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COMPARISON OF ORTHOGONAL STABILITY OF CUBIC

FUNCTIONAL EQUATION IN DIFFERENT SPACES

SHALU SHARMA, JYOTSANA JAKHAR, ∗JAGJEET JAKHAR, JOHN MICHAEL
RASSIAS

Abstract. In this study, our focus is examining the orthogonal stability of
the newly formulated following three-dimensional cubic functional equation
using direct and fixed point methods within both modular and random normed
space. To validate the stability conclusions, we present experimental outcomes.
Additionally, we offer a comparative evaluation of the findings derived from
this investigation:

f(2υ1 + 3υ2 + 4υ3) = 3f(υ1 + 3υ2 + 4υ3) + f(−υ1 + 3υ2 + 4υ3)

+2f(υ1 + 3υ2) + 2f(υ1 + 4υ3)− 6f(υ1 − 3υ2)− 6f(υ1 − 4υ3)

−3f(3υ2 + 4υ3) + 16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)]− 18f(υ1)

−6f(3υ2)− 6f(4υ3).

where, υ1, υ2, υ3 are mutually orthogonal.

1. Introduction

In the present era, the domain of functional equations represents a continuously
expanding area within mathematics, holding significant implications across various
applications. The relatively recent emergence of functional equation theory has led
to the creation of potent tools within modern mathematics. Functional equations
encompass a traditional mathematical discipline that encompasses diverse avenues
for algebraic, analytic, order-theoretic, and topological exploration. Concurrently,
numerous mathematical concepts from various disciplines have become fundamental
to the underpinnings of functional equations. This framework is progressively being
employed to scrutinize challenges in unrelated fields like mathematical analysis,
combinatorics, biology, behavioral and social sciences, as well as engineering.

In the field of functional equations, different sectors cover a range of research
domains, one of which involves exploring the stability of functional equations. In
1940, S.M. Ulam [32] initiated research into the stability of functional equations,
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introducing the question: "Under what conditions is it valid that a solution to
a slightly altered equation closely approximates the solution of the original equa-
tion?" Subsequent investigations have built upon this inquiry. D. H. Hyers [12]
provided an affirmative answer to Ulam’s stability problem for Banach spaces in
1941. Additionally, T. Aoki [3] delved deeper into the study of additive mappings
in 1950. Numerous mathematicians[17, 22, 21, 24, 26, 31, 33, 34] have researched
stability problems over the past few decades. See [3, 4, 6, 7, 13, 31, 14, 27, 30, 25, 8]
for more information on the various stability problems with functional equations in
various spaces.

Nakano [23] laid the groundwork for modular theory on linear spaces, shaping
the perspective of modular linear spaces. Shimogaki, Koshi, and others from his
mathematical school played a pivotal role in advancing this theory. Presently,
the exploration of diverse Orlicz spaces and interpolation theory [19], which hold
extensive practical applications, heavily relies on the concepts of modular spaces.
The comprehensive structure of modular spaces, functioning both as Banach spaces
and possessing the modular equivalent of norms or metric concepts, holds crucial
significance in practical applications. This paper aims to elucidate the orthogonal
stability of the cubic functional equation within modular space and random normed
space.

Initially, our focus will be on understanding terminology, defining key concepts,
establishing notation, and understanding common attributes within the subject
matter. Then we are conveying these definitions in this paper as follows:

Definition 1.1. [31] Assume V (dimV ≥ 2) be a real vector space associated with
a binary relation ⊥ having the following characteristics:
(O1) totality of ⊥ for zero: υ1 ⊥ 0, 0 ⊥ υ1 for all υ1 ∈ V;
(O2) independence: if υ1, υ2 ∈ V − {0}, υ1 ⊥ υ2, then, υ1, υ2 are linearly indepen-
dent;
(O3) homogeneity: if υ1, υ2 ∈ V, υ1 ⊥ υ2, then, αυ1 ⊥ βυ2 for all α, β ∈ R;
(O4) Thalesian Property: if υ1 ∈ W where W is a 2-dimensional subspace of V and
λ ∈ R+, then there exists υ0 ∈ W such that υ1 ⊥ υ0 and υ1 + υ0 ⊥ λυ1 − υ0.

The pair (V ,⊥) is called an orthogonality space.

Definition 1.2. [10] Let us consider a vector space V, for arbitrary υ1, υ2 ∈ V, a
functional ρ : V → [0,∞] is called modular if it satisfies the following characteris-
tics:

(1) ρ(υ1) = 0 ⇐⇒ υ1 = 0,
(2) ρ(αυ1) = ρ(υ1), where |α| = 1,
(3) ρ(αυ1 + βυ2) ≤ ρ(υ1) + ρ(υ2) ⇐⇒ α+ β = 1 and α, β ≥ 0.

Definition 1.3. [30] Let us consider a vector space V, for arbitrary υ1, υ2 ∈ V,
a functional ρ : V → [0,∞] is called convex modular if it satisfies the following
characteristics:

(1) ρ(υ1) = 0 ⇐⇒ υ1 = 0,
(2) ρ(αυ1) = ρ(υ1), where |α| = 1,
(3) ρ(αυ1 + βυ2) ≤ αρ(υ1) + βρ(υ2) ⇐⇒ α+ β = 1 and α, β ≥ 0.

The vector space Vρ = {υ1 ∈ V : ρ(λυ1) → 0 as λ→ 0} is called modular space.

Definition 1.4. [30] Let {υn} be a sequence in Vρ and υ be a point in Vρ then the
sequence {υn} is called ρ− convergent to υ if and only if ρ(υn− υ) → 0 as n→ ∞.
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Definition 1.5. [11] Let {υn} be a sequence in Vρ and is called ρ− Cauchy if
ρ(υn − υm) → 0 as n,m→ ∞.

Definition 1.6. [11] If any ρ− Cauchy sequence is ρ− convergent to an element
of subset W of Vρ then, the subset W is called ρ− complete.

