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ROUGH I2-STATISTICAL CONVERGENCE IN CONE METRIC

SPACES IN CERTAIN DETAILS

IŞIL AÇIK DEMİRCİ, ÖMER KİŞİ, MEHMET GÜRDAL

Abstract. The purpose of this work is to look at rough I2-statistical con-
vergence as an extension of rough convergence in a cone metric space (briefly

CMS). Furthermore, we define the concept of rough I∗2 -statistical convergence

of sequences in a CMS and investigate the link between rough I2-statistical
and I∗2 -statistical convergence of sequences.

1. Introduction

Fast introduced the notion concept of statistical convergence of sequences in
real numbers in 1951 by in [15]. Pringsheim [36] proposed the convergence of
real double sequences initially. Mursaleen and Edely [31] expanded the concept
of convergence of real double sequences to statistical convergence. Following that,
this idea was explored from a sequence standpoint and linked to the summability
theory (see [6, 8, 9, 18, 19, 29, 30, 39, 40, 41, 42, 43]). Das et. al. [11] expanded
statistical convergence of double sequences to I-convergence of double sequences
using ideals in N×N. For further information, read [12, 13, 16, 17, 23, 44, 46]. Belen
and Yıldırım [7] recently introduced the concept of ideal statistical convergence of
double sequences.

Phu [35] was the first to investigate the notion of rough convergence. Recently,
Malik et. al. [26] has examined the idea of rough convergence for double se-
quences in normed linear spaces. Malik et. al. [27] extended rough convergence
of double sequence to rough statistical convergence of double sequence. Dündar
et. al. [14] expanded rough statistical convergence of double sequences to rough
I-convergence of double sequences. Malik and Ghosh [28] presented the notion of
rough I-statistical convergence of double sequences in normed linear spaces.

Huang and Xian [20] pioneered the concept of CMS. In their study, the elements
of a real Banach space were used to substitute the distance between two points.
CMS is, without a doubt, an extension of the idea of an ordinary metric space. In [4]
Banerjee and Mondal investigated and worked the conception of rough convergence
of sequences in a CMS. Cone metric spaces were defined many years ago by multiple
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writers and appeared in the literature under various authors (see, for example
[1, 2, 3, 5, 10, 20, 21, 25, 34, 37, 38, 45]).

Section 2 of this article will introduce the reader to the fundamental concepts
of I-statistical convergence for single and double sequences, as well as some of the
consequences of this convergence, definitions and properties of cone metric spaces,
and the concept of rough convergence and rough I-convergence of sequences in a
CMS. In Section 3, we shall discuss the rough I2-statistical convergence and rough
I∗2 -statistical convergence in CMS for double sequences.

2. Preliminaries

This part will collect all of the relevant outcomes and approaches on which we
will rely to achieve our key goals. First, let’s define some crucial terms.

Definition 2.1. ([23]) Assume Y 6= ∅. I ⊂ 2Y is named an ideal on Y provided
that (i1) for each U, V ∈ I implies U ∪ V ∈ I; (i2) for each U ∈ I and V ⊂ P
implies V ∈ I.

Definition 2.2. ([23]) Assume Y 6= ∅. F ⊂ 2Y is named a filter on Y provided
that (f1) for all U, V ∈ F implies U ∩V ∈ F ; (f2) for all U ∈ F and V ⊃ P implies
V ∈ F .

An ideal I is known as non-trivial provided that Y /∈ I and I 6= ∅. A non-
trivial ideal I ⊂ P (Y ) is known as an admissible ideal in Y iff I ⊃ {{w} : w ∈ Y }.
Afterwards, the filter F = F (I) = {Y − S : S ∈ I} is named the filter connected
with the ideal.

Utilizing the notion of ideals, Kostyrko et al. [23] determined the notion of I and
I∗−convergence. Also, Kostyrko et al. [23] gave the definition of (AP ) condition for
admissible ideal, and examined the relation between I and I∗-convergence under
(AP ) condition.

See the references in [32, 33] for more information on I-convergent.
Now, we present the notion of I2-asymptotic density of N2.
A subset K ⊂ N× N is named to be have I2-asymptotic density dI2 (K) when

dI2 (K) = I2 − lim
u,v→∞

|K (u, v)|
u.v

,

where

K (u, v) = {(s, t) ∈ N× N : s ≤ u, t ≤ v; (s, t) ∈ K}
and |K (u, v)| demonstrates number of elements of the set K(u, v).

A nontrivial ideal I2 of N2 is named strongly admissible when {i}×N and N×{i}
belong to I2 for each i ∈ N.

Throughout the work, we contemplate I2 as a strongly admissible ideal in N×N.

Definition 2.3. ([11]) Presume (Y, ρ) be a metric space. A double sequence w =
(wuv) is named to be I2-convergent to w, provided that for any σ > 0 we acquire

A(σ) := {(u, v) ∈ N× N : ρ(yst, y
∗) ≥ σ} ∈ I2.

We write

I2 − lim
s,t→∞

yst = y∗.
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A double sequence y = (yst) of real numbers is I2-statistically convergent to y∗,

and we show yst
I2−st→ y∗, provied that for any σ, δ > 0{

(u, v) ∈ N× N:
1

uv
|{(s, t) : ρ(yst, y

∗) ≥ σ, s ≤ u, t ≤ v}| ≥ δ
}
∈ I2.

Definition 2.4. ([11]) We say that an admissible ideal I2 ⊂ 2N
2

supplies the
condition (AP2) provided that for all countable family of mutually disjoint sets
{U1, U2, ...} ∈ I2, there exists a countable family of sets {V1, V2, ...} ∈ I2 such that
Uj∆Vj ∈ I0 i.e., Uj∆Vj is included in the finite union of rows and columns in N2

for each j ∈ N and V =

∞⋃
j=1

Vj ∈ I2 (so Vj ∈ I2 for all j ∈ N).

