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ASYMPTOTIC DEVELOPMENT OF KAZHIKHOV-SMAGULOV

EQUATIONS

TIMACK NGOM, AROUNA OUÉDRAOGO, MOHAMED DAHI

Abstract. We consider a flow governed by the Kazhikhov-Smagulov equa-
tions and which takes place in a thin domain. This permits us to introduce a

parameter ε, equal to the ratio between the charateristic depth and charateris-

tic length of the domain, assumed to be small. Then we do a formal asymptotic
expansion and an averaging to respect the vertical component. We prove the

existence of solutions of the obtained model.

1. Introduction

In this paper we are concerned with a shallow depth analysis of the Kazhikhov-
Smagulov equations which model the behavior of a viscous and incompressible
fluid formed by two miscible and homogeneous components each one of them; for
example fresh water and salt water, inside a subset domain Ω of R3, during a time
interval ]0, T [, considering a mass scattering effect that obeys Fick’s law.

We denote by ρ1(t, x, y, z) and ρ2(t, x, y, z) the respective densities of component
1 and component 2 in the mixture at time t and at the coordinate point (x, y, z),
W1(t, x, y, z) and W2(t, x, y, z) the respective speeds of component 1 and component
2 in the mix at time t and at the point of coordinates (x, y, z).

Let c(t, x, y, z) and d(t, x, y, z) be the respective mass and volume concentrations
of the first component, and ρ(t, x, y, z) the average density of the mixture.
The mass-volume relation gives

c

d
=
ρ1

ρ
and

1− c
1− d

=
ρ2

ρ
.

We show that

ρ = dρ1 + (1− d)ρ2.

Define W as the barycentric speed or the average masse speed, and V as the average
volume speed of the mixture, we show that (see [21], p 24-26):

W = cW1 + (1− c)W2, V = dW1 + (1− d)W1 and div(V ) = 0.
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The conservation laws of mass and moments lead to the following partial differential
equations defined in QT ∂tρ+ div(ρW ) = 0,

ρ(∂tW +W.∇W )− µ∆W +∇p− (µ+ µ′)∇div(W ) = ρf.
(1.1)

Where p, is the pressure, f = −gρ~k, g is the gravitational force and ~k = t(0, 0, 1),
µ and µ′ are assumed to be constant such that µ > 0 and 2µ + 3µ′ ≥ 0. The
condition of incompressibility is reflected in div(V ) = 0. We denote QT =]0, T [×Ω
with T > 0 and Ω an open subset of R3.

We show, as in ([21], p 24-26), that W obeys Fick’s law:

W = V − λ

ρ
∇ρ, (1.2)

where λ > 0, is the mass diffusion coefficient and V = (u, v, w).

(1.2) allows us to eliminate W in (1.1) and to obtain


∂tρ+ V.∇ρ = λ∆ρ,
ρ(∂tV + (V.∇)V )− µ∆V − λ(∇ρ.∇)V − λ(V.∇)∇ρ

+λ2(∇ρ.∇(∇ρρ )− ∆ρ
ρ (∇ρ)) +∇P = ρf,

div(V ) = 0,

(1.3)

where P , the pressure, is a new unknown.
When λ is small, there is validity of a model in which the terms of (1.3) are
depreciated in λ2, that is (1.3) becomes ∂tρ+ V.∇ρ = λ∆ρ,

ρ(∂tV + V.∇V )− µ∆V − λ(∇ρ.∇)V − λ(V.∇)∇ρ+∇P = ρf,
div(V ) = 0.

(1.4)

An equivalent formulation of (1.4) in conservative form is: ∂tρ+ div(ρV ) = λ∆ρ,
∂t(ρV ) + div(ρV ⊗ V )− λdiv[∇ρ⊗ V + V ⊗∇ρ]− µ∆V +∇P = ρf,
div(V ) = 0.

(1.5)

At least, formally, the preceding problems approach, when λ tends to 0, to the
problem of Navier-Stokes with a variable density: ∂tρ+ div(ρV ) = 0,

∂t(ρV ) + div(ρV ⊗ V )− µ∆V +∇p = ρf,
div(V ) = 0.

(1.6)
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To the system (1.4), we add the limits conditions:

w = 0 at z = 1,

(σ(V ).ns)τ = 0 at z = 1,

∂ρ

∂n
= ∇ρ · ∇ns = 0 on ΣT =]0, T [×∂Ω,

w = 0 at z = 0,

(σ(V ).nf )τ = 0 at z = 0,

ρ|t=0 = ρ0, 0 < m ≤ ρ0 ≤M, V|t=0 = V0 in Ω,

(1.7)

where ρ0 and V0, the initial density and velocity are data, β is a capillarity coeffi-
cient, κ is the average curvature of the free surface and p0 the atmospheric pressure
at the free surface, ns is the unit normal outside the free surface, nf is the unitary
outer normal at the bottom.

(σ(V ).ns)τ = σ(V ).ns − ((σ(V ).ns).ns)ns and ns = t(0, 0, 1)

(σ(V ).nf )τ = σ(V ).nf − ((σ(V ).nf ).nf )nf and nf = t(0, 0,−1)

where I is the identity matrix 3× 3 and H the free surface.
Then, for β = 0 and knowing that P|z=1 = p0, (1.7) can be rewritten

w = 0 at z = 1 and at z = 0,

∂zU = 0 at z = 1 and at z = 0,

∂zρ = 0 at z = 1 and at z = 0,

ρ|t=0 = ρ0, 0 < m ≤ ρ0 ≤M, V|t=0 = V0 in Ω,

(1.8)

where U = t(u, v).
Geophysical fluid dynamics is a crucial field for understanding the behavior of the
atmosphere and the ocean. However, when it comes to analyzing and simulating the
complex flows in these systems, using the complete hydrodynamical and thermody-
namical equations is mathemati- cally and numerically challenging. To overcome
this, scientists have introduced the Navier-Stokes equations in shallow water in
geophysical fluid dynamics (see [3, 4, 5, 9, 14, 15, 17, 18]). These equations were
numerically studied, for instance in [7, 8, 10, 11, 12, 13, 18] and mathemat ically for
viscous version (i.e., viscous Saint-Venant for the hydrodynamic part), for instance
in [22, 24] using the well-known results [1, 2, 3, 4, 5, 14, 16, 17]. The aim of this
paper is to prove existence of weak solution of a system derived from a viscous and
incompressible fluid formed by two miscible and homogeneous components each
one of them. The key issue in our proof is to construct the approximate solutions
satisfying boundedness of the density and Bresch-Desjardins entropy. We will first
face a new difficulty on how to estimate the pression. In order to overcome this
difficulty, we represent the pression as a function of the density via asymptotic de-
velopment and averaging. Therefore, we use the Faedo-Galerkin method and the
classical theory of ordinary equations to prove the existence of the approximate
solutions.
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The rest of the paper is organized as follows. In section 2, we make an adimension-
alization in order to simplify the model and obtain mathematical equations whose
data are unitless. In Section 3, we make an asymptotic development in order to
neglect the terms of the order of ε2. Next, in Section 4 the asymptotic model is
vertically averaged to obtain a reduced two-dimensional model where the pressure
is expressed as a function of the density. In section 5, we use the Faedo-Galerkin
method and the classical theory of ordinary equations to prove the existence of
weak solution to the asymptotic model. Finally, in the last section we give some
ideas of possible extensions and generalizations.

2. Adimensionnalisation

We need the following maximum principle result.

Lemma 2.1 (Maximum principle). Let ρ be defined in ]0, T [×Ω, such that

∂tρ+ div(ρV ) = λ∆ρ with div(V ) = 0, ρ(0) = ρ0, 0 < m ≤ ρ0 ≤M.

Then,
m ≤ ρ(t, x, y, z) ≤M.

Proof. Set ρ− = max(0,m− ρ) and ρ+ = min(0,M − ρ). One has

(M − ρ)∂tρ+ (M − ρ)div(ρV ) = λ(M − ρ)∆ρ.

Integrating over Ω we get∫
Ω

(M − ρ)∂tρ+

∫
Ω

(M − ρ)div(ρV ) = λ

∫
Ω

(M − ρ)∆ρ.

So

−1

2

∫
Ω

∂t
(
(M − ρ)2

)
− 1

2

∫
Ω

V.∇
(
(M − ρ)2

)
= −λ

∫
Ω

∇(M − ρ)∇ρ.

