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MULTIPLE SOLUTION FOR SOME p-KIRCHHOFF PROBLEMS

WITH ψ-HILFER DERIVATIVE

MARYAM AHMED ALYAMI

Abstract. In this paper, we will develop the variational framework for some

Kirchhoff problems involving both the p-Laplace operator and the ψ-Hilfer de-
rivative. Precisely, we use the Mountain pass theorem and Ekland’s variational

principle to prove the existence of multiple. Our main result generalizes the

paper of César, Adv. Nonlinear Anal., 5(2) (2016), 133-146..

1. Introduction

In the last decades, fractional calculus has attracted the attention of many re-
searchers. Also, it appears in the application of many fields such as chemistry,
electrodynamics of complex media, and physics see for example the monographs
[7, 8, 12, 18, 20]. Consequently, several authors concentrated on the development
of fractional operators like the Riemann Liouville derivative, Caputo derivative, and
Hadamard derivative. Precisely, Hilfer [13] has developed a new fractional deriva-
tive, which is called Hilfer derivative, and generalizes both the Riemann-Liouville
and the Caputo fractional derivatives. very recently, the authors in [22], have stud-
ied the question of the existence result of non-instantaneous impulsive stochastic
differential equations involving Hilfer fractional derivative and driven by fractional
Brownian motion.
Due to its importance and their various applications, many researchers are concen-
trated on the study of problems involving different fractional operators. For details
and examples, one can see the papers [1, 2, 3, 9, 10, 11, 16, 19] and references
therein.
We note that the first paper studying such a problem by using the variational ap-
proach is the paper of Jiao and Zhou [15]. After this, different methods are used
in the study of such problems, we refer the readers to [3, 24, 5, 6, 11] and the
references therein. More precisely, Torres in [23] uses the Mountain pass theorem
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to study the following problem{
−sDδ

s 0D
δ
sϕ(s) = f(s, ϕ(s)), s ∈ (0, T )

ϕ(0) = ϕ(T ) = 0,
(1.1)

and obtain the existence of a nontrivial solution, where sD
δ
s and 0D

δ
s are the right

and left Riemann Liouville fractional derivatives.
In [24], Torres considered the following p-Laplacian Dirichlet problem{

−sDδ
1 (Φp

(
0D

δ
sϕ(s))

)
= f(s, ϕ(s)), s ∈ (0, T )

ϕ(0) = ϕ(T ) = 0,
(1.2)

where 0 < 1
p < δ < 1, f : [0, T ]× (−∞,∞)→ (−∞,∞) is a Carathéodory function

and Φp is defined by

Φp(x) = |x|p−2x.

Under suitable assumptions on the nonlinearity f and using the direct variational
method combined with the mountain pass theorem, the author proves that problem
(1.2) has a nontrivial weak solution.
Given the large number of definitions of fractional operators introduced so far, sev-
eral researchers are still looking for how to choose the best fractional derivative
to discuss certain objectives. One of these operators is the fractional derivative
with respect to another function. We cite, for example, the ψ-Riemann Liouville
operators which are introduced in [16] (Chapter 2). Next, Almeida [4] introduced
more general operators called ψ-Caputo operators, moreover, some other proper-
ties of Caputo and Hadamard derivatives are investigated. In 2018, Vanterler et al.
[27] introduced a new and interesting fractional derivative called ψ-Hilfer derivative
which is a generalization of other previous ones. In 2019 the authors extended in
[25] other properties and applications for the ψ-fractional operators. In [26], the
authors use the Nehari manifold method to prove the existence of a solution for
some ψ-Hilfer p-Laplacian equation. Very recently, Vanterler et al. [28] investigated
a problem involving the ψ-Hilfer operators using the variational method approach.
Motivated by the above-mentioned works, in this paper, we want to contribute to
the development of this new area on differential equations involving fractional op-
erators. Precisely, we will consider the following fractional boundary value problem
involving the p-Laplace operator and the ψ-Hilfer fractional derivative{

K(ϕ(s))HDµ,δ,ψs

(
Φp

(
HDµ,δ,ψ0+ ϕ(s)