Remark. Fatou property is satisfied by the modular ρ if and only if
ρ(υ) ≤ limn→∞ inf ρ(υn) whenever the sequence {υn} is ρ− convergent to υ. More-
over, if ρ is convex modular on V and |α| ≤ 1 then, ρ(αυ) ≤ |α|ρ(υ).

Definition 1.7. [29] A mapping T : [0, 1] → [0, 1] is said to be continuous t-norm,
if mapping T has the following properties:

(1) T is commutative as well as associative.
(2) T is continuous.
(3) T (α1, 1) = α1 ∀ α1 ∈ [0, 1].
(4) T (α1, α2) ≤ T (α3, α4) whenever (α1 ≤ α3) and (α2 ≤ α4)

∀ α1, α2, α3, α4 ∈ [0, 1].

Remark. Let T be a t-norm and {υm} be a sequence of numbers in [0, 1] then
Tmi=1υi is defined recurrently by

Tmi=1υi =

{

υ1, if m = 2.

T (Tm−1
i=1 υi, υm), if m ≥ 2

Definition 1.8. [29] A triplet (W , µρ, T ) is called random normed space if it sat-
isfies the following conditions:

(1) µρυ(t) = ǫ0(t) ∀ t > 0 ⇐⇒ υ = 0;
(2) µραυ(t) = µρυ(

t
|α| ) ∀ υ ∈ W , α 6= 0;

(3) µρυ1+υ2
(t+ s) ≥ T (µρυ1

(t), µρυ2
(s)) ∀ υ1, υ2 ∈ W and all t, s ≥ 0.

Here, W , T are vector space and continuous t-norm respectively and µρ is a mapping
from W into D+ ⊂ ∆+(space of distribution functions).

Theorem 1.9. [9] Consider a complete generalized metric space (W , d) and a
strictly contractive mapping J : W → W with Lipschitz constant L < 1. Then
for each given vector υ ∈ W, either

d(Jnυ, Jn+1υ) = ∞

for all non-negative integers n or there exists a positive integer n0 such that

(1) d(Jnυ, Jn+1υ) <∞, ∀ n ≥ n0;
(2) the sequence {Jnυ} converges to a fixed point υ⋆;
(3) υ⋆ is the unique fixed point J in the set

Z = {z,∈ W|d(Jn0υ, z) <∞};
(4) d(z, z⋆) ≤ 1

1−Ld(z, Jz) for all z ∈ Z.

This article is structured into five sections. The first section functions as an
introduction, setting the groundwork for the subsequent discussions. The second
section delves into investigating the orthogonal stability of the cubic functional
equation within modular space, employing both direct and fixed point methods
for analysis. Similarly, in the third section, we explore the orthogonal stability of
the cubic functional equation in random norm space, employing direct and fixed
point methods for analysis as well. In fourth and fifth section, we provide the
experimental results and comparative evaluation of the results respectively.
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2. Orthogonal Stability of Cubic Functional Equation in Modular

space

Aboutaib et al.[1] established the Ulam stability results for the general linear
functional equation in modular space. Motivated by their insights and research
contributions, this section aims to investigate the stability of the given orthogonal
cubic functional equation within modular space by employing the direct and fixed
point methods respectively. Two key concepts are important when studying modu-
lars. A modular ρ is said to possess the Fatou property if ρ(υ) ≤ lim infn→∞ ρ(υn)
for any sequence {υn} that ρ-converges to to υ. Additionally,ρ satisfies the ∆2-
condition if there exists a constant κ ≥ 0 such that ρ(2υ) ≤ κρ(υ) for all υ → Vρ.
We assume that the modular function ρ possesses the Fatou property and satisfies
the ∆2 condition with a certain condition 0 < κ ≤ 2. For the sake of convenience,
we define

Df(υ1, υ2, υ3) = f(2υ1 + 3υ2 + 4υ3)− 3f(υ1 + 3υ2 + 4υ3)

−f(−υ1 + 3υ2 + 4υ3)− 2f(υ1 + 3υ2)− 2f(υ1 + 4υ3)

+6f(υ1 − 3υ2) + 6f(υ1 − 4υ3) + 3f(3υ2 + 4υ3)

−16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)] + 18f(υ1) + 6f(3υ2) + 6f(4υ3),

where, υ1, υ2, υ3 are mutually orthogonal.

Definition 2.1. Let V be an orthogonality space and U be a real Banach space.
A mapping f : V → U is called orthogonally cubic if it satisfies the so called
orthogonally cubic functional equation

f(2υ1 + 3υ2 + 4υ3)− 3f(υ1 + 3υ2 + 4υ3)− f(−υ1 + 3υ2 + 4υ3)− 2f(υ1 + 3υ2)

−2f(υ1 + 4υ3) + 6f(υ1 − 3υ2) + 6f(υ1 − 4υ3) + 3f(3υ2 + 4υ3)

−16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)] + 18f(υ1) + 6f(3υ2) + 6f(4υ3) = 0

for all υ1, υ2, υ3 ∈ V with υ1, υ2, υ3 are mutually orthogonal.

Theorem 2.2. Let Vρ be a ρ− complete modular space and (W , ||.||) be a real
normed space with dimension greater than two. Suppose f : W → Vρ is an odd
mapping satisfying following inequality

ρ(Df(υ1, υ2, υ3)) ≤ ǫ(||υ1||
p + ||υ2||

p + ||υ3||
p) (2.1)

where, υ1, υ2, υ3 are mutually orthogonal and υ1, υ2, υ3 ∈ W and 0 < p < 3. Then,
there exists unique orthogonally cubic mapping Qc : W → Vρ such that

ρ(f(υ1)−Qc(υ1)) ≤
ǫ

8− κ2p−1
||υ1||. (2.2)

Proof. Taking (υ1, υ2, υ3) = (0, 0, 0) in (2.1), we obtain, f(0) = 0 and putting
υ2 = υ3 = 0 in (2.1), then we get

ρ(f(2υ1)− 8f(υ1)) ≤ ||υ1||
p

=⇒ ρ(
f(2υ1)

8
− f(υ1)) ≤

ǫ

8
||υ1||

p. (2.3)

Replacing υ1 by 2υ1 in (2.3)

ρ(
f(22υ1)

8
− f(2υ1)) ≤

2pǫ

8
||υ1||

p, (2.4)
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therefore,

ρ(
f(22υ1)

82
−
f(2υ1)

8
) ≤

2p−3ǫ

8
||υ1||

p, (2.5)

using equations (2.3) and (2.5), we obtain

ρ(
f(22υ1)

82
− f(υ1)) ≤

κ

2
ρ(
f(22υ1)

82
−
f(2υ1)

8
)

+
κ

2
ρ(
f(2υ1)

8
− f(υ1)) ≤

ǫ

8
(1 +

κ

2
.2p−3)||υ1||

p.