Then,

−1

2

d

dt

∫
Ω

(M − ρ)2 = λ

∫
Ω

(∇(M − ρ))2

which becomes
d

dt

∫
Ω

(M − ρ)2 + 2λ

∫
Ω

(∇(M − ρ))2 = 0

and then,
d

dt

∫
Ω

(ρ+)2 + 2λ

∫
Ω

(∇ρ+)2 = 0.

Finaly,
d

dt
||ρ+||2L2(Ω) + 2λ||∇ρ+||2L2(Ω) = 0

Integrating from 0 to t ∈]0, T [ we have

||ρ+||2L2(Ω)(t)− ||ρ
+(0)||2L2(Ω) + 2λ

∫ t
0
||∇ρ+||2L2(Ω) = 0.

We know that ρ+(0) = min(0,M − ρ0) = 0, then

||ρ+||2L2(Ω) + 2λ

∫ t

0

||∇ρ+||2L2(Ω) = 0,
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which implies ρ+ = 0 and 0 ≤M − ρ.
Therefore,

ρ ≤M.

We do the same for the lower bound m to obtain

m ≤ ρ.
�

Now, let U = t(u, v) be the horizontal speed, (x, y) the couple of horizontal
variables and z the vertical variable. We also define the characteristic quantities:
L the length of the canal, L the height of the canal, T the times, ρ the density,

U = L
T the horizontal speed, W = L

T the vertical speed and P = ρU
2

the pressure.
The following new dimensionless variables are introduced:

t̃ =
t

T
, ρ̃ =

ρ

ρ
, ũ =

u

U
, ṽ =

v

U
, w̃ =

w

W
, x̃ =

x

L
, ỹ =

y

L
, z̃ =

z

L
, P̃ =

P

ρU
2 .

Introduce these new dimensionless variables in the system (1.4) and evaluate one
by one its three equations.

The first gives, by setting Ũ = (ũ, ṽ):

ρ

T
∂t̃ρ̃+

ρU

L
divx̃,ỹ(ρ̃Ũ) +

ρW

L
∂z̃(ρ̃w̃) =

λρ

L2
∆x̃,ỹρ̃+

λρ

L2
∂2
z̃ ρ̃. (2.1)

Multiplying equation (2.1) by
T

ρ
, we obtain

∂t̃ρ̃+ divx̃,ỹ(ρ̃Ũ) + ∂z̃(ρ̃w̃) =
c

Re
∆x̃,ỹρ̃+

c

εRe
∂2
z̃ ρ̃, (2.2)

where c =
λ ρ

µ
, Re = ρU L

µ is the Reynolds number and the quantity ε =
L2

L2
<< 1.

The third equation of (1.4) gives

∂x̃ũ+ ∂ỹ ṽ + ∂z̃w̃ = 0. (2.3)

With regard to the second equation of (1.4), we start by spliting it into horizontal
and vertical parts to obtain :

ρ
(
∂tU + (U.∇x,y)U + w∂zU

)
− µ∆x,yU − µ∂2

zU − λ(∇x,yρ.∇x,y)U
−λ∂zρ∂zU − λ(U.∇x,y)∇x,yρ− λw∂z.∇x,yρ+∇x,yP = 0,

ρ
(
∂tw + (U.∇x,y)w + w∂zw

)
− µ∆x,yw − µ∂2

zw − λ(∇x,yρ.∇x,y)w
−λ∂zρ∂zw − λ(U.∇x,y)∂zρ− λw∂2

zρ+ ∂zP = −gρ2.

(2.4)

Introducing the new variables into the equation (2.4), we obtain

ρρ̃
(U
T
∂t̃Ũ +

U
2

L
(Ũ .∇x̃,ỹ)Ũ +

U W

L
w̃∂z̃Ũ

)
− µ U

L2
∆x̃,ỹŨ − µ

U

L2
∂2
z̃ Ũ +

ρU
2

L
∇x̃,ỹP̃

−λρUL2 (∇x̃,ỹρ̃.∇x̃,ỹ)Ũ − λρUL2 ∂z̃ ρ̃∂z̃Ũ − λ
ρU

L2
(Ũ .∇x̃,ỹ)∇x̃,ỹρ̃− λ

ρW

LL
w̃∂z̃.∇x̃,ỹρ̃ = 0,

ρρ̃
(W
T
∂t̃w̃ +

U W

L
(Ũ .∇x̃,ỹ)w̃ +

W
2

L
w̃∂z̃w̃

)
− µW

L2
∆x̃,ỹw̃ − µ

W

L2
∂2
z̃ w̃ +

ρU
2

L
∂z̃P̃

−λρWL2 (∇x̃,ỹρ̃.∇x̃,ỹ)w̃ − λρWL2 ∂z̃ ρ̃∂z̃w̃ − λ
ρU

LL
(Ũ .∇x̃,ỹ)∂z̃ ρ̃− λ

ρW

L2
w̃∂2

z̃ ρ̃ = −gρ̄2ρ̃2.
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Multiplying the horizontal and vertical parts of the above system by
T

ρU
and

T

ρW
respectively, we obtain :



ρ̃
(
∂t̃Ũ + (Ũ .∇x̃,ỹ)Ũ + w̃∂z̃Ũ

)
− 1

Re
∆x̃,ỹŨ

− 1

εRe
∂2
z̃ Ũ −

c

Re
(∇x̃,ỹρ̃.∇x̃,ỹ)Ũ − c

εRe
∂z̃ ρ̃∂z̃Ũ

− c

Re
(Ũ .∇x̃,ỹ)∇x̃,ỹρ̃−

c

Re
w̃∂z̃.∇x̃,ỹρ̃+∇x̃,ỹP̃ = 0,

ρ̃
(
∂t̃w̃ + (Ũ .∇x̃,ỹ)w̃ + w̃∂z̃w̃

)
− 1

Re
∆x̃,ỹw̃

− 1

εRe
∂2
z̃ w̃ −

c

Re
(∇x̃,ỹρ̃.∇x̃,ỹ)w̃ − c

εRe
∂z̃ ρ̃∂z̃w̃

− c

εRe
(Ũ .∇x̃,ỹ)∂z̃ ρ̃−

c

εRe
w̃∂2

z̃ ρ̃+
1

ε
∂z̃P̃ =

1

εF 2
r

ρ̃2.

(2.5)

where Fr is the Froude’s number given by Fr = Ū√
ρgL .

We also have

m

ρ
≤ ρ̃ ≤ M

ρ
.

By introducing dimensionless variables into (1.8) we get



w̃ = 0 at z̃ = 1 and at z̃ = 0,

∂z̃Ũ = 0 at z̃ = 1 and at z̃ = 0,

∂z̃ ρ̃ = 0 at z̃ = 1 and at z̃ = 0,

ρ̃|t=0 = ρ̃0 Ṽ|t=0 = Ṽ0 in Ω.

(2.6)

Omitting the tilde in equations (2.2), (2.3) and (2.5) and setting

∇x,y = ∇, divx,y = div,

the dimensionless version of the system (1.4) is written :



∂tρ+ div(ρU) + ∂z(ρw) =
c

Re
∆ρ+

c

εRe
∂2
zρ,

ρ
(
∂tU + (U.∇)U + w∂zU

)
− 1

Re
∆U +∇P

− c
Re

(
(∇ρ.∇)U + (U.∇)∇ρ+ w∂z.∇ρ

)
− 1

εRe∂
2
zU − c

εRe∂zρ∂zU = 0,

ρ
(
∂tw + (U.∇)w + w∂zw

)
− 1

Re
∆w − c

Re
(∇ρ.∇)w − 1

εRe
∂2
zw

+ 1
ε∂zP −

c
εRe

(
∂zρ∂zw + (U.∇)∂zρ+ w∂2

zρ
)

= 1
εF 2
r
ρ2,

div U + ∂zw = 0

(2.7)
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and (2.6) becomes

w = 0 at z = 1 and at z = 0,

1
ε∂zU = 0 at z = 1 and at z = 0,

1
ε∂zρ = 0 at z = 1 and at z = 0,

ρ|t=0 = ρ0 V|t=0 = V0 in Ω,

(2.8)

with

m

ρ
≤ ρ ≤ M

ρ
.

3. Asymptotic development

For any function f , we set

f = f0 + εf1.