A double sequence y = (yst) is said to be rough convergent (r-convergent) to y∗

with the roughness degree r, denoted by yst
r−→ y∗ provided that

∀ε > 0 ∃kε ∈ N : s, t ≥ kε ⇒ ‖yst − y∗‖ < r + ε,

or equivalently, if

lim sup ‖yst − y∗‖ ≤ r.
A double sequence y = (yst) is named to be r-I2-convergent to y∗ with the

roughness degree r, indicated by yst
r−I2−→ y∗ provided that

{(s, t) ∈ N× N : ‖yst − y∗‖ ≥ r + ε} ∈ I2,

for all ε > 0; or equivalently, when the condition

I2 − lim sup ‖yst − y∗‖ ≤ r

is supplied. Furthermore, we can signify yst
r−I2−→ y∗ iff the inequality ‖yst − y∗‖ <

r + ε holds for all ε > 0.
Assume y = (yst) be a double sequence in a normed linear space (Y, ‖.‖) and r be

a non negative real number. Then, y is named to be rough I2-statistical convergent
to y∗ or r-I2-statistical convergent to y∗ provided that for any ε, δ > 0{

(u, v) ∈ N× N:
1

uv
|{(s, t) , s ≤ u, t ≤ v : ‖yst − y∗‖ ≥ r + ε}| ≥ δ

}
∈ I2.

In this case, y∗ is called the rough I2-statistical limit of y = (yst) and symbolically,

we indicate yst
r−I2−st−→ y∗.

We now recall the essential notions from [20, 21] that are required for the re-
mainder of the essay.

Definition 2.5. Let E be a Hausdorff topological vector space (tvs) with the zero
vector 0. A subset P of E is called a (convex) cone if it satisfies the following
conditions:

(i) P 6= {0} , P 6= ∅ and P is closed;
(ii) λP ⊂ P for ∀λ ≥ 0 and P + P ⊂ P ;
(iii) {0} = P ∩ (−P ).

Given a P ⊂ E cone, we can define a partial ordering � with respect to P by
defining x � y ⇐⇒ y − x ∈ P. We shall write x ≺ y to indicate that x � y but
x 6= y, while x� y will stand for y−x ∈ intP, where intP represent the set of the
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interior points of P. The sets of the form [x, y] are named order-intervals and are
defined as the follows:

[x, y] = {z ∈ E : x � z � y} .
Order-intervals are observed to be convex. If [x, y] ⊂ A while x, y ∈ A and x � y,

then A ⊂ E is named order-convex.
It is order-convex if ordered tvs (E,P ) has a neighborhoods’ base of 0 that are

made up of order-convex sets. Accordingly, the cone P is named a normal cone.
Considering the normed space, this condition means that the unit ball is order-
convex, it is equivalent to the condition that ∃k with x, y ∈ E and 0 � x � y ⇒
‖x‖ ≤ k ‖y‖ . The smallest constant k is named the normal constant of P [21].

If each of the increasing sequence that is bounded in P is convergent then, we
describe to P as a regular cone. To put it another way, if a sequence {xn} exists
such that

x1 � x2 � ... � xn � ... � y, for some y ∈ E,
then ∃x ∈ E such that lim

n→∞
‖xn − x‖ = 0. Similarly, the P cone is regular, if all

decreasing sequences that are bounded from below converges. If P is a regular cone,
it is known to be a normal cone.

Let E be a tvs, V ⊂ E is an absolutely convex and absorbent subset, the
corresponding Minkowski functional fV : E → R is defined

x 7→ fV (x) = inf {λ > 0 : x ∈ λV } .
It is a semi-norm on E. If V is an absolutely convex neighborhood of 0 ∈ E, then
fV is continuos and

{x ∈ E : fV (x) < 1} = intV ⊂ V ⊂ V = {x ∈ E : fV (x) ≤ 1} .
Let e ∈ intP and (E,P ) be an ordered tvs. After that

[−e, e] = (P − e) ∩ (e− P ) = {z ∈ E : −e � z � e}
is an absolutely convex neighborhood of 0. We denote the corresponding Minkowski
functional f[−e,e] by fe. It can be verified that int [−e, e] = (intP − e)∩ (e− intP ).
If P is normal and solid, then the Minkowski functional fe is the norm on E.
Furthermore, it is an increasing function on P. In fact, for 0 � x1 � x2 the set
{λ : x1 ∈ λ [−e, e]} is the subset of {λ : x2 ∈ λ [−e, e]} and it follows that fe(x1) ≤
fe(x2).

Definition 2.6. ([20]) Take Y 6= ∅. Suppose that ρ : Y × Y →W supplies
(d1) ρ(u, v) = 0 iff u = v and 0 � ρ(u, v) for ∀u, v ∈ X;
(d2) ρ(v, u) = ρ(u, v) for ∀u, v ∈ Y ;
(d3) ρ(u, v) � ρ(u,w) + ρ(w, v) for ∀u, v, w ∈ Y.
Then ρ is named to be a cone metric on Y . (Y, ρ) is named to be a CMS.

Obviously, the notion of CMS generalizes the notion of metric spaces.

Definition 2.7. ([20]) Assume (Y, ρ) be a CMS. {ys}s∈N be a sequence in CMS Y
and assume y∗ ∈ Y . If for ∀c ∈W with 0� c there is N ∈ N so that for all s > N,
ρ(ys, y

∗) � c, then {ys}s∈N is named to be convergent to y∗ and it is named the
limit of the sequence {ys}s∈N .
Definition 2.8. ([20]) Assume (Y, ρ) be a CMS. {ys}s∈N be a sequence in CMS
Y . If for any c ∈ W with 0 � c there is N ∈ N such that for all s, t > N ,
ρ(ys, yt)� c, then {ys}s∈N is named a Cauchy sequence in Y . All Cauchy sequence
in Y is convergent in Y , then Y is named a complete CMS.
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Definition 2.9. ([20]) A sequence {ys}s∈N in Y is named to be I∗-convergent
to y∗ ∈ Y iff there is a set M ∈ F (I), M = {m1 < m2 < · · · < mj < . . .} such
that limj→∞ ymj

= y∗, that is for ∀c ∈ W with c � 0, there is p ∈ N so that

c− d
(
ymj

, y∗
)
∈ intP , for ∀j ≥ p.

