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CHARACTERIZATION OF SMARANDACHE TRAJECTORY
CURVES OF CONSTANT MASS POINT PARTICLES AS THEY
MOVE ALONG THE TRAJECTORY CURVE VIA PAF

EMAD SOLOUMA

ABSTRACT. In this paper, Smarandache trajectory curves of constant mass
point particles are described and evaluated as they move along the trajectory
curve in Euclidean 3-space E2 using its position adapted frame (PAF). We
also look at the Frenet apparatus of these unique trajectories. We anticipate
a new way of analysing particle kinematics that could be useful in some ap-
plication areas of differential geometry and particle physics. We then give a
computational examples to illustrate these curves.

1. INTRODUCTION

The local theory of space curves is essential in differential geometry. Curve-
adapted moving frames are helpful instruments for studying this idea. Many au-
thors have created new moving frames that share a basis vector with the Serret-
Frenet frame (for examples, see [3, 20, 22]).

In Euclidean and Minkowski spaces, the Smarandache curve is a regular curve
whose position vector is made up of Frenet frame vectors on another regular curve
[1, 6, 11]. Smarandache curves in Minkowski and Euclidean spaces have lately been
explored by several authors [2, 4, 7, 14, 17, 18, 19, 21, 23, 24].

According to the moving frame we're working on, a moving point particle with
constant mass has a position vector in Euclidean 3-space. This particle can rep-
resent any location on the trajectory in this method. As a result, the kinematics
of a moving particle and the differential geometry of the trajectory, which is the
oriented arc sketched out by this particle, have a very close connection and also in
the fluid and magnetic field (see [8, 9, 10]. In robotics, kinematics measurements
are used to determine motion and acquire a desired location. In this example,
moving frames have shown to be highly helpful instruments for investigating kine-
matic notions such as location, velocity, acceleration, and jerking vectors in the
kinemics of a moving particle. We were encouraged to prepare this study because
of the relevance of the position vector. Obtaining an equation that incorporates all
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CHARACTERIZATION OF SMARANDACHE TRAJECTORY CURVES 15

of the position, velocity, acceleration, and jerk, as well as the connection between
them, has a number of advantages for exploring robotics topics like minimal jerk
trajectory development.

We explore the peculiar trajectories Smarandache curve of constant mass point
particles are described and evaluated as they move along the trajectory curve ac-
cording to position adapted frame (see [13]) in E* and compute the Frenet apparatus
of these trajectories in the current work. Finally, we present the visuals of these
unique paths.

2. PRELIMINARIES

Assume that in E3, a constant mass point particle goes along a unit speed tra-
jectory curve ¢ = ((s). If {T, N, B} represents the ( moving Frenet frame, then
{T, N, B} has the important attributes: [5, 12, 15, 16]:

T(s) = k(s) N(s),
N(6) = k() T(s) + 7(5) B(s), (2.1)
B(s) = 7(s) N(s),

where (- = ), (T,T) = (N.N) = (B,B) = 1, (T, B) = (N, B) = (T.N) = 0

and (), and 7(s) are the trajectory curvature functions.

In particle kinematics, the angular momentum vector of the abovementioned
moving particle about the origin plays a significant role. It is calculated using
the vector product of the moving particle’s position vector and linear momentum
vector, and is given by

1O = () B () VO - micton ¥ (5 ) B

where m and t denote mass and time, appropriately. Presume that this vec-
tor doesn’t really equal zero at any point anywhere along trajectory ((s). Even
during motion of the moving particle, this assumption assures that the functions
(C(s), B(s)) and (¢(s), N(s)) do not equal zero at the same moment. As a result,
we can state that the tangent line of (<) never crosses the origin. Then, there is a
position adapted frame (abbreviated PAF) represented by {T'(s), G(s), P(s)} along
¢(s) that is supplied as (see [13] for additional details):

T(<) = k(<) G(s) + k2(<) P(s),

)
G(s) = —k1(<) T(s) + ks(s) P(s), (2.2)
P(s) = —ka(s) T(s) — ks(s) G(s),

where

Glo) = (€(c), B(s)) N () + (€(), N(<)) B(),
VUG, N()? + {(6), B(s))* VUG, N () + (¢(6), B(s))*