))
= λg(s, ϕ(s))) + f(s, ϕ(s)), s ∈ (0, T ),

I
δ(δ−1);ψ
0+ (0) = I

δ(δ−1);ψ
s (T ) = 0,

(1.3)

where λ > 0, HDµ,δ,ψs and HDµ,δ,ψ0+ are the right-sided and left sided ψ-Hilfer

derivatives of order 0 < µ ∈ ( 1
p , 1], and of type δ ∈ [0, 1], I

δ(δ−1);ψ
0+ and I

δ(δ−1);ψ
s

are the left-sided and the right-sided ψ-Riemann-Liouville fractional integrals. The
function K : (−∞,∞)→ (−∞,∞) is defined by

K(ϕ(s)) =

(
a+ b

∫ s

0

∣∣∣HDµ,δ,ψ0+ ϕ(s)
∣∣∣p ds)p−1

, a, b ≥ 1.

The functions f, g : [0, T ] × (−∞,∞) → (−∞,∞) are continuous, moreover, g is
positively homogeneous of degree q − 1, which means that for all t > 0 we have

g(s, tu) = tq−1g(s, u), (s, u) ∈ [0, T ]× (−∞,∞).
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Hereafter, we put

F (x, s) =

∫ s

0

f(x, y)dy, G(x, s) =

∫ s

0

g(x, y)dy,

and we assume that the nonlinearities satisfy the following hypotheses:
(H1) There exists σ > p such that

0 < σF (x, ϕ) ≤ ϕf(x, ϕ), ∀ (x, ϕ) ∈ [0, T ]× (−∞,∞), (1.4)

Also, we assume that

|F (s, ϕ)| ≤ C0|ϕ|σ, C0 > 0. (1.5)

(H2) G : [0, T ]× (−∞,∞)→ (−∞,∞) is positively homogeneous of degree q, tha
is

G(s, tϕ) = tqG(s, ϕ), ∀ (t, s, ϕ) ∈ (0,∞)× [0, T ]× (−∞,∞).

We notes hypothesis (H2) leads to the so-called Euler identity:

ϕg(s, ϕ) = qG(s, ϕ). (1.6)

Moreover, for some positive constant C1, we get

|G(s, ϕ)| ≤ C1|ϕ|q. (1.7)

The main result of this paper is the following theorem.

Theorem 1.1. Assume that hypotheses (H1) and (H2) are satisfied. If 1
p < δ < 1,

and 1 < p2 < min(σ, q), then there exists λ0 > 0, such that for any λ ∈ (0, λ0),
problem (1.3) admits two nontrivial weak solutions.

We note that this result generalizes those of Torres stated in [23] for the cases
p = 2, K ≡ 1 and in [24] for the case K ≡ 1. This paper is organized as follows.
In Section 2, some preliminaries and lemmas on fractional calculus are presented,
moreover. In Section 3, we introduce the variational framework of problem (1.3)and
we prove the main result of this paper (Theorem 1.1).

2. Preliminaries and variational setting

In this section, we present some preliminaries and background theory on the
concept of ψ-Hilfer fractional derivative which will be used in the rest of this paper.
First, let us start by introducing the definition of the fractional integral in the
sense of Kilbas et al. [16] and Samko et al. [21]. Throughout this section, µ
and δ denote positive real numbers, Γ denotes the Euler gamma function, and if
−∞ ≤ a < b ≤ ∞, then [a, b] denotes a finite or infinite interval in the real line. psi
denotes an increasing positive function on [a, b] with continuous derivative ψ′(s) 6= 0
on (a, b).
In the rest of this paper, ϕ denotes an integrable function defined on [a, b], and ψ
an increasing function in C1

(
[a, b], (−∞,∞)

)
such that ψ′(x) 6= 0, for all x ∈ [a, b].

Also, for two given numbers x and y, we denote by ψx(y) the following expression:

ψx(y) = ψ(x)− ψ(y).