By using mathematical induction, we can show that

ρ

(

f(2nυ1)

8n
− f(υ1)

)

≤
ǫ

8

n−1
∑

i=0

(

κ

2

)i

2i(p−3)||υ1||
p. (2.6)

Equation(2.6) is true for n = 1. Assume that result in equation (2.6) is true for n
and we will show that result is also true for n+ 1. Therefore, we have

ρ

(

f(2n+1υ1)

8n+1
− f(υ1)

)

= ρ

(

f(2n+1υ1)

8n+1
−
f(2υ1)

8
+
f(2υ1)

8
− f(υ1)

)

≤
κ

2
ρ

(

f(2υ1)

8
− f(υ1)

)

+
κ

2.8
ρ

(

f(2n+1υ1)

8n
− f(2υ1)

)

≤
κ

2

ǫ

8
||υ1||

p +
ǫ

8

n−1
∑

i=0

(

κ

2

)i+1

2{(i+1)(p−3)}||υ1||
p

≤
ǫ

8

n
∑

i=0

(

κ

2

)i

2i(p−3)||υ1||
p

=
ǫ

8

(

1− (κ2p−4)n

1− (κ2p−4)

)

||υ1||
p. (2.7)

Replacing υ1 by 2mυ1 in (2.6), we get

ρ

(

f(2n+mυ1)

8n
− f(2mυ1)

)

≤
ǫ

8

(

1− (κ2p−4)n

1− (κ2p−4)

)

2mp||υ1||
p. (2.8)

Hence,

ρ

(

f(2n+mυ1)

8n+m
−
f(2mυ1)

8m

)

≤
ǫ

8

(

1− (κ2p−4)n

1− (κ2p−4)

)

2m(p−3)||υ1||
p. (2.9)

If m,n → ∞, we get the sequence { f(2
mυ1)
8m } is a ρ− convergent in ρ− complete

modular space Vρ and we will define the mapping Qc = limn→∞
f(2mυ1)

8m from W
into Vρ′ satisfying

ρ(Qc(υ1)− f(υ1)) ≤
ǫ

8− κ2p−1
||υ1||

p (2.10)

for all υ1 ∈ W , since ρ has Fatou’s property.
For all υ1, υ2, υ3 ∈ W with υi ⊥ υj(i 6= j&i, j = 1, 2, 3), by applying (2.1) and (O3),
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we get

ρ

(

f(2n(2υ1 + 3υ2 + 4υ3))

8n
− 3

f(2n(υ1 + 3υ2 + 4υ3))

8n
−
f(2n(−υ1 + 3υ2 + 4υ3))

8n

−2
f(2n(υ1 + 3υ2))

8n
− 2

f(2n(υ1 + 4υ3))

8n
+ 6

f(2n(υ1 − 3υ2))

8n
+ 6

f(2n(υ1 − 4υ3))

8n

+3
f(2n(υ2 + 4υ3))

8n
− 16[f(2n(υ1 −

3

2
υ2)) + f(2n(υ1 − 2υ3))] + 18f(2n(υ1))

+6f(2n(3υ2)) + 6f(2n(4υ3))

)

≤
2np

8n
ǫ(||υ1||

p + ||υ2||
p + ||υ3||

p).

To prove Qc satisfies Df(υ1, υ2, υ3) = 0, taking n→ ∞ in above inequality, we get
DQc(υ1, υ2, υ3) = 0 for all υ1, υ2, υ3 ∈ W with υ1, υ2, υ3 are orthogonal. Hence,
Qc : W → Vρ is an orthogonally cubic mapping. Now, we will show the uniqueness
of the mapping, for this we assume another cubic mapping Q′

c : W → Vρ satisfying
inequality (2.10).

ρ(Qc(υ1)−Q′
c(υ1)) = ρ

(

Qc(2
mυ1)

8m
−
Q′
c(2

mυ1)

8m

)

≤
κ

2.8m
[ρ(Qc(2

mυ1)− f(2mυ1))

+ ρ(Qc(2
mυ1)− f(2mυ1))]

≤
κǫ2m(p−3)

8− κ2p−1
||υ1||

p.

Now, taking m→ ∞, we get Qc = Q′
c. �

Corollary 2.3. Let Vρ be a ρ− complete modular space and (W , ||.||) be a real
normed space with dimension greater than two. Suppose f : W → Vρ is an odd
mapping satisfying following inequality

ρ(Df(υ1, υ2, υ3)) ≤ ǫ (2.11)

where, υ1, υ2, υ3 are mutually orthogonal and υ1, υ2, υ3 ∈ W. Then, there exists
unique orthogonally cubic mapping Qc : W → Vρ such that

ρ(f(υ1)−Qc(υ1)) ≤
ǫ

8− κ2p−1
. (2.12)

Theorem 2.4. Let us consider an odd mapping f : W → Vρ which satisfies an
inequality

ρ(D(f(υ1, υ2, υ3))) ≤ φ(υ1, υ2, υ3) (2.13)

and f(0) = 0 where, υ1, υ2, υ3 are mutually orthogonal. Define the function φ :
W3 → [0,∞) satisfies the inequality