Plo) - —(6(<), N (<)) N+ (¢(), B(s) B,
VUG N () + (¢(), B(s))® VUG N () + (¢(), B(s))?
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and

G(s) = cos O(s)N(s) — sin O(s)B(s), (2.5)
P(s) =sin O(s)N(s) + cos O(<)B(s),
where ©(<) is the angle formed by the vectors B(s) and P(s) when they are orien-

tated favorably from B(s) to P(s). The following formula is used to determine the
specified angle ©(s):

3. MAIN RESULTS

In this section, we explore any moving point particle that meets the previous
assumption (concerning angular momentum) and show the unit speed parameter-
ization of the trajectory with ((s). We provide a special Smarandache trajectory
curve according to PAF of (<) in Euclidean 3-space E? also, we derive the Frenet
apparatus of these curves. Besides, when the angle O(¢) = Z or —%

5 3, We examine
certain aspects on it.

Definition 3.1. Let ¢ = ((s) be a trajectory unit speed curve in E3. The TG-
Smarandache trajectory curve via to PAF (2.2) of {(s) defined by

1
= p(c* :—<aT§ +ng), a2+ b2 =2 3.1
¢ =p(<") 7 (<) (<) (3.1)
Theorem 3.1. Let ¢ = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If ¢ : I C R — E3 is the
TG-Smarandache trajectory curve of { with non-zero curvature function, then its
Frenet frame {1y, N,,, B,} is given by

—bky aki aks+bks
T, \/2k3+(aka+bks)2 V/2k3 +(aky+bks)? V/2k3 +(aky+bks)2 T
N _ % Y Y3 G
B(p a(193k17192k2)7b192k3 a01k2+b(191k3+193k1) (a191+b192)k1 P
JANY JANY JANY

w

2)
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where
U1 = —[ak® + bky + baks] [2k7 + (aks + bks)?] — bky [2k1 k1 + (aks + bks)(aks
+ bk:s)} ;
Oy = [aky — kT — ks(aks + bks)| [2k7 + (aky + bks)®] + aky [2kiky + (aky + bks)
x (aks + bs)],
U5 = [a(ka + kiks) + b(ks — kika)] [2k7 + (aka + bks)?] + (aka + bks)[2k1 /ey
+ (aks + bks) (aks + bks)],

Ay = \J2k3 + (aky + bhs)2\ /03 + 03 + 3.

(3.3)
Proof. Using (2.2) and differentiate (3.1) with regard to ¢ , we get
. dy ds* 1
*) = — = —( - T ko + bk3)P 3.4
26) = 5 = (P T +ak GO + ek + W)PE)), (34)
hence
. —bk1T(s) + ak1 G(s) + (aks + bk3)P
T () = ok (<) a21 (s) + (aks J 3) (§), (35)
\/2k31 + (ak’g + bk‘g)
such that
E . \/Qk'% + (ak'g + bk3)2 (3 6)
i 7 ) )
Then, we have
) ( ) \/5(’[917—1(0') + 19231(§) + 19332(§)>
To(s*) =
’ [2k2 + (aks + bks)?]?
where
W = — [GKQ + bk’l + bk2k3] [Qk'% + (ak’g + bk’3)2} — bk, [2]@’1i€1 + (ak’g + bk’3)(ai€2

U = [aky — bk} — ks(aks + bks)] [2k7 + (aks + bks)?] + aky [2kky + (aks + bks)
x (aks + bs)],

O3 = [a(ks + kiks) + b(ks — kika)] [2kF + (aks + bks)?] + (aks + bks)[2k1 k1
+ (aks + bks)(aks + bls)].

Rather, the trajectory curvature and, as a result, the principal normal vector field

of ¢ are
o) = [Tl = DL IEE I
[2k% + (aka + bks)?]
and

_ H T(s) + 92 G(s) + V3 P(§).

VT + 93 + 93
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On the other side, we have the ability to express ourselves.