Finally, we deonte by dx,ψ the following operator:

dx,ψ =
1

ψ′(x)

d

dx
.
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Definition 2.1. ([16, 21]) The left and right fractional integrals of a function ϕ
with respect to a function ψ are defined respectively as follows:

Iδ,ψa+ ϕ(x) :=
1

Γ(δ)

∫ x

a

ψ′(s)(ψx(s))δ−1ϕ(s)ds,

and

Iδ,ψb− ϕ(x) :=
1

Γ(δ)

∫ b

x

ψ′(s)(ψs(x))δ−1ϕ(s)ds.

Definition 2.2. ([25, 27]) The ψ-Hilfer fractional derivatives left-sided and right-
sided of order µ > 0 and of type 0 ≤ δ ≤ 1 are defined respectively by:

HDµ,δ,ψa+ ϕ(x) := I
δ(n−µ),ψ
a+ (dx,ψ)

n
I

(1−δ)(n−µ),ψ
a+ ϕ(x),

and

HDµ,δ,ψb− ϕ(x) := I
δ(n−µ),ψ
b− (dx,ψ)

n
I

(1−δ)(n−µ),ψ
b− ϕ(x),

where n is such that n− 1 < µ ≤ n.

Remark. The following statements hold.

(i) From the ψ-Hilfer fractional derivatives, if δ tends to zero, then we
obtain the ψ-Riemann-Liouville fractional derivatives which are defined by

Dµ,ψa+ ϕ(x) = (dx,ψ)
n
In−µ,ψa+ ϕ(x),

and

Dµ,ψb− ϕ(x) = (−dx,ψ)
n
In−µ,ψb− ϕ(x),

(ii) If δ → 1, then we obtain the ψ-Caputo fractional derivatives which are
defined by

CDµ,ψa+ ϕ(x) = In−µ,ψa+ (dx,ψ)
n
ϕ(x),

and

CDµ,δ,ψb− ϕ(x) = In−µ,ψb− (−dx,ψ)
n
ϕ(x),

(iii) There are direct relations between ψ-Hilfer fractional derivatives and
ψ-Riemann-Liouville fractional derivatives, precisely we have

HDµ,δ,ψa+ ϕ(x) = Iσ−µ,ψa+ Dσ,ψa+ ϕ(x),

and

HDµ,δ,ψb− ϕ(x) = Iσ−µ,ψb− Dσ,ψb− ϕ(x),

where σ = µ+ δ(n− µ).

Now, by interchanging the order of integration by the Dirichlet formula in the
particular case Fubini theorem, we can prove the following integration by parts for
the ψ-Riemann-Liouville fractional integral:∫ b

a

Iδ,ψa+ ϕ(x)v(x) dx =

∫ b

a

ϕ(x)ψ′(x)Iδ,ψb−

(
v(x)

ψ′(x)

)
dx.

For more details, we refer the readers to [26].
Also, we need the following result which is called fractional integration by parts for
the ψ-Hilfer fractional derivatives:
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Lemma 2.3 ([26]). If ϕ is an absolutely countinous function on [a, b] and s is a
C1 function on [a, b] such that s(a) = s(b) = 0. Then for 0 < µ ≤ 1 and 0 ≤ δ ≤ 1,
we have ∫ b

a

HDµ,δ,ψa+ ϕ(x)s(x) dx =

∫ b

a

ϕ(x)ψ′(x) HDµ,δ,ψb−

(
s(x)

ψ′(x)

)
dx (2.1)

For 1 ≤ r ≤ ∞, Lr(a, b) denotes the set of all measurable function u on [a, b],

such that
∫ b
a
|ϕ(s)|rds <∞.

Put

‖ϕ‖Lr(a,b) =

(∫ b

a

|ϕ(s)|rds

) 1
r

,

and

‖ϕ‖∞ = ess sup
a≤t≤b

|ϕ(s)|.

Remark. ([17, 26]) If 0 < µ ≤ 1, r ≥ 1 and q = r
r−1 , then For each ϕ ∈ Lr(a, b),

we have:

(i) Iµ,ψa+ ϕ is bounded in Lr(a, b), moreover we have

‖Iµ,ψa+ ϕ‖Lr(a,b) ≤
(ψb(a))µ

Γ(µ+ 1)
‖ϕ‖Lr(a,b).