φ(2υ1, 2υ2, 2υ3) ≤ 8Lφ(υ1, υ2, υ3) ∀ υ1, υ2, υ3 ∈ W , (2.14)

where the constant L lie between 0 and 1. Then, there is exactly one and only one
cubic mapping Qc : W → Vρ which satisfies the inequality

ρ(f(υ1)−Qc(υ1)) ≤
1

8(1− L)
φ(υ1, 0, 0). (2.15)
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Proof. Putting (υ1, υ2, υ3) = (υ1, 0, 0) in (2.11) and by using the property (O1), we
can write

ρ(f(2υ1)− 8f(υ1)) ≤ φ(υ1, 0, 0). (2.16)

Also,

ρ(
f(2υ1)

8
)− f(υ1)) ≤

1

8
φ(υ1, 0, 0). (2.17)

Consider a set
Fρ̃ = {f1 : W → Vρ; f1(0) = 0}

the setting of the convex modular ρ̃ which is defined on Fρ̃ in such a manner

ρ̃(f1) = inf{λ > 0 : ρ(f1(υ1)) ≤ λφ(υ1, 0, 0)}.

There are only sufficient to prove the condition for convex modular ρ̃ with α+β = 1
is

ρ̃(αf1 + βf2) ≤ αρ̃(f1) + βρ̃(f2).

Now, let for each ǫ > 0, there are λ1 and λ2 such that

λ1 ≤ ρ̃(f1) + ǫ; ρ(f1(υ1)) ≤ λ1φ(υ1, 0, 0)

and
λ2 ≤ ρ̃(f2) + ǫ; ρ(f2(υ1)) ≤ λ2φ(υ1, 0, 0).

If α, β ≥ 0 and α+ β = 1, we have

ρ(αf1(υ1) + βf2(υ2)) ≤ αρ(f1(υ1)) + βρ(f2(υ1)),

hence

ρ̃(αf1 + βf2) ≤ αρ̃(f1) + βρ̃(f2) + (α+ β)ǫ.

Therefore, we obtain

ρ̃(αf1 + βf2) ≤ αρ̃(f1) + βρ̃(f2).

Furthermore, ∆2− condition is satisfied by the convex modular ρ̃ with 0 < κ ≤ 2.
Consider a ρ̃− Cauchy sequence {f1n} in Fρ̃. For a given ǫ > 0 there is n′ ∈ N in
such a way ρ̃(fn − fm) ≤ ǫ ∀ n,m ≥ n′. Therefore, we get

ρ(fn(υ1)− fm(υ1)) ≤ ǫφ(υ1, 0, 0) ∀ n,m ≥ n′. (2.18)

The last inequality shows that {fn(υ1)} is a ρ− Cauchy sequence if υ1 is an arbitrary
point in W . Also the sequence {fn(υ1)} is a ρ−convergent in Vρ, then the function
f1 : W → Vρ is defined as

f1(υ) = limn→∞f1n(υ1).

Taking m→ ∞ in (2.16), we get

ρ̃(f1n − f1) ≤ ǫ ∀ n > n′.

Therefore, in Fρ̃ the sequence {f1n} is ρ̃− convergent which implies that Fρ̃ is ρ̃−
complete. Now, considering a linear transformation T : Fρ̃ → Fρ̃ defined as

Tf1(υ1) =
1

8
f1(2υ1) ∀ f1 ∈ Fρ̃.

Let λ ∈ [0,∞) be any constant and f1, f2 ∈ Fρ̃ with ρ̃(f1 − f2) ≤ λ and by the
definition of modular ρ̃, we have

ρ(f1(υ1)− f2(υ1)) ≤ λφ(υ1, 0, 0).
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Therefore, by the above result and assumption, we obtain

ρ(
f1(2υ1)

8
−
f2(2υ1)

8
) ≤

1

8
ρ(f1(2υ1)− f2(2υ1))

≤
1

8
λφ(2υ1, 0, 0) ≤ λLφ(υ1, 0, 0).

Hence,

ρ̃(Tf1 − Tf2) ≤ Lρ̃(f1 − f2),

this shows that mapping T is ρ̃− strict contraction. Now, we shall prove that the
mapping T satisfies the condition of [[16]theorem 3.4].
Exchange υ1 by 2υ1 in (2.15)

ρ

(

f(22υ1)

8
− f(2υ1)

)

≤
1

8
φ(2υ1, 0, 0). (2.19)

Now,

ρ

(

f(22υ1)

82
− f(υ1)

)

= ρ

(

1

8

(

f(22υ1)

8
− 8f(υ1)

))

≤
1

8
ρ

(

f(22υ1)

8
− f(2υ1) + f(2υ1)− 8f(υ1)

)

≤
κ

2.8

[

ρ

(

f(22υ1)

8
− f(2υ1)

)

+ ρ

(

f(2υ1)− 8f(υ1)

)]

≤
κ

2.82
φ(2υ1, 0, 0) +

κ

2.8
φ(υ1, 0, 0)

≤
κ

2.82
φ(2υ1, 0, 0) +

1

8
φ(υ1, 0, 0). (2.20)

Using mathematical induction and equations (2.15) and (2.18), the authors can
conclude that

ρ

(

f(2nυ1)

8n
− f(υ1)

)

≤

n
∑

i=1

κi−1

2i−18i
φ(2i−1υ1, 0, 0). (2.21)

Now suppose that result (2.19) is true for n and we will show that result is also
true for n+ 1. Therefore, we have

ρ

(

f(2n+1υ1)

8n+1
− f(υ1)

)

= ρ

(

1

8

(

f(2n+1υ1)

8n
− 8f(υ1)

))

≤
1

8
ρ

(

f(2n+1υ1)

8n
− 8f(υ1)

)

≤
κ

2.8

[

ρ

(

f(2n+1υ1)

8n
− f(2υ1)

)

+ ρ

(

f(2υ1)− 8f(υ1)

)]