1

By(s*) = A_1

{[a(ﬂgkl — Vaka) — baks] T(<) + [adiks + b(91ks + Vsk1)] G(s)

~ ky(ath + bﬂg)P(g)},

where

Ar = \J2k + (aky + bks)2\/93 + 03 + 3.
Now, from Eq. (3.4) we have

1 . .
$(c) = _2{ — [ar? + bley + bhoks] T(s) + [ak1 — bk? — kg (aks + bks)] G(s)

+ [a(iﬁ'g + k‘lk'g) + b(k‘g — k‘lk’g)] P(()},

similarly
1

)=

(AlT(g) + XG(s) + AsP(<)),
where

Av = = [ [ar® + by + blioks]  — ki [ak1bk? — o (aks + bhy)]
+ ko [alks + ki ks) + bls — klkg)]} :

Ny = [aky — bk} — k3(aky + bks)] _+ ki [an® + by + bhoks]
— ks[a(ks + kiks) + b(ks — k1k2)],

As = [a(ks + kiks) + b(ks — k1ks)]_ + k2 [ar® + by + bhoks]
+ k3 [aky — bkT — ks(ako + bk3)].

The trajectory torsion of is then calculated using equations

V2
X

+ ak1 |:>\1 [a(kz + k1k3) + b(k3 — k’leﬂ + )\3 [anQ + bk’l + bk2k3]:|

T<P {bk‘l [)\2 [a(iﬁ'g + k’lk'g) + b(k‘g - k‘lk’g)] - )\3 [aiﬁ — bk‘% — k‘g(akg + bk‘g)ﬂ
— (akg + bk3) |:>\2 [anQ + bk’l + bkgk’;g] + )\1 [al%l - bk’% — k’3 (akg + bk3)ﬂ } s
where
. . . 2
A7 =[ak [alks + kiks) + bl — kuka)] — (aks + bhs) [aky — bEE — ko (aks + bhs)] |
. . . 2
+ [t [alhs + kiks) + blks — kuko)] + (aks + bhs) [an® + by + bhaks] |

+ |:bk'1 [akl — bk?% — k’3(ak’2 + bk‘gﬂ — aky [GKQ + bk’l + bk2k3]:| 2.
O

Corollary 3.2. Let ( = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If ¢ : I € R — E3 is
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the TG-Smarandache trajectory curve of ¢. If O(¢) = g, then the natural trajec-

tory curvature functions of the T'G-Smarandache trajectory curve can therefore be
defined as follows in terms of x and 7:

V2/(72 + K2)(ak + b7)2 + 4(ak + b7)?
(ak + br)?
V2[ri(5ak + br) + 7K(ak + 5b7)]
(72 + k2)(ak + b7)?

Kp(S™) =

)

(3.7)

Te(c") = —

Corollary 3.3. Let ( = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If ¢ : I C R — E3 is

the T'G-Smarandache trajectory curve of . If ©(¢) = fg, then the natural trajec-

tory curvature functions of the T'G-Smarandache trajectory curve can therefore be
defined as follows in terms of x and 7:

V2/(12 + K2)(ak — br)2 + 4(ak — bT)?

Fols’) = (ak — bT)? ’

V2[#k(ak + 3b7) — Ti(3ak + br)] (3.8)

(12 + Kk2)(ak — b7)?

To(¢") =

Definition 3.2. Let ¢ = ((s) be a trajectory unit speed curve in E3. The T P-
Smarandache trajectory curve via to PAF (2.2) of {(<) defined by

b= (") = % (aT(g) + bP(g)), a?+ b2 =2. (3.9)

Theorem 3.4. Let ( = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If ¢y : I C R — E3 is the
T P-Smarandache trajectory curve of ( with non-zero curvature function, then its
Frenet frame {Ty, Ny, By} is given by

—bko aky, —bks ako
Ty \/2k2+(ak1 bk3)? \/2k2+(ak1 bk3)? \/2k2+(ak1 bk3)?2 T
Nw = V€2 +E2+E V€2 -l—fs2+ad V€2 +E2+€ G,
quj a(€3k1 Egkg) besks k}2(a€1+b53 7&61]{714’1)(51]{23 52k2) P
AQ 2 2

(3.10)
where

e1 = —[ar? + by — bkks] [2k3 + (aky — bk3)?] + bk [2koks + (aky — bks)(ak
— bk3)],

ea = [a(ky + koks) — b(ks + k1ks)] [2k3 + (ak: — bk3)?] — (aky — bks) [2kak:
+ (aky — bks)(ak — bks)],

e3 = [aky — bk} + ks(aky — bk3)] [2k3 + (aky — bks)?] + aks[2kaky
+ (aky — bks)(ak; — bks)],

Ay = \/ng + (aky — bkg)Q\/E% + e} +¢€3.