(ii) If 1
r < µ < 1, then Iµ,ψa+ is Hölder continuous on [a, b] with exponent µ− 1

r .

(iii) If 1
r < µ < 1, then lim

s→a
Iµ,ψa+ ϕ(s) = 0. That is Iµ,ψa+ ϕ can be continuously

extended by zero in t = a. So, Iµ,ψa+ ϕ is continuous on [a, b], moreover, we
get

‖Iµ,ψa+ ϕ‖∞ ≤
(ψb(a))µ−

1
r

Γ(µ)
(

(µ− 1)q + 1
) 1
q

‖ϕ‖Lr(a,b).

The main tool in the proof of our main result is the following theorem.

Theorem 2.4. (Mountain pass theorem) Let E be a real Banach space and J ∈
C1(E, (−∞,∞)) satisfying the Palai Smale condition. Assume that that

(i) J(0) = 0,
(ii) There is ρ > 0 and σ > 0 such that J(z) ≥ σ for all z ∈ E with ‖z‖ = ρ.
(iii) There exists z1 ∈ E with ‖z1‖ ≥ ρ such that J(z1) < 0.

Then J possesses a critical value at level c ≥ σ. Moreover, c can be characterized
as

c = inf
γ∈Γ

max
z∈[0,1]

J(γ(z)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = z1}.

We note that The functional J satisfies the Palais-Smale condition if any Palais-
Smale sequence has a strongly convergent subsequence. This means that if a se-
quence {ϕm} in E is such that J(ϕm) is bounded and J ′(ϕm) converges to 0 in the
dual space E′, then {ϕm} has a convergent subsequence.
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3. The proof of the main result

In this section, to apply the mountain pass theorem, we begin by introducing the
fractional derivative space and some other interesting results. In order to formulate
the variational setting to problem (1.3), we define the fractional derivative space
Eµ,δ,ψp by the closure of C∞0 ([0, T ], (−∞,∞)) with respect to the norm

‖ϕ‖Eµ,δ,ψp
=
(
‖ϕ‖pLp(0,T ) + ‖0Dµ,δ,ψs u‖pLp(0,T )

) 1
p

.

We note that, the space Eµ,ψp can be described as follows:

Eµ,δ,ψp =
{
v ∈ Lp([0, T ], (−∞,∞)) : Dµ,δ,ψ0+ v ∈ Lp([0, T ], (−∞,∞)), I

δ(δ−1);ψ
0+ (0) = Iδ(δ−1);ψ

s (s) = 0
}
.

Remark. ([17, 26]) If 0 < µ ≤ 1 and 0 ≤ δ ≤ 1, then for all ϕ ∈ Eµ,δ,ψp , we have

(i) The space Eµ,δ,ψp is a reflexive and separable Banach space.

(ii) If 1− µ > 1
p or µ > 1

p , then, we get

‖ϕ‖Lp(0,T ) ≤
(ψs(0))µ

Γ(µ+ 1)
‖Dµ,δ,ψ0+ ‖Lp(0,T ).

(ii) If 1
p < µ, and q = p

p−1 , then we have

‖ϕ‖∞ ≤
(ψs(a))µ−

1
r

Γ(µ)
(

(µ− 1)q + 1
) 1
q

‖Dµ,δ,ψ0+ ‖Lr(0,T ).

We note tha, from Remark 3, one has

‖ϕ‖∞ ≤
(ψs(a))µ−

1
r

Γ(µ)
(

(µ− 1)q + 1
) 1
q

‖ϕ‖Eµ,δ,ψp
. (3.1)

Definition 3.1. A function ϕ is said to be a weak solution of problem (1.3), if for
every v ∈ Eµ,δ,ψp we have :

K(ϕ(s))

∫ s

0

Φp(0Dµ,δ,ψs ϕ(s)) 0Dµ,δ,ψs v(s)ds = λ

∫ s

0

f(s, ϕ(s))v(s)ds

+

∫ s

0

g(s, ϕ(s))v(s)ds.