≤
κ

2.8

[ n
∑

i=1

κi−1

2i−18i
φ(2iυ1, 0, 0) + φ(υ1, 0, 0)

]

≤

n
∑

i=0

κi

2i8i+1
φ(2iυ1, 0, 0) =

n+1
∑

i=1

κi−1

2i−18i
φ(2i−1υ1, 0, 0).
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Hence, the result (2.19) is held for natural numbers n. Therefore,

ρ

(

f(2nυ1)

8n
− f(υ1)

)

≤

n
∑

i=1

κi−1

2i−18i
φ(2i−1υ1, 0, 0)

≤
1

8

n
∑

i=1

Li−1φ(υ1, 0, 0) =
(1− Ln)φ(υ1, 0, 0)

8(1− L)

≤
φ(υ1, 0, 0)

8(1− L)
. (2.22)

Now, the authors will explain the following condition

δρ̃(f) = sup{ρ̃(T nf − (Tmf) : n,m ∈ N} <∞.

By using inequality (2.19), we have

ρ

(

f(2nυ1)

8n
−
f(2mυ1)

8m

)

= ρ

(

f(2nυ1)

8n
− f(υ1) + f(υ1)−

f(2mυ1)

8m

)

≤
κ

2

[

ρ

(

f(2nυ1)

8n
− f(υ1)

)

+ ρ

(

f(υ1)−
f(2mυ1)

8m

)]

≤
κ

8(1− L)
φ(υ1, 0, 0).

Therefore, we get

ρ̃(T nf − Tmf) ≤
κ

8(1− L)
.

With the help of the definition of δρ̃(f), we obtain δρ̃(f) < ∞ and we get the ρ̃−
convergence limit of the sequence {T nf} is Qc by using the [[16]lemma 3.3]. Since
Fatou’s property is satisfied by ρ, then the inequality (2.20) give ρ̃(TQc − f) <∞.
Now, exchange υ1 through 2nυ1 in equation (2.15)

ρ(
f(2n+1υ1)

8
− f(2nυ1)) ≤

1

8
φ(2nυ1, 0, 0).

Hence,

ρ

(

f(2n+1υ1)

8n+1
−
f(2nυ1)

8n

)

= ρ

(

1

8n

(

f(2n+1υ1)

8
− f(2nυ1)

))

≤
1

8n
ρ

(

f(2n+1υ1)

8
− f(2nυ1)

)

≤
1

8n+1
φ(2nυ1, 0, 0) ≤

Ln

8
φ(υ1, 0, 0)

≤ φ(υ1, 0, 0).

Hence, the authors obtain that ρ̃(TQc−Qc) <∞. Also using the result [[16]theorem3.4],
we proved that Qc ∈ Fρ̃ is the fixed point of T . Now, replacing the υ1, υ2 and υ3
by 2nυ1, 2

nυ2 and 2nυ3 respectively and using the property(O3), we get

ρ

(

Df(2nυ1, 2
nυ2, 2

nυ3)

8n

)

≤
1

8n
ρ(Df(2nυ1, 2

nυ2, 2
nυ3))

≤
1

8n
φ(2nυ1, 2

nυ2, 2
nυ3) ≤ Lnφ(υ1, υ2, υ3).



26 SHALU SHARMA, JYOTSANA JAKHAR, JAGJEET JAKHAR, JOHN MICHAEL RASSIAS

Consider limit as n → ∞, we obtain DQc(υ1, υ2, υ3) = 0, here 0 < L < 1. Now by
using (2.20) inequality, we obtain

ρ̃(Qc − f) ≤
1

8(1− L)
.

Now, we shall show that the mapping Qc is unique. For this, we consider another
mapping Q′

c,

ρ̃(Qc −Q′
c) = ρ̃(TQc − TQ′

c) ≤
κ

2
[ρ̃(TQc − f) + ρ̃(TQ′

c − f)]

≤
κ

8(1− L)
<∞.

We know T is strict contraction mapping, then we obtain

ρ̃(Qc −Q′
c) = ρ̃(TQc − TQ′

c) ≤ Lρ̃(Qc −Q′
c),

this shows that ρ̃(Qc −Q′
c) = 0 which implies Qc = Q′

c. �

Corollary 2.5. Let us consider a Banach space (V , ||.||) and an odd mapping f :
W → V which satisfies an inequality

||D(f(υ1, υ2, υ3)|| ≤ φ(υ1, υ2, υ3) (2.23)

and f(0) = 0, where, υ1, υ2, υ3 are mutually orthogonal. Define the function φ :
W3 → [0,∞) satisfies the inequality

φ(2υ1, 2υ2, 2υ3) ≤ 8Lφ(υ1, υ2, υ3) ∀ υ1, υ2, υ3 ∈ W , (2.24)

where constant L lies between 0 and 1. Then, there is exactly one and only one
cubic mapping Qc : W → V which satisfied the inequality

||f(υ1)−Qc(υ1)|| ≤
1

8(1− L)
φ(υ1, 0, 0). (2.25)

Example 2.6. Consider an orlicz function ρ which satisfies the ∆2 condition with
0 < κ < 2. Also suppose a mapping f : W → Lρ satisfying the inequality

∫

R

Φ(|Df(υ1, υ2, υ3)|)dm(t) ≤ Φ(υ1, υ2, υ3)

where f(0) = 0 and Φ : R → [0,∞) is a given function such that

Φ(kυ1, kυ2, kυ3) ≤ k3LΦ(υ1, υ2, υ3)

for all υ1, υ2, υ3 ∈ W and a constant 0 < L < 1. Then there exists a unique cubic
mapping Qc : W → Lρ such that

∫

R

Φ|Qc(υ1)− f(υ1)|dm(t) ≤
1

2k3(1− L)
Φ(υ1, 0, 0).