Lemma 2.1. ([22]) Assume (Y,W ) be an CMS with x ∈ P and y ∈ intP . Then,
one can find n ∈ N such that x << ny.

Theorem 2.2. ([4]) Assume W be a real Banach space and P be a cone in W .
When x0 ∈ intP and α (> 0) ∈ R then αx0 ∈ intP .

Theorem 2.3. ([4]) Assume W be a real Banach space and P be a cone in W .
When x0 ∈ P and y0 ∈ intP then x0 + y0 ∈ intP.

Corollary 2.4. ([4]) When x0, y0 ∈ intP then x0 + y0 ∈ intP.

Theorem 2.5. ([4]) Assume W be a real Banach space and P be a cone in W ,
then 0 /∈ intP (0 be the zero element of W ).

Definition 2.10. ([4]) Assume {ys}s∈N be a sequence in CMS (Y, ρ). A point
c ∈ Y is named to be a cluster point of {ys} if for any (0 <<)σ in W and for any
p ∈ N, there is a p1 ∈ N so that p1 > p with ρ (yp1 , c) << σ.

Definition 2.11. ([34]) Let (Y, ρ) be a CMS. A sequence {ys} in Y is named to be
I-convergent to y∗ ∈ Y if for any c ∈W with (0 <<) c the set

{s ∈ N : c− ρ (ys, y
∗) /∈ intP} ∈ I.

Definition 2.12. ([34]) Let (Y, ρ) be a CMS. A sequence {ys} in Y is named to be
I∗-convergent to y∗ ∈ Y iff there is a set M ∈ F (I), M = {m1 < m2 < · · · < mj < . . .}
such that {ys}s∈M is convergent to y∗ i.e., for any c ∈W with (0 <<) c there exists
p ∈ N such that c− ρ (ymk

, y∗) /∈ intP for all k ≥ p.

Since it is known [45] that any cone metric space is a first countable Hausdorff
topological space with the topology induced by the open balls defined naturally for
each element z in X and for each element c in intP . So as in [24] we can show that
I∗-convergence always implies I-convergence but the converse is not true. The two
concepts are equivalent iff the ideal I has condition (AP ).

Definition 2.13. ([4]) Let (Y, ρ) be a CMS. A sequence {ys} in Y is named to be
rough convergent of roughness degree r to y∗ ∈ Y for some (0 << r) ∈W or r = 0
if for any σ > 0 with (0 <<)σ there exists a m ∈ N so that ρ (ys, y

∗) << r + σ for
all s ≥ m.

Definition 2.14. ([5]) Let (Y, ρ) be a CMS. A sequence {ys} in Y is named to be
rough I-convergent of roughness degree r to y∗ ∈ Y for some (0 << r) ∈W or r = 0
if for any σ > 0 with (0 <<)σ the set A (σ) = {s ∈ N : (r + σ − ρ (ys, y

∗)) /∈ intP} ∈
I.

3. MAIN RESULTS

Throughout our work (Y, ρ) stands for an CMS where ρ : Y × Y → W is the
cone metric, W being a real Banach space and I2 stands for a strongly admissible
ideal in N2.
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Definition 3.1. A sequence y = {yst} in Y is named to be I2-statistically con-
vergent to y∗ ∈ Y provided that for any (0 <<)σ ∈ W and for all κ > 0, the
set

T (σ) :=

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, y

∗) /∈ intP}| ≥ κ
}
∈ I2.

Symbolically, we indicate yst
I2−st→ y∗.

Definition 3.2. Assume (Y, ρ) be an CMS. A sequence {yst} is said to be rough
statistically convergent of roughness degree r to y∗ ∈ Y for some (0 << r) ∈W or
r = 0 i.e., for any σ > 0 with (0 <<)σ there exists a (s, t) ∈ N2 so that

lim
u,v→∞

1

uv

∣∣{(s, t) ∈ N2 : s ≤ u, t ≤ v; (r + σ − ρ (yst, y
∗)) /∈ intP

}∣∣ = 0.

Symbolically, we denote r − st2 − lim yst = y∗.

Definition 3.3. A sequence {yst} is called to be rough I2-convergent of roughness
degree r to y∗ ∈ Y for some r ∈ W with 0 << r or r = 0 provided that for any
(0 <<)σ ∈W , the set

T (σ) :=
{

(s, t) ∈ N2 : (r + σ − ρ (yst, y
∗)) /∈ intP

}
∈ I2.

Symbolically, we demonstrate yst
r−I2→ y∗ or r − I2 − lim yst = y∗.

Definition 3.4. A sequence y = {yst} in Y is named to be rough I2-statistically
convergent of roughness degree r to y∗ ∈ Y for some r ∈ W with 0 << r or r = 0
provided that for any (0 <<)σ ∈W and for all κ > 0, the set

T (σ) :=
{

(u, v) ∈ N2 : 1
uv |{(s, t) : s ≤ u, t ≤ v;

(r + σ − ρ (yst, y
∗)) /∈ intP}| ≥ κ} ∈ I2.

Symbolically, we indicate yst
r−I2−st→ y∗.

For r = 0 the description of rough I2-statistically convergence reduces to the
description of I2-statistically convergence of sequence in an CMS. When a sequence
y = {yst} is rough I2-statistically convergent of roughness degree r to y∗ ∈ Y then
y∗ is named the rough I2-statistical limit of y = {yst}. Generally, the rough I2-
statistical limit of a sequence y = {yst} is not unique which can be examined from
the following example. As a result, the set of all rough I2-statistical limits of a
sequence y = {yst} indicated by I2-st-LIMry is known as the rough I2-statistical
limit set of a sequence y = {yst} i.e.,

I2-st-LIMry :=
{
y∗ ∈ Y : yst

r−I2−st→ y∗
}

.