(3.11)
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Proof. Differentiate (3.9) to ¢ and using (2.2), we get

Dy 1
P(s*) = ﬁ(f ks T(<) + (aky — bks)G(s) + akz P(c) ). (3.12)
So
—bky T k1 — bk ko P
Tw(g*) _ 2 (§) + (0’2 1 3)G(§) ja 2 (§)7 (313)
\/2]@’2 + (ak:1 — bk’3)
such that
* 2 _ )2
ds* _ V/2k3 + (aky — bk3) . (3.14)
ds V2
Then, we have
Fole®) \/E(EIT(U)+52BI(§)+EBBQ(§))
g p— .
v [2k2 + (aky — bks)?)2]
where
€1 = — [GKQ + bk‘g — bk’lkzﬂ [2]6% + (ak:1 — bk’3)2] + bko [ngkg + (ak:1 — bk‘g)(aiﬁ

— bks)],

ea = [a(ky + koks) — b(ks + k1ks)] [2k3 + (ak: — bk3)?] — (aky — bks) [2kak:
+ (aky — bks)(ak; — bks)],

e3 = [aky — bk} + ks(aky — bk3)] [2k3 + (aky — bks)?] + aks[2koky
+ (aky — bks)(ak; — bks)].

Rather, the trajectory curvature and, as a result, the principal normal vector field

of 1 are
) V2y/e? + 3+ €3
Rp(sT) = VAT A TS
[2k‘2 + (akl — bk‘g)ﬂ
and

e1T(s)+e2G(s) +e3 P(§).

Vel +ei+ el

Ny(s¥) =

So, we have

By(c*) = ALQ{[G(Eslﬁ — e9ky) — beaks| T (<) + k2 (a1 + bes)G(s)

T [— ag1ke + b(e1ks — 52k2)]P(§)}7

where

Ap = \/2K + (aky — bks)2\ /% + €3 + 3.
Now, from Eq. (3.12) we have

d(s*) = ar® + bky — bkiks|T(<) + [a(ky + kaoks) — b(ks + k1ks)] G (<)

1
vl
+ [ai@ — bk?% + k3 (akl — bk‘gﬂ P(C)},
similarly

B() = = (@1T() +waG(6) +wsP(9)),

Sl -
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where
w1 = — “(1112 -+ ka — bklkS}g — k’l [a(l;zl —+ k2k3) - b(k3 + klkg)]
+ ko [ai@ — bk?% + k3 (akl — bk‘g)ﬂ R
wa = [a(ky + kaks) — b(ks + kik2)] _+ ki [ar® + bk — bk k3]
— k3 [ai@ — bk?% + k3 (akl — bk‘gﬂ ,
w3 = [aiﬁ'g — bk‘g + k‘g(ak’l — bk’3)]< + ko [cm2 + bk’Q — bk‘lk'g]
+ k3 [a(iﬁ + k‘gk‘g) — b(k‘g + k‘lk’g)]

The trajectory torsion of is then calculated using equations

V2

=1 {bk2 [wQ [aky — bk2 + ks(aky — bks)] — ws [a(ky + kaks) — b(ks + klkg)]}

+ (aky — bks) [wn [aky — bKE + ky(aky — bks)] + ws [an? + by — bhaks] |
— aky[wn[alky + kaks) = b(ks + kaka)] — walak? + by — bk k]| } :
where
Af = [(akl — bk) [aky — bk2 + ks(ak) — bkzg)ﬂ g [akzg [ar? + by — by s]
+ o [aks — bk2 + ks (aky — bks)]} g [b@ [a(y + kaks) — b(ks + k1ky)]
+ (aky — bhs) [an? + by — bk ks ]| "

O

Corollary 3.5. Let ( = ((¢) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If ¢y : I C R — E3 is the

T P-Smarandache trajectory curve of {. If ©(¢) = g, then the trajectory curvature

of the T'P-Smarandache trajectory curve can therefore be defined as follows in terms
of kK and T:

2 . . 2 9 9412
Koy (™) W{ [bBT(Tn —7h) —ak?(26% + b 72)}
+ [(ar — b7) (262 + b272)2 + br(2mi + b277)] (3.15)

N

+[(267 + 6777 [ak = b(r* + k)] + ar(2kF + b7 )}2} '

Corollary 3.6. Let ( = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If ¢ : I C R — E?

is the T'P-Smarandache trajectory curve of ¢. If ©(¢) = —g, then the trajectory

curvature of the T'P-Smarandache trajectory curve can therefore be defined as
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follows in terms of x and 7:

o+ [or (i + VP77) = (ams — b7) (267 +077°)° (3.16)

N

+ [(252 + b272)[ak 4 b(1? + K?)] + ar(2kk + 6277‘)}2} )

Definition 3.3. Let ¢ = (<) be a trajectory unit speed curve in E3. The GP-
Smarandache trajectory curve via to PAF (2.2) of {(s) defined by
1
= u(c* :—(aGg +bP§>, a® +b% =2, 3.17
= p(c") 7 (©) (©) (3.17)

Theorem 3.7. Let { = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E? via to PAF (2.2). If u: I C R — E? is the
G P-Smarandache trajectory curve of { with non-zero curvature function, then its
Frenet frame {7}, N,,, B, } is given by

7(ak1+bk2) —bks aks
T, V/2k3+(aki+bk2)2  \/2k3+(ak1+bk2)? V/2k3+(aky+bk2)? T
N — B B2 ___Bs G |,
5 /B3 +53+53 \/Bi+53+63 VBT +B3+53 p
I —ks(aB2+b83) af1ks+pB3(aki+bks)  bBi1ks—pB2(aki—bks)
As A3z Az
(3.18)
where

Br = [ks(bk1 — aka) — aky — bk2|[2k3 + (aky + bk2)?] + (aky + bk2) [2ksks

+ (aky + bky)(aky + bky)],
B = —[ak3 + bl + k1(aki + bka)] [2k3 + (aki + bka)?] + bks [2ksks

+ (aky + bks) (aky + b)), (3.19)
Bs = [aks — b3 — ko(aky + bk2)| [2K3 + (aky + bk2)?] — aks[2ksks

+ (aky + bka)(aky + bk2)],

Ag = \/2K3 + (aky + bho)? /7 + 53 + 63,
Proof. Differentiate (3.17) to ¢ and using (2.2), we get

u(s*) = % ( — (aky + bko)T'(s) — bks G(s) + aks P(g)). (3.20)
Then
o —(aky 4 bko)T(s) — bk3 G(s) + aks P(s)
Tu(s™) = N pTe T : (3.21)
such that
d¢* V/2k3 + (aky + bko)? . (3.22)

ds V2

Then, we have

ﬁ(ﬁlT(a) + B2B1(s) + BsBz(c))

Tt(§*) =
’ [2k2 + (aky + bks)?]?
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where
By = [ks(bky — ako) — aky — bko| [2k3 + (aky + bk2)?] + (aky + bks) [2ksks
+ (aky + bka)(aky + bks)],
Bo = —[ak3 + bls + k1(aky + bka)] [2k3 + (aky + bka)?] + bks [2ksks
+ (aky + bk)(aky + bks)],
Bs = [aks — bk3 — ko(aky + bk2)| [2k3 + (aky + bk2)?] — aks[2ksks
+ (aky + bks)(ak; + bk2)].

The trajectory curvature and, as a result, the principal normal vector field of u are

o V2B + B2+ B2

Iﬂ}u(g ) - [2]1;% + (ak’l + bk2)2:|25
and
N, (") = Br1T(s)+ B2 G(s) + B3 P(s)
So, we have
B,(s*) = Aizg{ — k3(afa +bP3)T(s) + [aBiks + Bs(aky + bk2)|G(S)

+ [bB1ks — Ba(aky + bks)] P(<)}v

where

Ag = \/2k§ + (aki + bk2)2\/ﬂ% + 83+ B2

Now, from Eq. (3.18) we have

ji(c*) = %{ [k3(bk1 — aks) — aky — ba] T(c) — [ak3 + bks + k1 (ak: + bk2)]G(s)
+ [aks — bk2 — ky(aky + bky)] P(g)},
similarly
ity = L (o G ,
(™) = 75(71 (€) +72G(<) + 73 (C)),
where