We introduce the asymptotic development in (2.7) and (2.8).
To order ε−1 :
• We get from (2.7)

∂2
zρ

0 = 0,

∂2
zU

0 + c ∂zρ
0∂zU

0 = 0,

− 1

Re
∂2
zw

0 + ∂zP
0 − c

Re
∂zρ

0∂zw
0 − c

Re
(U0.∇)∂zρ

0 − c

Re
w0∂2

zρ
0

= −1
Fr2 (ρ0)2,

(3.1)

• Using boundary conditions in (2.8), we get

{
∂zρ

0 = 0 at z = 0,
∂zU

0 = 0 at z = 0.
. (3.2)

From the system (3.1), one has ∂2
zρ

0 = 0, which implies that ∂zρ
0 is independent

of z.
From the system (3.2), we have ∂zρ

0 = 0 at z = 0, so ∂zρ
0 = 0, from where ρ0 is

independent of z.
Similarly, U0 is independent of z.
To the main order ε0, taking into account the fact that ∂zρ

0 = 0 and ∂zU
0 = 0:

• From (2.7) we get:



∂tρ
0 + div(ρ0U0) + ∂z(ρ

0w0) =
c

Re
∆ρ0 +

c

Re
∂2
zρ

1,

ρ0
(
∂tU

0 + (U0.∇)U0
)
− 1

Re
∆U0 +∇P 0

− c
Re

(
(∇ρ0.∇)U0 + (U0.∇)∇ρ0

)
− 1

Re∂
2
zU

1 = 0,

div (U0) + ∂zw
0 = 0.

(3.3)



42 T. NGOM, A. OUÉDRAOGO, M. DAHI

• From (2.8) we have

∂zρ
1 = 0 at z = 1 and at z = 0,

w0 = 0 at z = 1 and at z = 0,

∂zU
1 = 0 at z = 1 and at z = 0,

ρ0
|t=0 = ρ0

0 V 0
|t=0 = V 0

0 in Ω.

(3.4)

We also have
m

ρ
≤ ρ0 + ερ1 ≤ M

ρ
,

which implies
m

ρ
≤ ρ0 ≤ M

ρ
.

4. Averaging

Integrating the first equation of (3.3) from 0 to 1 with respect to z, we obtain:

∂tρ
0 + div(ρ0U0) + ρ0w0

/z=1 − ρ
0w0

/z=0 =
c

Re
∆ρ0 +

c

Re
∂zρ

1
/z=1 −

c

Re
∂zρ

1
/z=0.

Knowing that c
Re∂zρ

1
/z=1 −

c
Re∂zρ

1
/z=0 = 0 and w0

/z=1 = w0
/z=0 = 0, one has

∂t(ρ
0) + div(ρ0U0) =

c

Re
∆ρ0. (4.1)

Integrating the second equation of (3.3) from 0 to 1 with respect to z, we get:

ρ0
(
∂tU

0 + (U0.∇)U0
)
− 1

Re
∆U0 − c

Re

(
(∇ρ0.∇)U0 + (U0.∇)∇ρ0

)
+

∫ 1

0

∇P 0 − 1

Re
∂zU

1
/z=1 +

1

Re
∂zU

1
/z=0 = 0.

(4.2)

From (3.1), and using the fact that ∂zρ
0 = 0 and ∂zU

0 = 0, we have:

∂zP
0 = − 1

Fr2
(ρ0)2.

Integrating this quantity from z to 1, one has:

P 0(1)− P 0(z) = − 1

Fr2
(ρ0)2(1− z)

=⇒ P 0(z) = P0 +
1

Fr2
(ρ0)2(1− z)

=⇒ ∇P 0(z) =
1

Fr2
∇((ρ0)2)(1− z)

=⇒
∫ 1

0

∇P 0(z) =
1

Fr2
ρ0∇ρ0.

Therefore, knowing that ∂zU
1
/z=0 = 0 and ∂zU

1
/z=1 = 0, equation (4.2) becomes

ρ0
(
∂tU

0 + (U0.∇)U0
)
− 1

Re
∆U0 − c

Re

(
(∇ρ0.∇)U0 + (U0.∇)∇ρ0

)
+

1

Fr2
ρ0∇ρ0 = 0. (4.3)
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5. Existence of weak solution

Dropping the power 0, (4.1) and (4.3) form the system
∂t(ρ) + div(ρU) = c

Re∆ρ,

ρ
(
∂tU + (U.∇)U

)
− 1

Re∆U − c
Re

(
(∇ρ.∇)U + (U.∇)∇ρ

)
+

1

Fr2
ρ∇ρ = 0.

(5.1)

To the above system are added the following conditions:
∂ρ

∂n
= 0 on ΣT , where ΣT = [0, T ]× ∂Q,

U = 0 on ΣT ,

ρ|t=0 = ρ0 U|t=0 = U0 in Q,

(5.2)

where Q is an open bounded subset of R2.
The usual spaces are introduced with boundary conditions of the Dirichlet type:

H =
{
U, U ∈ L2(Q)2, U.n = 0 on ∂Q

}
and

V = {U, U ∈ H1(Q)2, U = 0 on ∂Q}.
On the other hand, we consider the analog space

H2
N (Q) =

{
ρ ∈ H2(Q) :

∂ρ

∂n
= 0 on ∂Q,

∫
Q

ρ(t, x)dx =

∫
Q

ρ0(x)dx

}
,

with H2
N (Q) = ρ0 +H2

N,0(Q) where ρ0 = 1
meas(Q)

∫
Q
ρ0(x)dx and

H2
N,0 =

{
ρ ∈ H2(Q) :

∂ρ

∂n
= 0 on ∂Q,

∫
Q

ρ(t, x)dx = 0

}
.

We prove that H2
N,0 is a closed subspace of H2 where the norms ||ρ||H2(Q) and

||∆ρ||L2(Q) are equivalent.

Definition 5.1. (Weak solution of the asymptotic model)
Given ρ0 ∈ H1(Q) ∩ L∞(Q), U0 ∈ H we say that the couple (U, ρ) is a solution of
the asymptotic model (5.1)-(5.2) in Q, if:

ρ ∈ L2(0, T ; H2
N (Q)) ∩ L∞(QT ) ∩ L∞(0, T ; H1

N (Q)) (5.3)

U ∈ L2(0, T ;V ), ρU ∈ L∞(0, T ;L2(Q)2) (5.4)

and satisfies

−
∫
QT

[ρ∂tψ + (ρU − c

Re
∇ρ) · ∇ψ] =

∫
Q

ρ0ψ(0, x, y) dxdy, ∀ψ ∈ D(QT ), (5.5)

−
∫
QT

[
ρU∂tψ +

(
ρU ⊗ U − 1

Re
∇U − c

Re
(∇ρ⊗ U + U ⊗∇ρ)

)
· ∇ψ

]
− 1

2Fr2

∫
QT

ρ2 div (ψ) +
c

Re

∫
QT

div (U)∇ρ · ψ

=

∫
Q

ρ0U0ϕ(0, x, y) dxdy, ∀ψ ∈ D(QT ),
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where QT = [0, T ]×Q.

The presence of the diffusion term − c

Re
∆ρ, gives to ρ good regularity properties

of type (5.3). In this fact, (5.3)-(5.4) and (5.5), imply the first equation of (5.1)
almost everywhere in QT .

5.1. Linearization of approximated problem. As V is a subspace of H1(Q)
(Hilbert space separable), we have (see Theorem IX.31 and Remark 29 in [6], P
192-193) a Hilbert base in V , (w1, ..., wn, ...), such that wm ∈ C(Q)2, for all m ≥ 1,
and (wi, wj)L2(Q) = 0 if i 6= j; i, j ≥ 1.

We denote by V m the subspace of V generated by (w1, ..., wm) converging to-
wards V . In these conditions we say that the couple (ρm, Um) is an approximate
solution of (5.1)-(5.2) if ρm ∈ C1(QT ) ; Um ∈ C1([0, T ];V m) and satisfies:

∫
Q

[
ρm
(
∂tU

m + (Um.∇)Um
)
− c

Re

(
(∇ρm.∇)Um + (Um.∇)∇ρm

)]
·G

+ 1
Fr2

∫
Q
ρm∇ρm ·G+ 1

Re

∫
Q
∇Um∇G = 0,

Um|t=0 = Um0 in Ω,

(5.6)

for all G ∈ C1([0, T ];V m) and
∂tρ

m + div(ρmUm)− c
Re∆ρm = 0 a.e. in QT ,

∂ρ

∂n
= 0 on ΣT , ρ

m
|t=0 = ρ0 +

1

m
in Q.