Hence, a sequence y = {yst} is called to be rough I2-statistically convergent in an
CMS when I2-st-LIMry 6= ∅.

Example 3.1. Presume Y = R, W = R2, P = {(u, v) ∈W : u, v ≥ 0} ⊂ W and
ρ : Y × Y → W be a metric. At that time, (Y, ρ) is an CMS. Let us examine
the ideal in N2 which consists of sets whose natural density are zero i.e., I2 = Id2 .
Also, let us contemplate the sequence y = {yst} in Y identified by

yst =

{
(−1)

s+t
, if s 6= k2, t 6= l2 (where k, l ∈ N)

st, if not.
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Now, we can get that for any r = (r1, r2) ∈W with 0 << r, when min (r1, r2) = r∗

and r∗ ≥ 1 then

I2 − st− LIMry = [− (r∗ − 1) , (r∗ − 1)] ,

as for any y∗ ∈ [− (r∗ − 1) , (r∗ − 1)] with r∗ ≥ 1 we get{
(u, v) ∈ N2 : 1

uv |{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, y
∗)) /∈ intP}| ≥ κ

}
⊂
{

12, 22, 32, ...
}
,

so{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, y

∗)) /∈ intP}| ≥ κ
}
∈ I2,

as δ
({

12, 22, 32, ...
})

= 0 and when r∗ < 1 or r = 0 then I2-st-LIMry = ∅.
Notation 3.1. From the above example we can examine that in general I2-st-
LIMry 6= ∅ does not mean that st-LIMry 6= ∅. Hovewer, as I2 is an admissible
ideal so st-LIMry 6= ∅ gives I2-st-LIMry 6= ∅. Namely, when a sequence y = {yst}
in (Y, ρ) is rough statistically convergent of roughness degree r, where r ∈ W with
0 << r or r = 0, then it is also rough I2-statistically convergent of similar roughness
degree r. Hence, when we signify all rough statistically convergence sequences in
an CMS (Y, ρ) by st-LIMry and the set of whole rough I2-statistically convergent
sequences by I2-st-LIMry, then we obtain st-LIMry ⊆ I2-st-LIMry.

A sequence {yst} in an CMS (Y, ρ) is named to be bounded when there is a
y∗ ∈ Y and r > 0 supplying ρ (yst, y

∗) < r for all s, t ∈ N.
Utilizing this thought we determine I2-statistically bounded sequence in an CMS

as follows:

Definition 3.5. A sequence y = {yst} in an CMS (Y, ρ) is named to be I2-
statistically bounded when there is a y∗ ∈ Y and Q ∈W with 0 << Q so that{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; Q− ρ (yst, y

∗) /∈ intP}| ≥ κ
}
∈ I2.

Presume {yst} be bounded sequence in an CMS (Y, ρ), then there is a z∗ ∈ Y
and Q ∈W with 0 << Q so that ρ (z∗, yst) << Q for all s, t ∈ N. This means that
Q− ρ (z∗, yst) ∈ intP for all s, t ∈ N. Therefore{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; Q− ρ (z∗, yst) /∈ intP}| ≥ κ

}
= ∅ ∈ I2.

So, {yst} is I2-statistically bounded. Hovewer, the converse need not to be true as
examined in Example 3.1. When we select y∗ = 2 and (0 <<)Q = (5, 6) then we
obtain {

(u, v) ∈ N2 : 1
uv |{(s, t) : s ≤ u, t ≤ v; Q− ρ (yst, y

∗) /∈ intP}| ≥ κ
}

⊂
{

12, 22, 32, ...
}

which gives that{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; Q− ρ (yst, y

∗) /∈ intP}| ≥ κ
}
∈ I2.

As a result, the sequence examined here is I2-statistically bounded.

Theorem 3.1. Take I2 as an admissible ideal of N2. At that time, a sequence
y = {yst} in an CMS (Y, ρ) is I2-statistically bounded iff there exists some r ∈ W
with 0 << r or r = 0 so that I2-st-LIMry 6= ∅.
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Proof. Presume the sequence y = {yst} be I2-statistically bounded. Afterwards,
there is a y∗ ∈ Y and (0 <<) r ∈W so that the set{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; r − ρ (yst, y

∗) /∈ intP}| ≥ κ
}
∈ I2.

Take (0 <<)σ ∈W (i.e., σ ∈ intP ). So{
(u, v) ∈ N2 : 1

uv |{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (yst, y
∗) /∈ intP}| ≥ κ

}
⊆
{

(u, v) ∈ N2 : 1
uv |{(s, t) : s ≤ u, t ≤ v; r − ρ (yst, y

∗) /∈ intP}| ≥ κ
}
∈ I2.

Let

(u, v) ∈
{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (yst, y

∗) /∈ intP}| ≥ κ
}
.

Then, we get r + σ − ρ (yst, y
∗) /∈ intP . So, r − ρ (yst, y

∗) /∈ intP , hence we get

(u, v) ∈
{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; r − ρ (yst, y

∗) /∈ intP}| ≥ κ
}
.

As a result, we acquire y∗ ∈ I2-st-LIMry.
Conversely, assume I2-st-LIMry 6= ∅ for some r ∈ W with 0 << r or r = 0 and

z∗ ∈ I2-st-LIMry. So, for any (0 <<)σ ∈W (i.e., σ ∈ intP ) the set{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (yst, z

∗) /∈ intP}| ≥ κ
}
∈ I2.

Now r + σ ∈ intP for any σ ∈ intP . So getting Q = r + σ ∈ intP (i.e., 0 << Q),
we get{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; Q− ρ (yst, z

∗) /∈ intP}| ≥ κ
}
∈ I2.