" = [k3(bky — aky) — aky — bka] + ki [ak3 + bks + ki (aky + bks)]
— ka[aks — bk3 — ka(aky + bk2)],

o = —[ak} + bz + ki (aky + bka)]_ + ki [ks(bk1 — aks) — aky — biks]
— ks[aks — bk3 — ka(aky + bk2)],

s = [aks — b3 — ka(aky + bks)]_ + ko [ks(bky — aks) — aky — bks)]
— ks [ak3 + ks + k1 (aky + bk2)].
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The trajectory torsion of is then calculated using equations

TFZX*{ (aky + bks) (72 aks — bk3 — ka(aky + bka)] — 73 [ak3 + b3
+ hr(aky + bkz)] ) + bhs (s [Ra(bky — akz) — alky — bha] — 71 [aks — b3
— k‘g aki + bk’Q ) + ak:3< bk‘l — ak'g) — ak1 — bk‘g} [ak§ + bk’3
+k1 ak1 +bk’2 )}
where

. . 2
zg:@m@mfwa4ﬂwrmbﬂ+wﬂm§M@+m@m+Mm}
. . . 2
+ |:ak'3 [k’3 (bk‘l — ak'g) —aky — bk‘g} + (akl + bk‘g) [ak’3 — bk?g) — ko (ak:1 + bk’g)ﬂ

. . . 2
+ |:bk'3 [k’3 (bk‘l — akzg) —aky — bk’Q] — (ak:1 + bk‘g) [ak:§ + bks + k1 (ak:1 + bk’g)]:| .

O

Definition 3.4. Let ¢ = ((5) be a trajectory unit speed curve in E3. The T'GP-
Smarandache trajectory curve via to PAF (2.2) of {(s) defined by

¢:¢@ﬂ::$§@zwn+bG@)+cP@ﬂ, A +v*+c2=3. (3.23)

Theorem 3.8. Let ( = ((s) be a trajectory unit speed curve of moving point
particle of constant mass m in space E3 via to PAF (2.2). If ¢ : I C R — E3 is the
TG P-Smarandache trajectory curve of ( with non-zero curvature function, then its
Frenet frame {Ty, Ny, By} is given by

7(bk’1 + CkQ)T + (ak1 - Ck3)G + (ak2 + bk3)P

T¢ = ,
\/(akl + Ck'Q)Q + (akl — Ck3)2 + (ak’g + bk3)2
01T +6G+ 03P

N¢ = ,

V03 + 03 + 03

1
B¢ = A_4{ [a(53k1 — (Sgk'g) — k‘g(b(SQ + C(Sg)}T + [5(53]@’1 + 51k3) + ko (a(51 + 0(53)} G

+ [C((Slk’zg — 52]@’2) — Kk (a(51 + bég)}P
(3.24)
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where

81 = —[ki(aky — cks) + ka(aks + bks) + by + chs] [(aky + cka)? + (aky — cks)?
+ (aks + bks)?] + (bky + cko)[(bk1 + cko)(bky + chky) + (aky — cks)(ak; — cks)
+ (aka + bls)(aks + bks)],

d2 = [aky — cks — ki (bky + cka) — k3 (aka + bks)] [(aky + cka)? + (aky — cks)?
+ (aks + bks)?] — (aky — cks)[(bk1 + cko)(bky + chky) + (aky — cks)(ak; — cks)
+ (aks + bks)(aky + bks)],

d3 = [aky — bks + kz(aky — cks) — ka(bky + cka)] [(aky + ck2)? + (aky — cks)?
+ (aks + bks)?] — (aks + bks)[(bk1 + cko)(bky + chky) + (aky — cks)(ak; — cks)
+ (aks + bks)(aky + bks)],

Ay = /(aky + cko)? + (aky — ck3)? + (aky + bk3)2y/ 62 + 63 + 62.