(5.7)

In (5.6), we suppose that Um0 is the mth term of a sequence (Um0 )m≥1 with the
following properties:

Um0 ∈ V m and Um0 −→ U0 in H.

Moreover in (5.7)
ρm0 ∈ C1(Q), ρm0 −→ ρ0 in L∞(Q) weakly *.

5.2. Faedo-Galerkin approximation for the weak formulation of the den-
sity. Given wm ∈ C([0, T ], V m), we have to solve the problem: find ρm ∈ C1(QT )
such that: 

∂tρ
m + div(ρmwm) = c

Re∆ρm in QT ,
∇ρm · n = 0 on ΣT ,
ρm|t=0 = ρ0 + 1

m in Q.
(5.8)

According to [23], we have the existence and uniqueness of a solution for (5.8) to
respect to wm. The solution of (5.8) satisfies

ρm0 ∈ C1(Q), r1 ≤ ρm(t, x) ≤ r2 with r1 = inf
Q
ρm|t=0, r2 = sup

Q
ρm|t=0. (5.9)

5.3. Faedo-Galerkin approximation for the weak formulation of the mo-
mentum. Knowing wm and ρm we solve the linearized problem Um ∈ C([0, T ], V m)
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such that



∫
Q

[
ρm
(
∂tU

m + (wm.∇)Um
)
− c

Re

(
(∇ρm.∇)Um + (Um.∇)∇ρm

)]
·Gm

+
1

Fr2

∫
Q

ρm∇ρm ·Gm +
1

Re

∫
Q

∇Um∇Gm = 0,

Um|t=0 = Um0 in Q.

(5.10)

We set

Um(t, x) =

m∑
j=1

φj(t)w
j(x). (5.11)

We replace in (5.10) Um by its expression given by (5.11), and we obtain:

∫
Q

[
ρm
(
∂t
( m∑
j=1

φj(t)w
j
)

+ (wm.∇)
( m∑
j=1

φj(t)w
j
))]
·Gm

∫
Q

[
− c

Re

(∇ρm · ∇)(

m∑
j=1

φj(t)w
j) + ((

m∑
j=1

φj(t)w
j) · ∇)∇ρm

+
1

Fr2
ρm∇ρm

]
·Gm

+
1

Re

∫
Q

∇
( m∑
j=1

φj(t)w
j
)
· ∇Gm = 0.

Therefore,

m∑
j=1

∫
Q

[
ρm
(
∂tφj(t)w

j + φj(t)(w
m.∇)wj

)]
·Gm

m∑
j=1

∫
Q

[
− c

Re

(
φj(t)(∇ρm.∇)wj + φj(t)(w

j .∇)∇ρm
)

+
1

Fr2
ρm∇ρm

]
·Gm

+
1

Re

∫
Q

m∑
j=1

φj(t)∇wj · ∇Gm = 0.

We take Gm = wi to get,

m∑
j=1

dφj
dt

∫
Q

ρmwjwi+

m∑
j=1

φj

∫
Q

(
(wm.∇)wjwi− c

Re

(
(∇ρm.∇)wjwi + (wj .∇)∇ρmwi

))

+
1

Fr2

∫
Q

ρm∇ρmwi +
1

Re

m∑
j=1

φj

∫
Q

∇wj∇wi = 0.
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We set

aij =

∫
Q

ρmwiwj ∈ C1([0, T ]) (5.12)

bij =

∫
Q

(
(wm.∇)wjwi − c

Re

(
(∇ρm.∇)wjwi + (wj .∇)∇ρmwi

))
+

∫
Q

1

Re
∇wj∇wi (5.13)

di =
1

Fr2

∫
Q

ρm∇ρmwi ∈ C([0, T ]). (5.14)

We say that Um is a solution of (5.10) if and only if (φj)1≤j≤m ∈ C([0, T ]) and
satisfies the ordinary differential problem:

m∑
j=1

aij(t)
dφj
dt

+

m∑
j=1

bij(t)φj − di(t) = 0, (5.15)

(φj(0))1≤j≤m = components of Um0 .
The matrix A = (aij)1≤i,j≤m is symmetrical because aij =

∫
Q
ρmwiwj .

Let’s x ∈ Rm, x 6= 0Rm and compute txAx. We have Ax =

m∑
j=1

xj

∫
Q

ρmwiwj ,

then,

txAx =

m∑
i=1

m∑
j=1

xixj

∫
Q

ρmwiwj

≥
m∑
i=1

m∑
j=1

xixj

∫
Q

r1w
iwj (according to (5.9))

≥
m∑
i=1

(xi)
2

∫
Q

(wi)2

≥
m∑
i=1

(xi)
2‖wi‖2L2(Q) ≥ 0,

because

∫
Q

(wiwj) = (wi, wj)L2(Q) = 0 if i 6= j.

So, A is definite positive.
A being symmetric and definite positive, so A is invertible and (5.15) becomes


dΦ

dt
= A−1BΦ +A−1D in [0, T ],

Φ(0) ∈ Rm,

where Φ is the column vector formed from φj , B = (bij) and D = di.
So, the classical theory of ordinary equation equations is applicable and it leads to
the existence and uniqueness of a solution (ρm, Um) for (5.10).
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Naturally, (ρm, Um) also verifies the conservative form:

−
∫
QT

[
− ψ∂t(ρU) +

(
ρU ⊗ U − 1

Re
∇U − c

Re
(∇ρ⊗ U + U ⊗∇ρ)

)
· ∇ψ

]
− 1

2Fr2

∫
QT

ρ2 div (ψ)− c

Re

∫
QT

U · ∇ρ div (ψ) +
c

Re

∫
QT

∇ρ · ∇(Uψ)

= 0 ∀ψ ∈ V m (5.16)

∂tρ
m − div(ρmUm) =

c

Re
∆ρm. (5.17)

5.4. Main result.

Theorem 5.2. Let’s u0 ∈ H, ρ0 ∈ H1(Q) ∩ L∞(Q). Suppose that ρ0 ≥ 0 almost
everywhere in Q and 0 < λ < µ

4M .
Then, there is at least one weak solution (ρ, U) of the asymptotic model of mass
diffusion (5.1) in QT .

Proof. We make the proof of Theorem 5.2 in three steps.

Step 1: A priori estimates

• First estimates
We have r1 ≤ ρm ≤ r2. In particular

ρm is bounded in L∞(QT ). (5.18)

According to (5.6), taking G = Um we get:

1

2

∫
Q

∂t
(
ρm(Um)2 +

1

Fr2
(ρm)2

)
+

1

Re

∫
Q

|∇Um|2 +
c

ReFr2

∫
Q

|∇ρm|2

= − c

Re

∫
Q

ρm|div (Um)|2 − 2c

Re

∫
Q

ρmUm∇div (Um)− c

Re

∫
Q

ρm∇Um t∇Um

≤ c

Re

∣∣∣∣∫
Q

ρm|div (Um)|2
∣∣∣∣+

2c

Re

∣∣∣∣∫
Q

ρmUm∇div (Um)

∣∣∣∣+
c

Re

∣∣∣∣∫
Q

ρm∇Um t∇Um
∣∣∣∣

≤ cM

ρRe

∣∣∣∣∫
Q

|div (Um)|2
∣∣∣∣+

2cM

ρRe

∣∣∣∣∫
Q

−|div (Um)|2
∣∣∣∣+

cM

ρRe

∣∣∣∣∫
Q

∇Um t∇Um
∣∣∣∣

≤ cM

ρRe

∫
Q

|div (Um)|2 +
2cM

Re

∫
Q

|div (Um)|2 +
cM

ρRe

∫
Q

|∇Um|2

≤ 4cM

ρRe

∫
Q

|∇Um|2. (5.19)

From inequality (5.19), we obtain:

d

2dt

∫
Q

(
ρm(Um)2 +

1

Fr2
(ρm)2

)
+
ρ− 4cM

Re

∫
Q

|∇Um|2

+
c

ReFr2

∫
Q

|∇ρm|2 ≤ 0. (5.20)
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As λ <
µ

4M
, then ρ− 4cM > 0 (we recall that c =

λ ρ

µ
).