Since we use the variational method, it is natural to define the associate func-
tional Jλ : Eµ,δ,ψp → (−∞,∞), which is defined by:

Jλ(ϕ) =
1

bp2

(
a+ b‖ϕ‖pµ,ψ

)p
− λ

∫ s

0

F (s, ϕ(s))ds−
∫ s

0

G(s, ϕ(s))ds− ap

bp2
.

Since F andG are continuous, it is not difficult to show that Jλ ∈ C1(Eµ,δ,ψp , (−∞,∞)),

moreover for all ϕ, v ∈ Eµ,δ,ψp , we have

〈J ′λ(ϕ), v〉 =
(
a+ b‖ϕ‖pµ,ψ

)p−1
∫ s

0

Φp(0Dµ,δ,ψs ϕ(s))0Dµ,δ,ψs v(s)ds

− λ

∫ s

0

f(s, ϕ(s))v(s)ds−
∫ s

0

g(s, ϕ(s))v(s)ds (3.2)

So, critical points of Jλ are solutions of problem (1.3).
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Lemma 3.2. Assume that (H1) and (H2) hold, and min(σ, q) > p. Then there
exist ρ > 0 and σ > 0, such that for all z ∈ Eµ,δ,ψp we have

‖z‖ = ρ =⇒ Jλ(z) ≥ σ > 0.

Proof. Let z ∈ Eµ,δ,ψp , then, by equations (1.5), (1.7) and (3.1), we obtain

Jλ(z) =
1

bp2

(
a+ b‖z‖pµ,ψ

)p
− λ

∫ s

0

F (s, z(s))ds−
∫ s

0

G(s, z(s))ds− ap

bp2

≥ 1

bp2

(
a+ b‖z‖pµ,ψ

)p
− λC0

∫ s

0

|z|σds− C1

∫ s

0

|z|qds− ap

bp2

≥ 1

bp2

(
a+ b‖z‖pµ,ψ

)p
− λC0T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)σ
‖z‖σµ,ψ

− C1T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)q
‖z‖qµ,ψ −

ap

bp2
. (3.3)

If ‖z‖µ,ψ = ρ > 0, then, from (3.3) and the following elementary inequality

(x+ y)p ≥ xp + pyxp−1,

we get

Jλ(z) ≥ 1

bp2
(a+ bρp)

p − λC0T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)σ
ρσ

− C1T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)q
ρq − ap

bp2

≥ ρpap−1

p
− λC0T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)σ
ρσ − C1T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)q
ρq

≥ ρph(ρ).

where

h(t) =
ap−1

p
−λC0T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)σ
tσ−p−C1T

(
(ψs(0))µ−

1
p

Γ(µ)((µ− 1)q + 1)
1
q

)q
tq−p.

Since min(σ, q) > p, then we have

lim
ρ→0

h(ρ) =
ap−1

p
> 0.

Hence, we can choose ρ > 0 small enough such that

ρph(ρ) := σ > 0.

Which yields to Jλ(z) ≥ σ > 0. �

Lemma 3.3. Assume that (H1) and (H2) hold. If min(σ, q) > p2, then, there
exists z1 ∈ Eµ,δ,ψp with ‖z1‖ ≥ ρ, and Jλ(z1) < 0.
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Proof. Let s > 0 large enough such that a < sp, then using hypothesis (H2) and
equation (1.5), we obtain for all ϕ ∈ Eµ,δ,ψp

Jλ(sϕ) =
1

bp2

(
a+ b‖sϕ‖pµ,ψ

)p
− λ

∫ s

0

F (s, sϕ(s))ds−
∫ s

0

G(s, sϕ(s))ds− ap

bp2

≤ sp
2

bp2

(
1 + b‖ϕ‖pµ,ψ

)p
− sq

∫ s

0

G(s, ϕ(s))ds

≤ sp
2

bp2

(
1 + b‖ϕ‖pµ,ψ

)p
− C1s

q

∫ s

0

|ϕ(s)|q ds.