As a result, y = {yst} is I2-statistically bounded. �

Theorem 3.2. An I2-statistically bounded sequence y = {yst} in an CMS (Y, ρ)
contains a subsequence that is rough I2-statistically convergent of roughness degree
r for some (0 <<) r ∈W.

Proof. Presume a sequence y = {yst} in a CMS (Y, ρ) is I2-statistically bounded.
So, there is a x∗ ∈ Y and (0 <<)Q ∈W so that the set

A =

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; Q− ρ (yst, x

∗) /∈ intP}| ≥ κ
}
∈ I2,

i.e.,

Ac =

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; Q− ρ (yst, x

∗) ∈ intP}| < κ

}
∈ F (I2) .

When we contemplate the subsequence {yst}s,t∈Ac then this subsequence is sta-

tistically bounded. Since for any statistically bounded sequence y = {yst}, st-
LIMry 6= ∅ for some (0 <<) r ∈ W , so the subsequence {yst}s,t∈Ac is rough statis-

tically convergent of roughness degree r ((0 <<) r ∈W ). As a result, according to
the Notation 3.1, {yst}s,t∈Ac is also rough I2-statistically convergent with roughness

degree r ((0 <<) r ∈W ). �
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Theorem 3.3. Take y = {yst} as a sequence in an CMS which is I2-statistically
convergent to y∗. When z = {zst} is another sequence in (Y, ρ) so that ρ (yst, zst) ≤
r for some (0 <<) r ∈ W and for all s, t ∈ N. At that time, z = {zst} is rough
I2-statistically convergent of roughness degree r to y∗.

Proof. Take y = {yst} as a sequence in an CMS which is I2-statistically convergent
to y∗. For (0 <<)σ ∈W the set{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, y

∗) /∈ intP}| ≥ κ
}
∈ I2,

i.e.,{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, y

∗) ∈ intP}| < κ

}
∈ F (I2) .

Also

ρ (zst, y
∗) ≤ ρ (zst, yst) + ρ (yst, y

∗) < r + ρ (yst, y
∗) .

This means that r + ρ (yst, y
∗) − ρ (zst, y

∗) ∈ P . So, when σ − ρ (yst, y
∗) ∈ intP ,

then

(r + ρ (yst, y
∗)− ρ (zst, y

∗)) + (σ − ρ (yst, y
∗)) = r + σ − ρ (zst, y

∗) ∈ intP.
Hence, the set{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (zst, y

∗) ∈ intP}| < κ

}
∈ F (I2) .

As a result{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (zst, y

∗) /∈ intP}| ≥ κ
}
∈ I2

that means z = {zst} is rough I2-statistically convergent of roughness degree r to
y∗. �

Theorem 3.4. Take y = {yst} as a sequence in an CMS which is rough I2-
statistically convergent of roughness degree r for some (0 <<) r ∈ W . Then, there
does not exist x∗, z∗ ∈ I2-st-LIMy so that nr < ρ (x∗, z∗), where n is a real number
grater than 2.

Proof. Assume on contrary that there exist x∗, z∗ ∈ I2-st-LIMy so that nr <
ρ (x∗, z∗), where n (∈ R) > 2. Presume (0 <<)σ be arbitrarily selected in W . Now
as x∗, z∗ ∈ I2-st-LIMy, so we have

K1 =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v; r +
σ

2
− ρ (yst, x

∗) /∈ intP
}∣∣∣ ≥ κ} ∈ I2

and

K2 =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v; r +
σ

2
− ρ (yst, z

∗) /∈ intP
}∣∣∣ ≥ κ} ∈ I2.

At that time, Kc
1 ∈ F (I2) and Kc

2 ∈ F (I2). Take (m,n) ∈ Kc
1 ∩Kc

2. Afterwards,

r +
σ

2
− ρ (ymn, x

∗) ∈ intP and r +
σ

2
− ρ (ymn, z

∗) ∈ intP.

Hence (
r + σ

2 − ρ (ymn, x
∗)
)

+
(
r + σ

2 − ρ (ymn, z
∗)
)

= 2r + σ − (ρ (ymn, x
∗) + ρ (ymn, z

∗)) ∈ intP.
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Now
ρ (x∗, z∗) ≤ ρ (ymn, x

∗) + ρ (ymn, z
∗) ,

so
ρ (ymn, x

∗) + ρ (ymn, z
∗)− ρ (x∗, z∗) ∈ P.

As a result, we obtain

(2r + σ − (ρ (ymn, x
∗) + ρ (ymn, z

∗))) + (ρ (ymn, x
∗) + ρ (ymn, z

∗)− ρ (x∗, z∗))
= 2r + σ − ρ (x∗, z∗) ∈ intP.

Again by our presumption ρ (x∗, z∗)− nr ∈ P . Hence

2r + σ − ρ (x∗, z∗) + ρ (x∗, z∗)− nr = 2r + σ − nr ∈ intP.
Namely σ−r (n− 2) ∈ intP . Hovewer, selecting σ = r (n− 2), we acquire 0 ∈ intP ,
which is a contradiction. So, the result finalizes. �

Theorem 3.5. Suppose y = {yst} be a sequence in an CMS which is rough I2-
statistically convergent of roughness degree r. At that time, {yst} is also rough
I2-statistically convergent of roughness degree r1 for any r1 with r < r1.

Proof. The proof is trivial and hence is omitted. �

In the light of previous theorem we get the following corollary.

Corollary 3.6. Assume y = {yst} be a rough I2-statistically convergent sequence in
(Y, ρ) of roughness degree r. At that time, for a (0 <<) r1 with r < r1, LIMry ⊂LIMr1y.

Definition 3.6. An element γ ∈ Y is named to be I2-statistical cluster point of a
double sequence y = {yst} in Y provided that for any (0 <<)σ, the set{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, γ) ∈ intP}| < κ

}
/∈ I2.