So,

(ρm)1/2(Um) is bounded in L∞(0, T ;L2(Q)2) as well as (ρmUm). (5.21)

Indeed, ∫
Q

(ρm)2(Um)2 ≤ r2

∫
Q

ρm(Um)2 ≤ C,

∇Um is bounded in L2(0, T ;L2(Q)4) (5.22)

and

∇ρm is bounded in L2(0, T ;L2(Q)2). (5.23)

Thanks to Sobolev’s injection of H1
0 (Q) into L6(Q), we have Um is bounded

in L2(0, T ;L6(Q)2), so

ρmUm is bounded in L2(0, T ;L6(Q)2). (5.24)

The regularity of Um allows from (5.22) to get

Um is bounded in L2(0, T ;V ). (5.25)

From where,

Um is bounded in L2(0, T ;V ) and L2(0, T ;L6(Q)2). (5.26)

Lemma 5.3. More generally, we have: (ρm)αUm is bounded in Lγ(0, T ;Lβ(Q)2)
if and only if ||(ρm)αUm||γ

Lβ(Q)2
is bounded in L1([0, T ]).

Proof. /⇒ Suppose that (ρm)αUm is bounded in Lγ(0, T ;Lβ(Q)2), so[∫ T

0

(

∫
Q

|(ρm)αUm|β)γ/β

]1/γ

≤ C,

which implies that∫ T

0

||(ρm)αUm||γ
Lβ(Q)2

≤ Cγ .

Therefore, ||(ρm)αUm||γ
Lβ(Q)2

is bounded in L1(0, T ).

⇐/ Suppose that ||(ρm)αUm||γ
Lβ(Q)2

is bounded inL1(0, T ).

So ∫ T

0

||(ρm)αUm||γ
Lβ(Q)2

≤ C,

which implies that[∫ T

0

||(ρm)αUm||γ
Lβ(Q)2

]1/γ

≤ C1/γ ,

i.e.,

||(ρm)αUm||Lγ(0,T ;Lβ(Q)2) ≤ C1/γ .

Therefore, (ρm)αUm is bounded in Lγ(0, T ;Lβ(Q)2). �
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We also have

||(ρm)αUm||γ
Lβ(Q)2

=

(∫
Q

|(ρm)αUm|β
) γ
β

=

(∫
Q

|(ρm)1/2Um|2βα|Um|β(1−2α)

) γ
β

.

If βα+ β(1−2α)
6 = 1, then according to Hölder inequality,

||(ρm)αUm||γ
Lβ(Q)2

≤ ||(ρm)1/2Um||2γαL2(Q)2)||U
m||γ(1−2α)

L6(Q)2 .

||(ρm)1/2Um||2γαL2(Q)2 is bounded in L∞(0, T ) thanks to (5.21).

According to (5.26), ||Um||γ(1−2α)
L6(Q)2 is bounded in L1(0, T ) if γ(1− 2α) = 2,

so
(ρm)αUm is bounded in Lγ(0, T ;Lβ(Q)2) if βγ + β(1−2γ)

6 = 1 and γ(1−
2α) = 2.

If β = 4, α = 1/8, γ = 8/3, we have βγ+ β(1−2γ)
6 = 1 and γ(1−2α) = 2.

So (ρm)1/8Um is bounded in L8/3(0, T ;L4(Q)2).

On the other hand,∫
Q

|(ρm)1/2Um|4 =

∫
Q

|(ρm)3/8(ρm)1/8Um|4 ≤M
∫
Q

|(ρm)1/8Um|4

≤ C||(ρm)1/8Um||L8/3(0,T ;L4(Q)2).

Then,

||(ρm)1/2Um||L8/3(0,T ;L4(Q)2) ≤ C||(ρm)1/8Um||L8/3(0,T ;L4(Q)2),

i.e.,

(ρm)1/2Um is bounded in L8/3(0, T ;L4(Q)2). (5.27)

Now we will estimate ρmUm ⊗ Um from (5.27) :

||ρmUm ⊗ Um||L2(Q)4 =

(∫
Q

|ρmUm ⊗ Um|2
)1/2

=

∫
Q

|ρm
2∑
i=1

2∑
j=1

umi u
m
j |2
1/2

=

(∫
Q

|(ρm)1/2Um|2|(ρm)1/2Um|2
)1/2

= ||(ρm)1/2Um||2L4(Q)2 ,

then

||ρmUm ⊗ Um||4/3L2(Q)4 = ||(ρm)1/2Um||8/3L4(Q)2 ,

which implies that

||ρmUm ⊗ Um||L4/3(0,T ;L2(Q)4) = ||(ρm)1/2Um||L8/3(0,T ;L4(Q)2).

According to (5.27), we deduce that

ρmUm ⊗ Um is bounded in L4/3(0, T ;L2(Q)4). (5.28)
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• Better estimates of ρm.
According to (5.7) we have,

∇ρmt +∇(Um.∇ρm) +∇(ρmdiv(Um))− c

Re
∇∆ρm = 0.

Multiplying this equality by ∇ρm and integrating on Q one has:∫
Q

∇ρmt ·∇ρm+

∫
Q

∇(Um·∇ρm)·∇ρm+∇(ρmdiv(Um))·∇ρm− c

Re

∫
Q

∇∆ρm·∇ρm = 0.

Green’s formula applied on the last three terms gives:

1

2

∫
Q

(∇ρm)2
t −

∫
Q

∆ρm (Um · ∇ρm + ρmdiv(Um)) +
c

Re

∫
Q

(∆ρm)2 = 0.

Integrating from 0 to t and multiplying by 2 we obtain:∫
Q

(∇ρm)2(t)+
2c

Re

∫ t

0

∫
Q

(∆ρm)2 = 2

∫ t

0

∫
Q

∆ρm(Um·∇ρm+ρmdiv(Um))+||∇ρ0||2L2(Q).

According to ([21], page 35), we have

|
∫
Q

∆ρm(Um · ∇ρm + ρmdiv(Um))| ≤ c

2Re
||∆ρm||2L2(Q) + C,

then,

||∇ρm(t)||2L2(Q) +
c

Re

∫ t

0

||∆ρm||2L2(Q) ≤ K.

By applying Gronwall’s lemma and the equivalence of norms in H2
N,0(Q),

we obtain

max
t
||∇ρm||2L2(Q)2 +

c

Re
||ρm||2L2(0,T ;H2(Q)) ≤ Cste, (5.29)

so

ρm is bounded in L2(0, T ;H2(Q)) ∩ L∞(0, T ;H1(Q)). (5.30)

• Estimates of derivatives in time and compactness
According to (5.7), we have

∂ρm

∂t
=

c

Re
∆ρm − Um.∇ρm − ρmdiv(Um).

Using (5.29), we deduce that ∇ρm is bounded in L2(Q) a.e. in ]0, T [ and
div(Um) is bounded in L2(Q) a.e. in ]0, T [ (see (5.22)).
Um is bounded in L6(Q) a.e. in ]0, T [ according to (5.26) and ρm is

bounded in L6(Q) a.e. in ]0, T [.
∇ρm ∈ L2(Q)⇒ ∇ρm ∈ L3/2(Q) (since meas(Q) <∞),

so
∂ρm

∂t
∈ L3/2(Q).
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Indeed,

||∂ρ
m

∂t
||L3/2(Q) ≤

c

Re
||∆ρm||L3/2(Q) + ||Um∇ρm||L3/2(Q) + ||ρmdiv(Um)||L3/2(Q)

≤ C1 + ||Um||L6(Q)||∇ρm||L2(Q) + ||ρm||L6(Q)||div(Um)||L2(Q)

≤ C2,

so

||∂ρ
m

∂t
||L2(0,T ;L3/2(Q)) ≤ TC2

2 ,

i.e.,
∂ρm

∂t
is bounded in L2(0, T ;L3/2(Q)). (5.31)

Furthermore
ρm is bounded in L∞(0, T ;Q), so we have the compactness of ρm in

C(0, T ;H1(Q)).
ρm → ρ stongly in C(0, T ;H1(Q)),

so ρm(0)→ ρ(0) strongly in H1(Q),

ρm(0) → ρ0, since ρm(0) = ρ0 + 1/m, then ρ(0) = ρ0 (uniqueness of the
limit).