Here, m denotes the Lebesgue measure in R and Lρ is an Orlic space.
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3. Orthogonal Stability of Cubic Functional Equation in Random

Normed Space

Benzaruala et al.[5] established the Ulam stability results for the general linear
functional equation in random normed space. Motivated by their insights and
research contributions, this section aims to investigate the stability of the given
orthogonal cubic functional equation within random normed space by employing
the direct and fixed point methods respectively.

Theorem 3.1. let W1 be a linear orthogonality space, (W2, µ
ρ,min) be completely

random normed space and (W3, µ
′ρ,min) be a random normed space, and define a

function ψ : W1 ×W1 ×W1 → W3 such that

µ′ρ
ψ(2υ1,0,0)(t) ≥ µ′ρ

αψ(υ1,0,0)(t), 0 < α < 8, t > 0, υ1 ∈ W1 (3.1)

and limn→∞ µ′ρ
ψ(2nυ1,2nυ1,2nυ1) = 1. If an odd mapping f : W1 → W2 satisfying

f(0) = 0 and

µρΘ(t) ≥ µ′ρ
ψ(υ1,υ2,υ3)(t), (3.2)

for all υ1, υ2, υ3 ∈ W1 and υ1, υ2, υ3 are mutually orthogonal, where

Θ = f(2υ1 + 3υ2 + 4υ3)− 3f(υ1 + 3υ2 + 4υ3)

− f(−υ1 + 3υ2 + 4υ3)− 2f(υ1 + 3υ2)− 2f(υ1 + 4υ3)

+ 6f(υ1 − 3υ2) + 6f(υ1 − 4υ3) + 3f(3υ2 + 4υ3)

− 16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)] + 18f(υ1) + 6f(3υ2) + 6f(4υ3),

then, there is exactly one and only one cubic mapping Qc : W1 → W2 in such a
way

µρf(υ1)−Qc(υ1)(t) ≥ µ′ρ
ψ(υ1,0,0)((8 − α)t). (3.3)

Proof. Taking (υ1, υ2, υ3) = (υ1, 0, 0) in equation (3.2)

µρ(
f(2υ1)

8 −f(υ1)

)(t) ≥ µ′ρ
ψ(υ1,0,0)(8t), ∀ υ1 ∈ W1, t > 0, (3.4)

substituting υ1 = 2nυ1 in equation (3.4), we get

µρ(
f(2n+1υ1)

8n+1 −
f(2nυ1)

8n

)(t) ≥ µ′ρ
ψ(2nυ1,0,0)(8

n+1t)

≥ µ′ρ
ψ(υ1,0,0)(

8n+1

αn
t). (3.5)

Also,

f(2nυ1)

8n
− f(υ1) =

n−1
∑

k=0

(

f(2k+1υ1)

8k+1
−
f(2kυ1)

8k

)

.

Now, using the equation (3.5), we get

µρ(
f(2υ1)

8 −f(υ1)

)

(

t

n−1
∑

k=0

αk

8k+1

)

≥ T n−1
k=0

(

µ′ρ
ψ(υ1,0,0)(t)

)

= µ′ρ
ψ(υ1,0,0)(t), (3.6)
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therefore,

µρ(
f(2nυ1)

8n −f(υ1)

)(t) ≥ µ′ρ
ψ(υ1,0,0)

(

t
∑n−1

k=0
αk

8k+1

)

. (3.7)

In equation(3.7), substituting υ1 = 2mυ1, we get

µρ(
f(2n+mυ1)

8n+m −
f(2mυ1)

8m

)(t) ≥ µ′ρ
ψ(υ1,0,0)

(

t
∑n+m

k=m
αk

8k+1

)

. (3.8)

Since,

lim
m,n→∞

µ′ρ
ψ(υ1,0,0)

(

t
∑n+m

k=m
αk

8k+1

)

= 1.

Hence, the sequence { f(2
nυ1)
8n } is cauchy in complete random normed space (W2, µ

ρ,min)
and Qc(υ1) is the convergence point of the sequence.
Now, for every δ > 0, we find

µ
ρ

(Qc(υ1)−f(υ1))
(t+ δ)

≥ T

(

µρ
(Qc(υ1)−

f(2nυ1)
8n )

(δ), µρ
(
f(2nυ1)

8n −f(υ1))
(t)

)

(3.9)

≥ T

(

µρ
(Qc(υ1)−

f(2nυ1)
8n )

(δ), µ′ρ
ψ(υ1,0,0)

(

t
∑n−1

k=0
αk

8k+1

))

. (3.10)

Putting limit n→ ∞, we get

µ
ρ

(Qc(υ1)−f(υ1))
(t+ δ) ≥ µ′ρ

ψ(υ1,0,0)(t(8− α)). (3.11)

Taking δ → 0, because δ is arbitrary, we obtain

µ
ρ

(Qc(υ1)−f(υ1))
(t) ≥ µ′ρ

ψ(υ1,0,0)(t(8− α)). (3.12)

By replacing υ1, υ2, υ3 with 2nυ1, 2
nυ2, 2

nυ3 in equation (3.2), we obtain

µρΘ1
(t) ≥ µ′ρ

ψ(2nυ1,n2υ2,2nυ3)(8
nt), (3.13)

where

Θ1 =
f(2n(2υ1 + 3υ2 + 4υ3))

8n
− 3

f(2n(υ1 + 3υ2 + 4υ3))

8n

−
f(2n(−υ1 + 3υ2 + 4υ3))

8n
− 2

f(2n(υ1 + 3υ2))

8n
− 2

f(2n(υ1 + 4υ3))

8n

+ 6
f(2n(υ1 − 3υ2))

8n
+ 6

f(2n(υ1 − 4υ3))

8n
+ 3

f(2n(3υ2 + 4υ3))

8n

− 16[
f(2n(υ1 −

3
2υ2))

8n
+
f(2n(υ1 − 2υ3))

8n
]

+ 18
f(2nυ1)

8n
+ 6

f(3.2nυ2)

8n
+ 6

f(4.2nυ3)

8n
.