Theorem 3.7. Take (Y, ρ) as an CMS. γ ∈ Y and (0 <<)r be such that for any
y∗ ∈ Y either ρ (y∗, γ) ≤ r or r << ρ (y∗, γ). When γ is I2-statistical cluster

point of a double sequence y = {yst} then I2-st-LIMry ⊂ Br (γ), where Br (γ) =
{y∗ ∈ Y : ρ (y∗, γ) ≤ r} .

Proof. If possible, presume that there is a x∗ ∈ I2-st-LIMry but x∗ /∈ Br (γ). Now
according to our supposition, r << ρ (x∗, γ). Take (0 <<)σ1 = ρ (x∗, γ) − r. At
that time, ρ (x∗, γ) = r + σ1. Assume (0 <<)σ = σ1

2 . Then, we get ρ (x∗, γ) =
r + 2σ. In addition, we get Br+σ (x∗) ∩Bσ (γ) = ∅. For, if α ∈ Br+σ (x∗) ∩Bσ (γ)
then ρ (α, x∗) << r + σ and ρ (α, γ) << σ. So r + σ − ρ (α, x∗) ∈ intP and
σ − ρ (α, γ) ∈ intP . Hence

(r + σ − ρ (α, x∗)) + (σ − ρ (α, γ)) = r + 2σ − (ρ (α, x∗) + ρ (α, γ)) ∈ intP . (3.1)

Since ρ (x∗, γ) ≤ ρ (x∗, α) + ρ (α, γ), therefore

ρ (x∗, α) + ρ (α, γ)− ρ (x∗, γ) ∈ P. (3.2)

As a result from (3.1) and (3.2) we obtain

r + 2σ − (ρ (α, x∗) + ρ (α, γ)) + ρ (x∗, α) + ρ (α, γ)− ρ (x∗, γ)
= r + 2σ − ρ (x∗, γ) = 0 ∈ intP,

a contradiction. Hence Br+σ (x∗) ∩Bσ (γ) = ∅. Since x∗ ∈ I2-st-LIMry, so the set

A =

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (yst, x

∗) /∈ intP}| ≥ κ
}
∈ I2.
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So, Ac = N2�A ∈ F (I2). Again as γ is a I2-statistical cluster point of y = {yst},
so for (0 <<)σ

B =

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, γ) ∈ intP}| < κ

}
/∈ I2.

It is obvious that B can not be a subset of A. For, if{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, γ) ∈ intP}| < κ

}
⊂ A

then we obtain{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, γ) ∈ intP}| < κ

}
∈ I2,

which contradicts the fact that γ is a I2-statistical cluster point of y = {yst}. We
contemplate an elemant (k, l) ∈ Ac. So

(k, l) ∈
{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, γ) ∈ intP}| < κ

}
.

Now, (k, l) ∈ Ac means r + σ − ρ (ykl, x
∗) ∈ intP . Hence, ρ (ykl, x

∗) << r + σ,
which implies {ykl} ∈ Br+σ (x∗). Additionally

(k, l) ∈
{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; σ − ρ (yst, γ) ∈ intP}| < κ

}
implies σ − ρ (ykl, γ) ∈ intP . So ρ (ykl, γ) << σ which further means that {ykl} ∈
Br (γ). As a result, we obtain {ykl} ∈ Br+σ (x∗) ∩Br (γ) which is a contradiction.

As a result, we can conclude that our presumption is wrong and x∗ ∈ Br (γ). �

Theorem 3.8. Assume y = {yst} be a rough I2-statistically convergence of rough-
ness degree r in an CMS (Y, ρ) and q = {qst} be a I2-statistically convergent se-
quence in I2-st-LIMry which is I2-statistically convergent to x∗. Then x∗ ∈ I2-st-
LIMry.

Proof. Suppose (0 <<)σ be taken. As the sequence q = {qst} is I2-statistically
convergent to x∗, for (0 <<)σ the set

A =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v;
σ

2
− ρ (qst, x

∗) /∈ intP
}∣∣∣ ≥ κ} ∈ I2.

So, Ac = N2�A ∈ F (I2). Select a (k, l) ∈ Ac. Then σ
2 − ρ (qkl, x

∗) ∈ intP , and
hence

ρ (qkl, x
∗) <<

σ

2
. (3.3)

In addition, as q = {qst} is a sequence in I2-st-LIMry, take qkl ∈ I2-st-LIMr. So,
the set

B =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v; r +
σ

2
− ρ (yst, qkl) /∈ intP

}∣∣∣ ≥ κ} ∈ I2.

It is clear that its complement Bc = N2�B ∈ F (I2). Let us select an element
(h, j) ∈ Bc (∈ F (I2)). So, r + σ

2 − ρ (yhj , qkl) ∈ intP , and hence

ρ (yhj , qkl) << r +
σ

2
. (3.4)

Also for all (s, t) ∈ N2 we get

ρ (yst, x
∗) ≤ ρ (yst, qkl) + ρ (qkl, x

∗) .
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So
ρ (yst, qkl) + ρ (qkl, x

∗)− ρ (yst, x
∗) ∈ P , for all (s, t) ∈ N2.

Especially
ρ (yhj , qkl) + ρ (qkl, x

∗)− ρ (yhj , x
∗) ∈ P. (3.5)

According to (3.3) and (3.4) utilizing the Theorem 2.3 we obtain(σ
2
− ρ (qkl, x

∗)
)

+
(
r +

σ

2
− ρ (yhj , qkl)

)
= r+σ−(ρ (qkl, x

∗) + ρ (yhj , qkl)) ∈ intP
(3.6)

Applying again the Theorem 2.3, we get from (3.5) and (3.6)

(ρ (yhj , qkl) + ρ (qkl, x
∗)− ρ (yhj , x

∗)) + (r + σ − (ρ (qkl, x
∗) + ρ (yhj , qkl)))

= r + σ − ρ (yhj , x
∗) ∈ intP.