Since q > p2, then we get lim
s→∞

Jλ(sϕ) = −∞. So, there exists R > 0 such that for

s > R, we have Jλ(sϕ) < 0. If we fix s0 > max(R, a
1
p ), then, for z1 = s0ϕ, we have

‖z1‖ ≥ ρ, and Jλ(z1) < 0. �

Lemma 3.4. Assume that (H1) and (H2) hold. Assume that min(σ, q) > p2, then
Jλ satisfies the Palais-Smale condition

Proof. Let {ϕk} ∈ Eµ,δ,ψp be a Palai-Smale sequence. Then we can find C2 > 0 and
C3 > 0, such that

|Jλ(ϕk)| ≤ C2, and |〈J ′λ(ϕk), ϕk〉| < C3. (3.4)

First of all, we claim that {uk} is bounded. indeed, If not, up to a subsequence, we
can assume that

‖ϕk‖ → ∞, as k →∞.
Put θ = min(σ, q), then, by combining equation 3.4 with equations (1.4) and (1.6),
we get

C2 ≥ Jλ(ϕk)

=
1

bp2

(
a+ b‖ϕk‖pµ,ψ

)p
− λ

∫ s

0

F (s, ϕk(s))ds−
∫ s

0

G(s, ϕk(s))ds− ap

bp2

=
1

bp2

(
a+ b‖ϕk‖pµ,ψ

)p
− λ

σ

∫ s

0

f(s, ϕk(s))ϕkds−
1

q

∫ s

0

g(s, ϕk(s))ϕkds−
ap

bp2

≥ 1

bp2

(
a+ b‖ϕk‖pµ,ψ

)p
− λ

θ

∫ s

0

f(s, ϕk(s))ϕkds

−1

θ

∫ s

0

g(s, ϕk(s))ϕkds−
ap

bp2
. (3.5)

Now, from (3.2), we have

〈J ′λ(ϕk), ϕk〉 =
(
a+ b‖ϕk‖pµ,ψ

)p−1

‖ϕk‖p − λ
∫ s

0

f(s, ϕk(s))ϕk(s)ds

−
∫ s

0

g(s, ϕk(s))ϕk(s)ds.

So from the definition of the sequence {ϕk}, we obtain

C3 ≥ −〈J ′λ(ϕk), ϕk〉

= −
(
a+ b‖ϕk‖pµ,ψ

)p−1

‖ϕk‖p + λ

∫ s

0

f(s, ϕk(s))ϕk(s)ds

+

∫ s

0

g(s, ϕk(s))ϕk(s)ds. (3.6)
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Now, by combining (3.5) with (3.6), we get

θC2 + C3 ≥ θ
1

bp2

(
a+ b‖ϕk‖pµ,ψ

)p
−
(
a+ b‖ϕk‖pµ,ψ

)p−1

‖ϕk‖p

− (θ − 1)
ap

bp2

=
(
a+ b‖ϕk‖pµ,ψ

)p−1 ( θ

bp2
(a+ b‖ϕk‖pµ,ψ)− ‖ϕk‖pµ,ψ

)
− (θ − 1)

ap

bp2

=
(
a+ b‖ϕk‖pµ,ψ

)p−1 ( aθ
bp2

+ (
θ

p2
− 1)‖ϕk‖pµ,ψ)

)
− (θ − 1)

ap

bp2
.

Since θ > p2, then by letting k tend to infinity we obtain a contradiction. So {ϕk}
is bounded. Therefore, from Remark 3 (i), there exists ϕ∗ ∈ Eµ,δ,ψp such that, up
to a subsequence, we have{

ϕk ⇀ ϕ∗, weakly in Eµ,δ,ψp ,
ϕk → ϕ∗, in C([0, T ], (−∞,∞)).