According to (5.16),∫
Q

ψ∂t(ρU) =

∫
Q

[(
ρU ⊗ U − 1

Re
∇U − c

Re
(∇ρ⊗ U + U ⊗∇ρ)

)
· ∇ψ

]
− 1

2Fr2

∫
Q

ρ2 div (ψ)− c

Re

∫
Q

U · ∇ρ div (ψ)− c

Re

∫
Q

∇ρ · ∇(Uψ),

so,∣∣∣∣∫
Q

∂t(ρ
mUm)ψ

∣∣∣∣ ≤ (‖ρmUm ⊗ Um − 1

Re
∇Um‖L2(Q)4

)
‖∇ψ‖L2(Q)4

+
( 1

2Fr2
‖ρm‖L4(Q) +

4c

Re
‖∇ρm‖L4(Q)2‖Um‖L4(Q)2

)
‖∇ψ‖L2(Q)4

+
c

Re
‖∇ρm‖L4(Q)2‖∇Um‖L2(Q)4‖ψ‖L4(Q)2 .

However, the use of the inequalities of Gagliardo-Nuremberg, Poincaré and
the injection of H1

0 into L4 provides∣∣∣∣∫
Q

∂t(ρ
mUm)ψ

∣∣∣∣ ≤ (‖ρmUm ⊗ Um − 1

Re
∇Um‖L2(Q)4

)
‖∇ψ‖L2(Q)4

+
( 1

2Fr2
‖∇ρm‖L2(Q) +

5c

Re
‖ρm‖H2(Q)2‖∇Um‖L2(Q)4

)
‖∇ψ‖L2(Q)4 ,

which implies ∣∣∣∣ ddt
∫
Q

ρmUm · ψ
∣∣∣∣ ≤ gm||∇ψ||L2(Q)4 , (5.32)
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where

gm = ‖ρUm ⊗ Um − 1

Re
∇Um‖L2(Q)4 +

1

2Fr2
‖∇ρm‖L2(Q)2

+
5c

Re
‖ρm‖H2(Q)2‖∇Um‖L2(Q)4 .

With the estimates obtained so far, we can pass to the limit in the conser-
vative formula((5.16)-(5.17)), except in ρmUm⊗Um; for this one, we prove
a compactness of ρmUm, which is a consequence of some fractional time es-
timates for ρmUm. Obtaining these estimates is the most technical part of
the proof. It’s about delimiting ρmUm(t+ h)− ρmUm(t), with 0 < h < T ,
into an adequate norm by a fractional power of h.

• Fractional estimation in time
As in [19] we note for a given function g, τhg(t) = g(t+ h).
We will show that there is a positive constant C such that

||τh(ρmUm)− ρmUm||L2(0,T−h;L2(Q)2) ≤ Ch1/4.

i) we show that there is a positive constant C1 such that:

I1 =

∫ T−h

0

∫
Q

(
τh(ρmUm)(t)− (ρmUm)(t)

)
·
(
τhU

m(t)− Um(t)
)
≤ C1h

1/2.

Indeed, let’s ψ ∈ V m, we have∫
Q

(
τh(ρmUm)(t)− (ρmUm)(t)

)
.ψ =

∫ t+h

t

( d
ds

∫
Q

ρmUm.ψ
)
.

Using (5.32) we obtain∫
Q

(
τh(ρmUm)(t)− (ρmUm)(t)

)
.ψ ≤

( ∫ t+h

t

gm
)
||∇ψ||L2(Q)4 ,

with gm ∈ L1(0, T ), because the terms that compose its expression are at
least in L4/3(0, T ).

We take ψ = τhU
m(t) − Um(t) ∈ V m and we integrate with respect to

t, from 0 to T − h:

I1 ≤
∫ T

0

||∇(τhU
m(t)− Um(t))||L2(Q)4

( ∫ t+h

t

gm(s)ds
)
.

We set s = t+ h, and we apply Fubini’s theorem to get:

I1 ≤
∫ T

0

( ∫ s∗

(s−h)∗
||∇(τhU

m(t)− Um(t))||L2(Q)4
)
gm,

where

s∗ =

 0 if s ≤ 0,
s if 0 ≤ s ≤ t− h,
t− h if s ≥ t− h.

We apply the Hölder inequality in the integral in s∗ and we obtain:

I1 ≤
∫ T

0

( ∫ s∗

(s−h)∗
12
)1/2( ∫ s∗

(s−h)∗
||∇(τhU

m(t)− Um(t))||2L2(Q)4

)1/2
gm.
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Using (5.22), we get

I1 ≤ Kh1/2||∇Um||L2(0,T ;L2(Q)4

∫ T

0

gm ≤ C1h
1/2,

where K and C1 are positive constants.
Then,

I1 ≤ C1h
1/2.

ii) We show that there is a positive constant C2 such that

I2 =

∫ T−h

0

∫
Q

(
τhρ

m(t)− ρm(t)
)
Um(t) ·

(
τhU

m(t)− Um(t)
)
≤ C1h

1/2.

For t ∈ [0, T − h], we multiply the equation

∂tρ
m = −div(ρmUm) +

c

Re
∆ρm

by w to obtain:∫
Q

∂tρ
mw = −

∫
Q

div(ρmUm)w +
c

Re

∫
Q

∆ρmw,

which gives∫
Q

∂tρ
mw =

∫
Q

ρmUm∇w − c

Re

∫
Q

∇ρm∇w.

By integrating this last equality between t and t+ h we obtain:∫
Q

(
τhρ

m(t)− ρm(t)
)
w =

∫ t+h

t

( ∫
Q

(
ρmUm − c

Re
∇ρm

)
· ∇w

)
.

Taking w = Um(t).(τhU
m(t)− Um(t)), we get∫

Q

(
τhρ

m(t)− ρm(t)
)
Um(t) ·

(
τhU

m(t)− Um(t)
)

=∫ t+h

t

∫
Q

(
ρmUm − c

Re
∇ρm(t)

)
· Um(t) · ∇

(
τhU

m(t)− Um(t)
)

+

∫ t+h

t

∫
Q

(
ρmUm − c

Re
∇ρm(t)

)
·
(
τhU

m(t)− Um(t)
)
· ∇Um.

Using Hölder’s inequality we obtain∫
Q

(
τhρ

m(t)− ρm(t)
)
Um(t) ·

(
τhU

m(t)− Um(t)
)
≤∫ t+h

t

||ρmUm − c

Re
∇ρm||L4(Q)2 ||Um(t)||L4(Q)2 ||∇

(
τhU

m(t)− Um(t)
)
||L2(Q)4

+

∫ t+h

t

||ρmUm − c

Re
∇ρm)||L4(Q)2 ||τhUm(t)− Um(t)||L4(Q)2 ||∇Um(t)||L2(Q)4 .
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Using the previous estimates we have∫
Q

(
τhρ

m(t)− ρm(t)
)
Um(t) ·

(
τhU

m(t)− Um(t)
)
≤

K1

∫ t+h

t

∥∥∇(τhUm(t)− Um(t)
)∥∥
L2(Q)4

+ K2

∫ t+h
t
||∇Um(t)||L2(Q)4 .

By taking the integral between 0 and T − h and applying again Hölder’s
inequality we get

|I2| ≤ K1

∫ T

0

(∫ t+h

t

12
)1/2(∫ t+h

t

∥∥∇(τhUm(t)− Um(t)
)∥∥2

L2(Q)4

)1/2

+K2

∫ T

0

(∫ t+h

t

12
)1/2(∫ t+h

t

||∇Um(t)||2L2(Q)4

)1/2

.

We use (5.22) to obtain

|I2| ≤ Kh1/2||∇Um||L2(0,T ;L2(Q)4) ≤ C2h
1/2.

We see that

I1 − I2 =

∫ T−h

0

∫
Q

τhρ
m(t)(τhU

m(t)− Um(t))2.

Knowing that −I2 ≤ C2h
1/2, we have I1 − I2 ≤ (C1 + C2)h1/2,

so ∫ T−h

0

∫
Q

τhρ
m(t)(τhU

m(t)− Um(t))2 ≤ C3h
1/2.

As ρm is bounded in L∞(Q)(ρm ≤ r2), we obtain∫ T−h

t

∫
Q

|τhρm(t)(τhU
m(t)− Um(t))|2 ≤MC3h

1/2. (5.33)

We want to have an estimate similar to (5.33) for (τhρ
m(t)−ρm(t)).Um(t).

We have the following identity:

τhρ
m(τhU

m − Um) + (τhρ
m − ρm).Um = τh(ρmUm)− ρmUm. (5.34)

On the other hand, for t ∈]0, T − h[ we have

(τhρ
m − ρm)(t) =

∫ t+h

t

∂tρ
m = −

∫ t+h

t

div(ρmUm) +
c

Re

∫ t+h

t

∆ρm.