Now as I2 is selected arbitrarily from Bc, we have{
(u, v) ∈ N2 :

1

uv
|{(h, j) : h ≤ u, j ≤ v; r + σ − ρ (yhj , x

∗) /∈ intP}| ≥ κ
}
⊂ B

and so{
(u, v) ∈ N2 :

1

uv
|{(h, j) : h ≤ u, j ≤ v; r + σ − ρ (yhj , x

∗) /∈ intP}| ≥ κ
}
∈ I2.

As a result x∗ ∈ I2-st-LIMry. �

Theorem 3.9. When y = {yst} and q = {qst} are two sequences in an CMS (Y, ρ)
so that for any (0 <<)σ the set{

(u, v) ∈ N2 :
1

uv
|{(s, t) : s ≤ u, t ≤ v; ρ (yst, qst) > σ}| ≥ κ

}
∈ I2.

Then, y = {yst} is rough I2-statistically convergent of roughness degree r to x∗ iff
q = {qst} is rough I2-statistically convergent of roughness degree r to x∗.

Proof. Assume y = {yst} be rough I2-statistically convergent of roughness degree
r to x∗. Presume (0 <<)σ given. Then, we obtain

A =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v; r +
σ

2
− ρ (yst, x

∗) /∈ intP
}∣∣∣ ≥ κ} ∈ I2.

Also, by our assumption we get

B =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v; ρ (yst, qst) >
σ

2

}∣∣∣ ≥ κ} ∈ I2.

Ac, Bc ∈ F (I2) and hence Ac ∩ Bc ∈ F (I2). Let us select an element (k, l) ∈ N2

so that (k, l) ∈ Ac ∩Bc. So

r +
σ

2
− ρ (ykl, x

∗) ∈ intP and ρ (ykl, qkl) ≤
σ

2
i.e.,

σ

2
− ρ (ykl, qkl) ∈ P.

Therefore(
r +

σ

2
− ρ (ykl, x

∗)
)

+
(σ

2
− ρ (ykl, qkl)

)
= r+σ−(ρ (ykl, x

∗) + ρ (ykl, qkl)) ∈ intP .

(3.7)
In addition for all (s, t) ∈ N2,

ρ (qst, x
∗) ≤ ρ (yst, qst) + ρ (yst, x

∗)

i.e.,
ρ (yst, qst) + ρ (yst, x

∗)− ρ (qst, x
∗) ∈ P .
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Especially
ρ (ykl, qkl) + ρ (ykl, x

∗)− ρ (qkl, x
∗) ∈ P . (3.8)

So from (3.7) and (3.8) we obtain

(r + σ − (ρ (ykl, x
∗) + ρ (ykl, qkl))) + (ρ (ykl, qkl) + ρ (ykl, x

∗)− ρ (qkl, x
∗))

= r + σ − ρ (qkl, x
∗) ∈ intP .

As a result, we get{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (qst, x

∗) /∈ intP}| ≥ κ
}
∈ I2,

which means that q = {qst} is rough I2-statistically convergent of roughness degree
r to x∗. �

Definition 3.7. A sequence y = {yst} in an CMS (Y, ρ) is named to be rough
I∗2 -statistical convergent of roughness degree r to x∗ provided that there is a set L ∈
F (I2) (i.e., N2�L ∈ I2) so that the subsequence {yst}(s,t)∈L is rough statistically

convergent of roughness degree r to x∗ for some (0 << r) ∈ W or r = 0 i.e., for
any σ > 0 with (0 <<)σ there exists a (s, t) ∈ N2 such that

lim
u,v→∞

1

uv
|{(s, t) : s ≤ u, t ≤ v; r + σ − ρ (yst, y

∗) /∈ intP}| = 0.

We write I∗2 − st− lim
s,t→∞

yst = x∗.

Notation 3.2. For r = 0 we get the definition of ordinary I∗2 -statistical conver-
gence of sequences in CMS. Obviously the rough I∗2 -statistical limit of a sequence
in general not unique. We can indicate the set of all rough I∗2 -statistical limit of a
sequence y = {yst} by

I∗2 -st-LIMry :=

{
y∗ ∈ Y : yst

r−I∗2−st→ y∗
}

.

of roughness degree r.

Theorem 3.10. When a sequence y = {yst} is rough I∗2 -statistical convergent of
roughness degree r to x∗ then it is also rough I2-statistical convergent of roughness
degree r to x∗.

Proof. Let us presume that I∗2 −st− lim
s,t→∞

yst = x∗. So, according to the definition

there is a set L ∈ F (I2) (i.e., Z = N2�L ∈ I2) so that the subsequence {yst}(s,t)∈L
is rough statistically convergent of roughness degree r to x∗ for some (0 << r) ∈W
or r = 0 i.e., for any σ > 0 with (0 <<)σ there exists a (s, t) ∈ N2 such that

lim
u,v→∞

1

uv
|{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| = 0.

Then there is n0 ∈ N such that ρ (yst, y
∗)� r+σ then for all s, t such that (s, t) ∈ L

and s, t ≥ n0. Then

A(σ, γ) =

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| � κ

}
⊂ Z ∪ (L ∩ (({1, 2, ..., (n0 − 1)} × N) ∪ (N× {1, 2, ..., (n0 − 1)}))) .

Now

Z ∪ (L ∩ (({1, 2, ..., (n0 − 1)} × N) ∪ (N× {1, 2, ..., (n0 − 1)}))) ∈ I2.
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This indicates that A(σ, γ) ∈ I2. Therefore I2 − st− lim
s,t→∞

yst = x∗. �

Theorem 3.11. When an ideal I2 has the property (AP2) then a sequence y =
{yst} in an CMS (Y, ρ) which is rough I2-statistical convergent of roughness degree
r to x∗ is also rough I∗2 -statistical convergent of roughness degree r to x∗.

Proof. Assume I2 be an ideal in N2 which supply the property (AP2). Take a
sequence y = {yst} be rough I2-statistical convergent of roughness degree r to x∗.
Then, for any (0 <<)σ ∈W and for all κ > 0, the set

T :=

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| ≥ κ
}
∈ I2.

