at)i

i!

)( ∞∑
k=0

BelGk,λ(bx2, y)
(at)k

k!

)
.

Finally (5.14) follows after an appropriate change of summation index and compar-

ison of the coefficients of tn

n! . �

6. Conclusion

Motivated by importance and potential for applications in certain problems in num-
ber theory, combinatorics, classical and numerical analysis and other fields of ap-
plied mathematics, various special numbers and polynomials, and their variants and
generalizations have been extensively investigated (for example, see the references
here and those cited therein). The results presented here, being very general, can
be specialized to yield a large number of identities involving known or new simpler
numbers and polynomials. For example, the case y = 0 of the results presented
here give the corresponding ones for the generalized partially degenerate Genocchi
polynomials [8].
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