From (3.2), we get
〈J ′λ(ϕk)− J ′λ(ϕ∗), ϕk − ϕ∗〉

=
(
a+ b‖ϕk‖pµ,ψ

)p−1
∫ s

0

Φp(0Dµ,δ,ψs ϕk(s))0Dµ,δ,ψs (ϕk(s)− ϕ∗(s))ds

−
(
a+ b‖ϕ∗‖pµ,ψ

)p−1
∫ s

0

Φp(0Dµ,δ,ψs ϕ∗(s))0Dµ,δ,ψs (ϕk − ϕ∗(s))ds

−λ
∫ s

0

(
f(s, ϕk(s)− f(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds

−λ
∫ s

0

(
g(s, ϕk(s)− g(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds

=
(
a+ b‖ϕk‖pµ,ψ

)p−1
(
‖ϕk‖pµ,ψ −

∫ s

0

Φp(0Dµ,δ,ψs ϕk(s))0Dµ,δ,ψs ϕ∗(s)ds

)
+
(
a+ b‖ϕ∗‖pµ,ψ

)p−1
(
‖ϕk‖pµ,ψ −

∫ s

0

Φp(0Dµ,δ,ψs ϕ∗(s))0Dµ,δ,ψs ϕk(s)ds

)
−λ
∫ s

0

(
f(s, ϕk(s)− f(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds

−λ
∫ s

0

(
g(s, ϕk(s)− g(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds.

By the Hölder inequality, we obtain∫ s

0

Φp(0Dµ,δ,ψs ϕk(s))0Dµ,δ,ψs ϕ∗(s)ds ≤ ‖ϕk‖p−1
µ,ψ ‖ϕ∗‖

p
µ,ψ,

∫ s

0

Φp(0Dµ,δ,ψs ϕ∗(s))0Dµ,δ,ψs ϕk(s)ds ≤ ‖ϕ∗‖p−1
µ,ψ ‖ϕk‖

p
µ,ψ.
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So,

〈J ′λ(ϕk)− J ′λ(ϕ∗), ϕk − ϕ∗〉 ≥
(
a+ b‖ϕk‖pµ,ψ

)p−1 (
‖ϕk‖pµ,ψ − ‖ϕk‖

p−1
µ,ψ ‖ϕ∗‖µ,ψ

)
(
a+ b‖ϕ∗‖pµ,ψ

)p−1 (
‖ϕk‖pµ,ψ − ‖ϕ∗‖

p−1
µ,ψ ‖ϕk‖µ,ψ

)
− λ

∫ s

0

(
f(s, ϕk(s)− f(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds

− λ

∫ s

0

(
g(s, ϕk(s)− g(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds

≥
(
a+ b‖ϕk‖pµ,ψ

)p−1

‖ϕk‖p−1
µ,ψ (‖ϕk‖µ,ψ − ‖ϕ∗‖µ,ψ)

+
(
a+ b‖ϕ∗‖pµ,ψ

)p−1

‖ϕ∗‖p−1
µ,ψ (‖ϕk‖µ,ψ − ‖ϕk‖µ,ψ)

− λ

∫ s

0

(
f(s, ϕk(s)− f(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds

− λ

∫ s

0

(
g(s, ϕk(s)− g(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds.(3.7)

Since ϕk → ϕ∗, in C([0, T ], (−∞,∞)), and |f(s, ϕk(s) − f(s, ϕ∗(s)|, |g(s, ϕk(s) −
g(s, ϕ∗(s)| are bounded, then as k →∞, we have∫ s

0

(
f(s, ϕk(s)− f(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds→ 0, (3.8)

and ∫ s

0

(
g(s, ϕk(s)− g(s, ϕ∗(s)

)
(ϕk(s)− ϕ∗(s))ds→ 0. (3.9)

On the other hand, since ϕk ⇀ ϕ∗, weakly in Eµ,δ,ψp , and J ′λ(ϕk) → 0, then we
get

〈J ′λ(ϕk)− J ′λ(ϕ∗), ϕk − ϕ∗〉 → 0, as k →∞. (3.10)

By combining equations (3.8), (3.9), (3.10) with equation (3.7), we get

‖ϕk‖µ,ψ → ‖ϕ∗‖µ,ψ, as k →∞.

Finally, by the uniform convexity of Eµ,δ,ψp , the weakly convergence of ϕk to ϕ∗ in

Eµ,δ,ψp and the KadecKlee property ( see [14]), we obtain that

ϕk → ϕ∗ strongly in Eµ,δ,ψp .