As, limn→∞ µ′ρ
ψ(2nυ1,n2υ2,2nυ3)(8

nt) = 1, then we can say that mapping Qc is cubic.
Now, we prove the uniqueness of cubic mapping Qc, for this, we assume that there
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is another cubic mapping Q′
c : W

′
1 → W2 which fulfills (3.3). Now,

µ
ρ

(Qc(υ1)−Q′

c(υ1))
(t) = lim

n→∞

{

µ
ρ

(
Qc(2nυ1)

8n −
Q′

c(2
nυ1)

8n )
(t), µρ

(
Qc(2nυ1)

8n −
Q′

c(2
nυ1)

8n )
(t)

}

≥ min

{

µ
ρ

(
Qc(2nυ1)

8n −
f(2nυ1)

8n )
(
t

2
), µρ

(
Qc(2nυ1)

8n −
f(2nυ1)

8n )
(
t

2
)

}

≥ µ′ρ
ψ(2nυ1,0,0)(

8nt

2
(8− α)) ≥ µ′ρ

ψ(υ1,0,0)((
8nt(8 − α)

2αn
). (3.14)

As, limn→∞((8
nt(8−α)
2αn ) = ∞. Therefore, we obtain µ′ρ

ψ(υ1,0,0)((
8nt(8−α)

2αn ) = 1.

Hence, µρ(Qc(υ1)−Q′

c(υ1))
(t) = 1. So, Qc(υ1) = Q′

c(υ1). �

Next, we will prove the results using fixed point method.

Theorem 3.2. let W1 be a linear orthogonality space, (W2, µ
ρ,min) be completely

random normed space and (W3, µ
′ρ,min) be a random normed space, and define a

function ψ : W1 ×W1 ×W1 → W3 such that

µ′ρ
ψ(2υ1,0,0)(t) ≥ µ′ρ

αψ(υ1,0,0)(t), 0 < α < 8, t > 0, υ1 ∈ W1. (3.15)

If an odd mapping f : W1 → W2 satisfying f(0) = 0 and

µρΘ(t) ≥ µ′ρ
ψ(υ1,υ2,υ3)(t), (3.16)

for all υ1, υ2, υ3 ∈ W1 and υ1, υ2, υ3 are mutually orthogonal, where

Θ = f(2υ1 + 3υ2 + 4υ3)− 3f(υ1 + 3υ2 + 4υ3)

− f(−υ1 + 3υ2 + 4υ3)− 2f(υ1 + 3υ2)− 2f(υ1 + 4υ3)

+ 6f(υ1 − 3υ2) + 6f(υ1 − 4υ3) + 3f(3υ2 + 4υ3)

− 16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)] + 18f(υ1) + 6f(3υ2) + 6f(4υ3),

then, there is exactly one and only one cubic mapping Qc : W1 → W2 in such a
way

µρf(υ1)−Qc(υ1)(t) ≥ µ′ρ
ψ(υ1,0,0)((8 − α)t). (3.17)

Proof. Taking (υ1, υ2, υ3) = (υ1, 0, 0) in equation (3.16)

µρ(
f(2υ1)

8 −f(υ1)

)(t) ≥ µ′ρ
ψ(υ1,0,0)(8t), ∀ υ1 ∈ W1, t > 0. (3.18)

Now, assume H is a set of all odd mappings h : W1 → W2 having condition
h(0) = 0. Also, define a generalized metric on H such that

d(h, k) = inf{β ∈ R+ : µρh(υ1)−k(υ1)(βt) ≥ µ′ρ
ψ(υ1,0,0)(t)}.

By using the result[[20]lemma2.1], we can say that (H, d) is generalized metric
space. Now, a mapping J : H → H is defined as

Jh(υ1) =
h(2υ1)

8
; h ∈ H.
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Let, f, g ∈ H is taken such that d(f, g) < ǫ. Hence,

µρJg(υ1)−Jf(υ1)

(

αβ

8
t

)

= µρ g(2υ1)
8 −

f(2υ1)

8

(

αβ

8
t

)

= µρg(2υ1)−f(2υ1)(αβt)

≥ µ′ρ
ψ(2υ1,0,0)(2t) ≥ µ′ρ

ψ(υ1,0,0)(t).

If d(f, g) < ǫ, then we get d(Jf, Jg) < α
8 ǫ. Therefore,

d(Jf, Jg) <
α

8
d(f, g).

This implies that mapping J is strictly self-contractive with Lipschtiz constant α
8 .

Now using equation (3.18), we obtain

µρJf(υ1)−f(υ1)

(

1

8
t

)

≥ µ′ρ
ψ(υ1,0,0)(t).

This implies that d(Jf ′, f) ≤ 1
8 . Now from theorem (1), there exist a unique

mapping Qc : W1 → W2 such that J has a fixed point as Qc.
As m→ ∞, d(Jmg,Qc) → 0 which means

lim
m→∞

f(2mυ1)

8m
= Qc ∀ υ1 ∈ W1.

Now, using equations (3.15) and (3.16), we get

µρ Df(2mυ1,2mυ2,2mυ3)
8

(t) ≥ µ′ρ
ψ(2mυ1,2mυ2,2mυ3)(8

mt)

= µ′ρ
ψ(2mυ1,2mυ2,2mυ3)(α

m(
8

α
)mt)

≥ µ′ρ
ψ(υ1,υ2,υ3)((

8

α
)mt). (3.19)

Taking m → ∞ in equation (3.19), we obtain that µρDQc(υ1,υ2,υ3)(t) = 1, this

implies DQc(υ1, υ2, υ3) = 0. Therefore, cubic nature is followed by mapping Qc :
W1 → W2. As, in set H1 = {g ∈ H, d(f, g) < ∞}, J has unique fixed point Qc
where Qc : W1 → W2 is unique mapping satisfying

µρf(υ1)−Qc(υ1)(βt) ≥ µ′ρ
ψ(υ1,0,0)(t).

Now, by using the fixed point alternative, we get

d(f,Qc) ≤
1

1− L
d(f, Jf) ≤

1

8(1− L)
=

1

8(1− α
8 )
.