So, we obtain

T c :=
{

(u, v) ∈ N2 : 1
uv |{(s, t) : s ≤ u, t ≤ v;

(r + σ − ρ (yst, x
∗)) ∈ intP}| < κ} ∈ F (I2) .

Take (0 <<) η ∈W . Now determine

Ai =

{
(u, v) ∈ N2 :

1

uv

∣∣∣{(s, t) : s ≤ u, t ≤ v; ρ (yst, x
∗) << r +

η

i

}∣∣∣ < κ

}
∈ F (I2) ,

where i = 1, 2, .... As I2 has the feature (AP2), so there is a set B ⊂ N so that
B ∈ F (I2) and B�Ai is finite for i = 1, 2, .... Now take (0 <<)σ ∈ W , then
there is a j ∈ N so that η

j << σ. Since B�Aj is finite, so there is a t = t (j) ∈ N
so that (u, v) ∈ B ∩ Aj for all u, v ≥ t. Hence ρ (yst, x

∗) << r + η
j << r + σ

for all (u, v) ∈ B and u, v ≥ t. As a result, the subsequence {yst}s,t∈B is rough
statistically convergent of roughness degree r to x∗, i.e,

lim
u,v→∞

1

uv
|{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| = 0.

Hence, the sequence y = {yst} is rough I∗2 -statistical convergent of roughness degree
r to x∗. �

Theorem 3.12. If y′ =
{
ysptq

}
p,q∈N be a subsequence of the sequence y = {yst},

then I2-st-LIMry ⊂ I2-st-LIMry′.

Proof. If possible assume x∗ ∈ I2-st-LIMry. Then, for any (0 <<)σ ∈ W and for
all κ > 0, the set

T :=

{
(u, v) ∈ N2 :

1

uv
|{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| ≥ κ
}
∈ I2.

Now for the subsequence y′ =
{
ysptq

}
p,q∈N, since{

(u, v) ∈ N2 : 1
uv

∣∣{(sp, tq) : sp ≤ u, tq ≤ v;
(
r + σ − ρ

(
ysptq , x

∗)) /∈ intP}∣∣ ≥ κ}
⊂
{

(u, v) ∈ N2 : 1
uv |{(s, t) : s ≤ u, t ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| ≥ κ
}

and{
(u, v) ∈ N2 :

1

uv
|{(sp, tq) : sp ≤ u, tq ≤ v; (r + σ − ρ (yst, x

∗)) /∈ intP}| ≥ κ
}
∈ I2,

so{
(u, v) ∈ N2 :

1

uv

∣∣{(s, t) : s ≤ u, t ≤ v;
(
r + σ − ρ

(
ysptq , x

∗)) /∈ intP}∣∣ ≥ κ} ∈ I2.
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Hence, the set

W :=
{

(u, v) ∈ N2 : 1
uv |{(sp, tq) : sp ≤ u, tq ≤ v;

(r + σ − ρ (yst, x
∗)) ∈ intP}| < κ} ∈ F (I2) .

Take
{
ysptq

}
sp,tq∈W

. At that time, we get

lim
u,v→∞

1

uv

∣∣{(s, t) : s ≤ u, t ≤ v; r + σ − ρ
(
ysptq , x

∗) /∈ intP}∣∣ = 0.

and so y′ =
{
ysptq

}
is rough statistically convergent of roughness degree r to

x∗. Therefore, the subsequence y′ =
{
ysptq

}
is rough I∗2 -statistical convergent of

roughness degree r to x∗. So, we obtain x∗ ∈ I2-st-LIMry′. As a result, we get
I2-st-LIMry ⊂ I2-st-LIMry′. �
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[6] F. Başar, Summability Theory and Its Applications, CRC Press/Taylor and Francis Group,
Boca Raton, London, New York, (2022).

[7] C. Belen, M. Yıldırım, On generalized statistical convergence of double sequences via ideals,

Ann. Univ. Ferrara 58 1 (2012), 11–20. doi: 10.1007/s11565-011-0137-1
[8] N. L. Braha, V. Loku, T. Mansour, M. Mursaleen, A new weighted statistical convergence

and some associated approximation theorems , Math. Methods Appl. Sci. 45 10 (2022),

5682–5698. https://doi.org/10.1002/mma.8134
[9] N. L. Braha, H. M. Srivastava, M. Et, Some weighted statistical convergence and associated

Korovkin and Voronovskaya type theorems, J. Appl. Math. Comput. 65 1 (2021), 429–450.
https://doi.org/10.1007/s12190-020-01398-5

[10] K. P. Chi, T. V. An, Dugungji’s theorem for cone metric spaces, Appl. Math. Lett. 24 (2011),

387–390. https://doi.org/10.1016/j.aml.2010.10.034

[11] P. Das, P. Kostyrko, W. Wilczyncki, P. Malik, I and I∗-convergence of double sequence,
Math. Slovaca 58 5 (2008), 605–620. doi: 10.2478/s12175-008-0096-x

[12] P. Das, P. Malik, On extremal I-limit points of double sequences, Tatra Mt. Math. Publ. 40
(2008), 91–102. https://www.sav.sk/journals/uploads/0219111418.pdf

[13] P. Das, P. Malik, On the statistical and I-variation of double sequences, Real Anal. Exchange

33 (2007), 351–364. doi: 10.14321/realanalexch.33.2.0351
[14] E. Dündar, On rough I2-convergence of double sequences, Numer. Funct. Anal. Optim. 37 4

(2016), 480–491. https://doi.org/10.1080/01630563.2015.1136326

[15] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
http://matwbn.icm.edu.pl/ksiazki/cm/cm2/cm2137.pdf
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[33] A. Nabiev, S. Pehlivan, M. Gürdal, On I-Cauchy sequences, Taiwanese J. Math. 12 (2007),

569–576. https://www.researchgate.net/publication/228568807
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