For all v ∈ L2(Q) we have∫
Q

∣∣(τhρm − ρm).v
∣∣ =

∫
Q

∣∣ ∫ t+h

t

ρmUm.∇v +
c

Re

∫ t+h

t

∆ρm.v
∣∣

≤
∫
Q

∫ t+h

t

(
|ρmUm.∇v|+ | c

Re
∆ρmv|

)
≤
∫ t+h

t

∫
Q

(
|ρmUm.∇v|+ | c

Re
∆ρm.v|

)
≤
∫ t+h

t

(
||ρmUm||L2(Q)||∇v||L2(Q) + || c

Re
∆ρm||L2(Q)||v||L2(Q)

)
.
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As Um ∈ L4(Q) implies

Um.Um ∈ L2(Q) and ||Um.Um||L2(Q) ≤ K3||Um||L4(Q)||Um||L4(Q),

so we can take v = Um · Um to obtain:∫
Q

|(τhρm − ρm)|(Um)2 ≤

K3

∫ t+h

t

(
||ρmUm||L2(Q)2 ||∇(Um ·Um)||L2(Q)2 + || c

Re
∆ρm||L2(Q)||(Um)2||L2(Q)

)
.

The fact that Um ∈ Cb(Q) allows to get∫
Q

|τhρm − ρm|(Um)2 ≤
∫ t+h

t

C3(||∇Um||L2(Q)4 + ||∆ρm||L2(Q)).

So we have

||(τhρm − ρm)Um||L2(0,T−h;L2(Q)2) ≤ Ch1/2.

Adding this last inequality and (5.33), we obtain:

||τhρm(τhU
m − Um) + (τhρ

m − ρm)Um||L2(0,T−h;L2(Q)2) ≤ Ch1/2.

Using (5.34), we get :

||τh(ρmUm)− ρmUm||L2(0,T−h;L2(Q)2) ≤ Ch1/2. (5.35)

We already have the compactness of ρm in C([0, T ];H1(Q)).

Step 2: Convergence results
According to (5.21) and (5.35), we have the compactness of ρmUm in L2(0, T ;L2(Q)2),
so there are subsequences that we note (ρm), (Um), (ρmUm) and (ρmUm ⊗ Um)
such that :

∃ρ ∈ L∞(Q) / ρm → ρ in

 C([0, T ];H1(Q)) strongly,
L∞(Q) weakly*,
L2(0, T ;L2(Q)) weakly,

(5.36)

∃U ∈ L2(0, T ;V ) / Um → U in L2(0, T ;V ) weakly, (5.37)

∃X1 ∈ L∞(Q) / ρmUm → X1 in

 L2(0, T ;L2(Q)2) strongly,
L2(0, T ;L6(Q)2) weakly,
L∞(0, T ;L2(Q)2) weakly*,

(5.38)

∃X2 / ρmUm ⊗ Um → X2 in L4/3(0, T ;L2(Q)2) weakly. (5.39)

These convergences imply X1 = ρU and X2 = ρU ⊗ U .
Let’s show now that: (∫

Q

ρU · v
)

(0) =

∫
Q

ρ0U0 · v.

Let v ∈ V be fixed such that

vm → v in V.

Thanks to (5.21), (∫
Q

ρmUm.vm
)

is bounded in L∞(0, T ). (5.40)
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We know that for any function f ∈ L1(0, T ;L2(Q)), there is a function K ∈ L1(0, T )
such that

||f ||L2(Q) ≤ K a.e. in [0, T ].

We have ||∇vm||L2(Q) ≤ C (where C is a constant), so according to (5.32) we
have: ∣∣∣∣ ddt

∫
Q

ρmUm.vm
∣∣∣∣ ≤ Cgm ≤ C(K + ψm), ∀vm ∈ V m, (5.41)

where K ∈ L1(0, T ) and ψm is bounded in L4/3(0, T ).
Estimates (5.40) and (5.41) allow to show that the sequence

∫
Q
ρmUm · vm is in

a compact of C(0, T ) (see [20]).
Moreover the convergence of vm towards v and (5.38) imply that

∫
Q
ρmUm.vm →∫

Q
ρU ·v in L∞(0, T ) weakly*. This convergence also takes place in C([0, T ]) in the

strong sense, so
∫
Q
ρU · v ∈ C([0, T ]), and in particular for t = 0, i.e.,(∫

Q

ρmUm.vm
)

(0)→
(∫

Q

ρU · v
)

(0).

But ∫
Q

ρm(0)Um(0).vm =

∫
Q

ρm0 U
m
0 .v

m →
∫
Q

ρ0u0.v,

thus, (∫
Q

ρU · v
)

(0) =

∫
Q

ρ0U0 · v, ∀v ∈ V. (5.42)

Step 3: Passage to the limit
Equality (5.16) is valid in C([0, T ]), and then in D′(]0, T [).

The goal is to take the limit when m tends to infinity of (5.16). For m′, v ∈ V m′

be fixed, we reason with m ≥ m′ to get the convergence of each term of (5.16),
then by density argument, we deduce the limit equation checked for all v ∈ V .

i) From (5.38) we have ρmUm → ρU in D′(0, T ;H−1(Q)2), so ∂t(ρ
mUm) →

∂t(ρU) in D′(]0, T [).
We have

< ∂t(ρ
mUm),Φ >→< ∂t(ρU),Φ > in H−1(Q)2,

so for all v ∈ V m′ ,

<< ∂t(ρ
mUm),Φ >, v >H−1→<< ∂t(ρU),Φ >, v >H−1 ,

<< ∂t(ρ
mUm),Φ >, v >H−1=

∫
Q

(∫ T

0

∂t(ρ
mUm)Φ

)
v =

∫ T

0

(∫
Q

∂t(ρ
mUm)v

)
Φ,

<< ∂t(ρU),Φ >, v >=<< ∂t(ρU), v >H−1 ,Φ > .

Then,

∀v ∈ V m
′
,

∫
Q

∂t(ρ
mUm).v →< ∂t(ρu), v >H−1 in D′(]0, T [).

ii)∇ρm → ∇ρ in L1(0, T, L2(Q)2) strongly.
So we have ρm∇ρm → ρ∇ρ in L1(0, T, L2(Q)2) strongly,
and then,∫
Q
ρm∇ρmv →

∫
Q
ρ∇ρv in L1(0, T ) strongly, ∀v ∈ V m′ .
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iii) Using (5.39), ∀ v ∈ V m′ ,∫
Q

(ρmUm⊗Um) : ∇v →
∫
Q

(ρU⊗U) : ∇v =< −div(ρU⊗U), v >H−1 in L4/3(0, T ) weakly.

From (5.37), we get for all v ∈ V m′ ,
1
Re

∫
Q
∇Um : ∇v → 1

Re

∫
Q
∇U : ∇v = − < 1

Re∆U, v >H−1 weakly in L2(0, T ).

From (5.36) and (5.37) ∀ v ∈ V m′ , we have
− c
Re

∫
Q

(∇ρm.t∇v.Um − Um.∇v.∇ρm)→ − c
Re

∫
Q

(∇ρ.t∇v.U − U.∇v.∇ρ)

=< c
ReU.∇∇ρ+ div(U)∇ρ− c

Re∇ρ.∇U −
c
Re∆ρU, v >H−1 strongly in L2(0, T ).

All these convergences take place in D′(0, T ), so

< ∂t(ρU) + div(ρU ⊗ U)− c

Re
(U∆ρ+∇ρ · ∇U + U.∇∇ρ)

− 1

Re
∆U +

1

Fr2
ρ∇ρ, v >H−1= 0 (5.43)

in D′(0, T ) for all v ∈ V m′ .
By density, if m′ →∞, (5.43) stay true, i.e. for all v ∈ V ,

< ∂t(ρU) + div(ρU ⊗ U)− c

Re
(U∆ρ+∇ρ · ∇U + U.∇∇ρ)

− 1

Re
∆U +

1

Fr2
ρ∇ρ, v >H−1= 0

in D′(0, T ).
Then, ∀ Φ ∈ D(0, T ), ∀ v ∈ V ,∫ T

0

(∫
Q

(
∂t(ρU) + div(ρU ⊗ U)− c

Re
(∆ρU +∇ρ.∇U + U.∇∇ρ)

− 1

Re
∆U +

1

Fr2
ρ∇ρ

)
v

)
Φ = 0.