This ends the proof of Lemma 3.4. �

Now, we are ready to prove the main result of this paper.
Proof of Theorem 1.1 We begin this proof by notting that Jλ(0) = 0. So the
condition (i) of Theorem 2.4 is satisfied.
Next, by Lemma 3.2, There exist ρ > 0 and σ > 0 such that for all z ∈ Eµ,δ,ψp , we
have

‖z‖ = ρ =⇒ Jλ(z) ≥ σ > 0. (3.11)

Therefore, the condition (ii) of Theorem 2.4 is also fulfilled. On the other hand,
from Lemma 3.3, there exists z1 ∈ Eµ,δ,ψp satisfying

‖z1‖ ≥ ρ, and Jλ(z1) < 0. (3.12)
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By combining equations (3.11), (3.12), Lemma 3.4 with Theorem 2.4, we deduce
the existence of a critical point ϕλ of Jλ, which is a weak solution for problem
(1.3). Moreover, by (3.11) we get

Jλ(ϕλ) > 0. (3.13)

Hence ϕλ is nontrivial.
Now, we will the existence of a second solution for problem (1.3). By Lemma 3.2,
we get

inf
ϕ∈∂B(0,ρ)

Jλ(ϕ) > 0, and −∞ < c = inf
u∈B(0,ρ)

Jλ(ϕ) < 0,

where

B(0, ρ) = {ϕ ∈ Eδ,ψp : ‖ϕ‖δ,ψ < ρ} and B(0, ρ) = {ϕ ∈ Eδ,ψp : ‖ϕ‖δ,ψ ≤ ρ}.

Let n be an integer which is large enough such that

0 <
1

n
< inf
u∈∂B(0,ρ)

Jλ(ϕ)− inf
u∈B(0,ρ)

Jλ(ϕ). (3.14)

So, if we consider Jλ : B(0, ρ) → (−∞,∞), then by the Ekeland’s variational

principle there exists ϕn ∈ B(0, ρ), such that c ≤ Jλ(ϕn) ≤ c+ 1
n

Jλ(ϕn) < Jλ(ϕ) + 1
n ||ϕ− ϕn||, ϕ 6= ϕn.

(3.15)

Therefore, by combining equation (3.14) with equation (3.15), we obtain

Jλ(ϕn) ≤ inf
ϕ∈B(0,ρ)

Jλ(ϕ) +
1

n

≤ inf
ϕ∈B(0,ρ)

Jλ(ϕ) +
1

n

< inf
ϕ∈∂B(0,ρ)

Jλ(ϕ).

So, we deduce that ϕn ∈ B(0, ρ).

Now, we define the functional Ψ : B(0, ρ)→ (−∞,∞), as follows

Ψ(ϕ) = Jλ(ϕ) +
1

n
‖ϕ− ϕn‖.

It is clear that ϕn is a minimum of Ψ. Therefore, for s ∈ (0, 1) small enough and
for any v ∈ B(0, 1) ∩B(0, ρ), we have

Ψ(ϕn + sv)−Ψ(ϕn)

s
≥ 0,

which means that
Jλ(ϕn + sv)− Jλ(ϕn)

s
+

1

n
‖v‖ ≥ 0.

By letting s tend to zero in the last inequality, we get

J ′λ(ϕn)(v) +
1

n
‖v‖ ≥ 0.

This implies that

‖J ′λ(ϕn)‖ ≤ 1

n
.
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From the above information, we have

Jλ(ϕn)→ c < 0, and J ′λ(ϕn)→ 0.

Since {ϕn} ⊂ B(0, ρ), then, {ϕn}, is bounded in Eδ,ψp . So, from Lemma 3.4, up to

a subsequence, there exists ψλ ∈ Eδ,ψp , such that, ϕn → ψλ strongly in Eδ,ψp .

Since Jλ ∈ C1(Eδ,ψp , (−∞,∞)), then

J ′λ(ϕn)→ J ′λ(ψλ), as n→∞
Hence, we conclude that

J ′λ(ψλ) = 0, ‖ψλ‖ < ρ, and Jλ(ψλ) < 0. (3.16)

This implies that ψλ is a nontrivial solution for problem (1.3). Finally, by combining
equation (3.13) with equation (3.16), we deduce that ϕλ and ψλ are two distinct
nontrivial weak solutions from problem (1.3).
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