This implies that

µρf(υ1)−Qc(υ1)(
1

8− α
t) ≥ µ′ρ

ψ(υ1,0,0)(t).

Therefore,
µρf(υ1)−Qc(υ1)(t) ≥ µ′ρ

ψ(υ1,0,0)((8 − α)t). (3.20)

This completes the proof. �

Corollary 3.3. let W1 be a linear space, (W2, µ
ρ,min) be completely random

normed space and (W3, µ
′ρ,min) be a random normed space. If an odd mapping

f : W1 → W2 satisfying f(0) = 0 and

µρΘ(t) ≥
t

t+ ξ||υ0||
,
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where

Θ = f(2υ1 + 3υ2 + 4υ3)− 3f(υ1 + 3υ2 + 4υ3)

− f(−υ1 + 3υ2 + 4υ3)− 2f(υ1 + 3υ2)− 2f(υ1 + 4υ3)

+ 6f(υ1 − 3υ2) + 6f(υ1 − 4υ3) + 3f(3υ2 + 4υ3)

− 16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)] + 18f(υ1) + 6f(3υ2) + 6f(4υ3),

then, there is exactly one and only one cubic mapping Qc : W1 → W2 in such a
way

µρf(υ1)−Qc(υ1)(t) ≥
(8− α)t

(8− α)t + ξ||υ0||
.

Theorem 3.4. let W1 be a linear space, (W2, µ
ρ,min) be completely random

normed space and (W3, µ
′ρ,min) be a random normed space, and define a func-

tion ψ : W1 ×W1 ×W1 → W3 such that

µ′ρ
ψ(

υ1
2 ,0,0)

(t) ≥ µ′ρ
αψ(υ1,0,0)(t), ∀ υ1 ∈ W1, t > 0. (3.21)

If an odd mapping f : W1 → W2 satisfying f(0) = 0 and

µρΘ(t) ≥ µ′ρ
ψ(υ1,υ2,υ3)(t), (3.22)

where

Θ = f(2υ1 + 3υ2 + 4υ3)− 3f(υ1 + 3υ2 + 4υ3)

− f(−υ1 + 3υ2 + 4υ3)− 2f(υ1 + 3υ2)− 2f(υ1 + 4υ3)

+ 6f(υ1 − 3υ2) + 6f(υ1 − 4υ3) + 3f(3υ2 + 4υ3)

− 16[f(υ1 −
3

2
υ2) + f(υ1 − 2υ3)] + 18f(υ1) + 6f(3υ2) + 6f(4υ3),

then, there is exactly one and only one cubic mapping Qc : W1 → W2 in such a
way

µρf(υ1)−Qc(υ1)(t) ≥ µ′ρ
ψ(υ1,0,0)((α − 8)t). (3.23)

Proof. The proof is the same as above. �

4. Results of Experiment

In this section, we discuss the graphs of both the exact solution and the approx-
imate solution for the given equation. It is simple to demonstrate that function
f(υ) = υ3 is an exact solution to cubic equation. For experimental purposes, we
explored an alternative function Qc(υ) = υ3+υ3(log|υ|), which differs from a cubic
function.These two functions were graphed using matlab, and it was observed that
the graphs of both functions, f(υ) and Qc(υ), coincide at multiple points. This
suggests that Qc(υ) serves as an approximate solution to the given cubic equation.
Now, next table shows that the behaviour of the exact solution, approximate solu-
tion and difference between their values between −1 and 1. Also, the graphs of the
functions f(υ) (in cyan colour) and Qc(υ) (in red colour) are shown in Figure 1.
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Error of Approximation

Values of υ Exact Solution

f(υ)
Approximate So-

lution Qc(υ)
Difference |f(υ)−Qc(υ)|

-1 -1 -1 0
-0.9 -0.729 -0.706 0.023
-0.8 -0.512 -0.477 0.035
-0.7 -0.343 -0.306 0.037
-0.6 -0.216 -0.182 0.034
-0.5 -0.125 -0.099 0.026
-0.4 -0.064 -0.046 0.018
-0.3 -0.027 -0.017 0.010
-0.2 -0.008 -0.004 -0.004
-0.1 -0.001 -0.0003 0.0002
0.1 -0.001 -0.003 0.0002
0.2 0.008 0.004 0.004
0.3 0.027 0.017 0.010
0.4 0.064 0.046 0.018
0.5 0.125 0.099 0.026
0.6 0.216 0.182 0.034
0.7 0.343 0.306 0.037
0.8 0.512 0.477 0.035
0.9 0.729 0.706 0.023
1 1 1 0

Figure 1. Graph of f(υ) and Qc(υ)
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5. Comparative evaluation of the results

In this study, we addressed a new cubic functional equation and established its
stability across the spaces, including modular space and random normed space.
The main results obtained are summarized as follows:

Corollary No. Space setting Stability result

Corollary 2.3 Modular Space ρ(f(υ1)−Qc(υ1)) ≤
ǫ

8−κ2p−1

Corollary 3.3 Random Normed Space µρf(υ1)−Qc(υ1)(t) ≥
(8−α)t

(8−α)t+ξ||υ0||

Upon comparing the results presented in the table, it is evident that the ap-
proximate solution closely aligns with the exact solution within the framework of
Modular space since the upper bound ǫ

8−κ2p−1 is less when compared with up-
per bound in random normed space. The stability results concerning Hyers-Ulam
stability regarding upper bound are obtained in Corollaries 1 and 3.

Conclusion

In conclusion, our research presents a new three-dimensional cubic functional
equation, and our focus lies in assessing its orthogonal stability. Using the direct
method and fixed point method, we explore stability within modular space and
random norm space. Our findings deepen the understanding of the behavior of the
equation and provide insights for potential applications in various mathematical
contexts, contributing to the field of functional analysis.

Acknowledgments. The authors would like to thank the anonymous referee for
his/her comments that helped us improve this article.
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