Setting ϕ(t, x) = Φ(t)v(x), we get∫
Q

∫ T

0

∂t(ρU) · ϕ+

∫ T

0

∫
Q

div(ρU ⊗ U) · ϕ− 1

Re

∫ T

0

∫
Q

∆U · ϕ

− c

Re

∫ T

0

∫
Q

div(∇ρ⊗U+U⊗∇ρ)·ϕ+
c

Re

∫
QT

div (U)∇ρ·ϕ+
1

Fr2

∫ T

0

∫
Q

ρ∇ρ·ϕ = 0.

Integrating by parts, we obtain∫
Q

∫ T

0

∂t(ρU)ϕ−
∫ T

0

∫
Q

(ρU ⊗ U) : ∇ϕ+
1

Re

∫ T

0

∫
Q

∇U : ∇ϕ

+
c

Re

∫ T

0

∫
Q

(U⊗∇ρ+∇ρ⊗U) : ∇ϕ+
c

Re

∫
QT

div (U)∇ρ·ϕ+
1

Fr2

∫ T

0

∫
Q

ρ∇ρ·ϕ = 0.

We have ∫
Q

∫ T

0

∂t(ρU)ϕ =

∫
Q

∫ T

0

(∂t(ρUϕ)− ρU∂tϕ)

= −
∫
Q

ρ(0)U(0)ϕ(0, x)−
∫
Q

∫ T

0

ρU∂tϕ,
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so

−
∫
QT

[
ρU∂tϕ+

(
ρU ⊗ U − 1

Re
∇U − c

Re
(∇ρ⊗ U + U ⊗∇ρ)

)
· ∇ϕ

]
− 1

2Fr2

∫
QT

ρ2 div (ϕ) +
c

Re

∫
QT

div (U)∇ρ · ϕ

=

∫
Q

ρ0U0ϕ(0, x, y) dxdy, ∀ϕ ∈ D([0, T ]×Q). (5.44)

For the conservation equation of mass, we have:
∂tρ

m + div(ρmUm) = c
Re∇ρ

m dans QT .
According to (5.36),
ρm → ρ in D′(QT ). Therefore,
∂tρ

m → ∂tρ in D′(QT ) and ∆ρm → ∆ρ in D′(QT ).
From (5.38) we have:
ρmUm → ρU in D′(QT ) and therefore,
div(ρmUm)→ div(ρU) in D′(QT ).
So
∂tρ+ div(ρU) = c

Re∆ρ in D′(QT ).
Therefore, for all ψ in D(QT ), we have:∫ ∫

QT

(∂tρ+ div(ρU)− c

Re
∇ρ)ψ = 0.

Thus,

−
∫ ∫

Q

[ρ∂tψ+ (ρU − c

Re
∇ρ).∇ψ] =

∫
Q

ρ0ψ(0, x)dx ∀ψ ∈ D′([0, T [×Q). (5.45)

From (5.30) we have

ρ ∈ L2(0, T ;H2
N (Q)) ∩ L∞(0, T ;H1

N (Q)).

Furthermore, (5.36) implies that

ρ ∈ L∞(QT ),

so

ρ ∈ L2(0, T ;H2
N (Q)) ∩ L∞(QT ) ∩ L∞(0, T ;H1

N (Q)).

Also according to (5.37),
U ∈ L2(0, T ;V ),

and (5.38) gives
ρU ∈ L∞(0, T ;L2(Q)3).

If we add to this, (5.44) and (5.45), we obtain:

ρ ∈ L2(0, T ;H2
N (Q)) ∩ L∞(QT ) ∩ L∞(0, T ;H1

N (Q)),

U ∈ L2(0, T ;V ),

ρU ∈ L∞(0, T ;L2(Q)3).

and verify:

−
∫ ∫

Q

[ρ∂tψ + (ρU − c

Re
∇ρ).∇ψ] =

∫
Q

ρ0ψ(0, x)dx, ∀ψ ∈ D′([0, T [×Q),
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−
∫
QT

[
ρU∂tϕ+

(
ρU ⊗ U − 1

Re
∇U − c

Re
(∇ρ⊗ U + U ⊗∇ρ)

)
· ∇ϕ

]
− 1

2Fr2

∫
QT

ρ2 div (ϕ) +
c

Re

∫
QT

div (U)∇ρ · ϕ

=

∫
Q

ρ0U0ϕ(0, x, y) dxdy ∀ϕ ∈ D([0, T ]×Q).

So (ρ, U) is a weak solution of the model. �

Concluding remark

In this work, we proved existence of weak solution of a system derived from a
viscous and incompressible fluid formed by two miscible and homogeneous compo-
nents each one of them. We used the Faedo-Galerkin method to construct sequences
of approximate solutions which converge to a weak solution, via the compactness
method. Here, we assumed that the initial density is bounded, which allowed us to
obtain a priori estimates.
The initial model assumes a low mass diffusivity and was called the Kazhikhov-
Smagulov model by F. Franchi and B. Straughan. It models the mixture of two
miscible components, moreover the basic model is salt dissolved in a compressible
fluid. We see that if the mass diffusion coefficient is zero we have the incompressible
Navier-Stokes system. Even when this coefficient tends to zero, the model tends
towards that of Navier-Stokes and the weak solutions of the model converge to a
weak solution of the Navier-Stokes system with a variable density. It should be
noted that to our knowledge the problem of the existence of a strong solution of
the model remains open. Therefore, avenues of research open up for us in the fu-
ture. It would also be interesting to see the model that governs the meeting of a
sea (salt water) and a river (fresh water). Here the major difficulty remains the
fact that the sea is studied in three dimensions (initial model) and the river in two
dimensions (the model we obtained). The uniqueness of the solution of the model
obtained remains a crucial problem due to the strong nonlinearities.

Acknowledgments. The authors would like to thank the anonymous referee for
his/her comments that helped us improve this article.
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géostrophique. C. R. Math. Acad. Sci. Paris, 335(12):1079–1084, 2002.

[4] D. Bresch and Desjardins. Existence of global weak solutions for a 2d viscous shallow wa-
ter equations and convergence to the quasi-geostrophic model. Comm. Math. Phys., 238(1-

2):211–223, 2003.
[5] D. Bresch and P. Noble. Mathematical justification of a shallow water model. Methods Appl.

Anal., 14(2):87–117, 2007.
[6] H. Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Mâıtrise.
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[7] R.C. Cabrales, F. Guilln-Gonzlez and J.V. Gutirrez-Santacreu, Stability and convergence for

a complete model of mass diffusion, Applied Numerical Mathematics 61 (2011), 1161-1185.

[8] A. M. Ferreiro. Development of post-process trechnics of hydrodynamics fluw, modelization of
sediment transport problems and numerical simulation through finite volume technics. PhD

thesis, Seville, 2006.

[9] J.-F. Gerbeau and B. Perthame. Derivation of viscous Saint-Venant system for laminar shal-
low water; numerical validation. Discrete Cont. Dyn. Syst. Ser. B, 1(1):89–102, 2001.

[10] F. Guilin-Gonzlez, P. Damzio and M.A. Rojas-Medar, Approximation by an iterative method

for regular solutions for incompressible fluids with mass diffusion, ,J. Math. Anal. Appl. 326
(2007), 468-487.

[11] F. Guilln-Gonzlez and J.V. Gutirrez-Santacreu, Unconditional stability and convergence of

fully discrete schemes for 2D viscous fluids models with mass diffusion, Mathematics of
Computation. 77 (263) (2008), 1495-1524.

[12] F. Guilln-Gonzlez and J.V. Gutirrez-Santacreu, Conditional stability and convergence of fully
discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM J.

Numer. Anal. 46 (5) (2008), 2276-2308.

[13] F. Guilln-Gonzlez and J.V. Gutirrez-Santacreu. Error estimates of a linear decoupled Euler-
FEM scheme for a mass diffusion model., Numer. Math. 117 (2011), 333-371.

[14] C-D. Levermore, M. Oliver, and Edriss S. Titi. Global well-posedness for models of shallow

water in a basin with a varying bottom. Indiana University Mathematics Journal., 45(2):479–
510, 1996.

[15] F. Marche. Derivation of a new two-dimensional viscous shallow water model with varying

topography, bottom friction and capillary effects. European Journal of Mechanic. B, Fluids,
26(1):49–63, 2007.

[16] A. Mellet and A. Vasseur. On the barotropic compressible navier-stokes equations. Comm.

Partial Differential Equations, 32(1-3):431–452, 2007.
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