(3.25)
Proof. Differentiate (3.23) to ¢ and using (2.2), we get
. 1
36 == ( — (bky + cka)T + (aky — ck3)G + (aks + bkg)P). (3.26)
Then
. —(bk1 + ck2)T + (aky — ck3)G + (aks + bks3) P
Ty(s*) = (b1 + cha)T + (aks — cks)G + (ak; + bs) P (3.27)
\/(akzl + Ck’g)Q + (ak:1 — Ck’3)2 + (ak'g + bk3)2
such that
ﬁ _ \/(akzl + Ck2)2 + (ak:1 — Ck’3)2 + (ak'g + bk3)2 (3 28)

ds V3

Then, we have

\/5(61T(a) + 62 B1 (§) + (5332(§)>
[(aky + ck2)? 4 (aky — cks)? + (aks + bk3)2}2.

Ty(s*) =

where

81 = —[ki(aky — cks) + ka(aka + bks) + by + chs] [(aky + cka)? + (aky — cks)?
+ (aks + bks)?] + (bky + cka) [(bk1 + cka)(bky + chky) + (aky — cks)(ak; — cks)
+ (aka + bks)(aks + bls)],

82 = [aky — cks — k1 (bky + ckz) — ks (aks + bk3)] [(aki + ck2)? + (aki — cks)?
+ (aks + bks)?] — (aky — cks) [(bk1 + cko) (bhy + cks) + (aki — cks)(aky — cks)
+ (aka + bks)(aks + bls)],

03 = [aks — bks + kz(aky — ckz) — ka(bky + ck)] [(aki + cka)? + (aki — cks)?
+ (akg + bks)?] — (aka + bks) [(bk1 + cko) (bky + cka) + (aky — cks)(aky — cks)
+ (aky + bls)(aks + bls)].
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The trajectory curvature and, as a result, the principal normal vector field of ¢ are

\ V3\/67 + 03 + 02

Ko(s") = 2
[(aky + ck2)? 4 (aky — ck3)? + (aks + bks)?]

and
0 T(s) + 2 G(s) + 93 P(s)

0F + 03 + 03

Ny(s™) =

So, we have

1

By = A,

{ [ (53k1 — 52k2) k3(b(52 + C(S3)}T + [b(53k’1 + 51k3) + kQ(a(Sl + 053)} G
+ [0(511’63 — 52]€2) — k’l (a61 + b52)]P},

where

Ay = \/(aky + ck)? + (aky — ck3)2 + (aky + bk3)2y/02 + 62 4 62.

Now, from Eq. (3.26) we have

; 1 . . . .
¢(g*) :%{ — [kl(akl — Ckg) + kz(akg + bk’3) + bk1 + Ckg]T(g) + [akl — cks
— k1 (bk‘l + Ck/’g) — k‘g(akg + bk‘gﬂ G(C) + [aiﬁ'g — bk‘g + k3 (akl — Ck'g)

— ko (bky + chy)] P(g)},
similarly

() = —= (mT(©) +mG() +mP()),

S

where
m=- [kl(akl — ck3) + ko(aka + bk3) + bky + Cifg]g —k; [akl — cky — k1 (bky
+ cky) — kz(aks + bks)| — ko [aks — bles + ks(aky — cks) — ka(bky + cka)],
o = [akl — cks — ky (bk1 + cka) — k3(ake + bk’gﬂ — ks [kzl (aky — cks3) + ko(aks
+ bks) + by + cks] — ks[aks — bks + ks(aky — cks) — ka(bky + cka)],
N3 = [akg — bks + ks (aky — ck3) — ko(bky + Ck’g)} — ko [kzl (aky — cks3) + ko(aks
+ bks) + bl + cks] + ks [aky — cks — ki (bky + ckz) — ks(aks + bk3)].

The trajectory torsion calculated as:

3
Tp = X;{(WQ% — 1302) (bky + cka) + (m103 — 1301 ) (aky — cks)

+ (7]251 — ﬂldg)(akz + bk3)} s
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where

At = [(akl — chy) [k — by + ks(aky — cks) — ka(bky + cka)] — (aks + bks) [aky
— chg — ky (bky + chy) — k(aks + b@)]} g [(bkl + chs) [aky — bis + g (aks
— cks) — ko (bky + cka)| — (aka + bks) [k1(aky — ckz) + ka(aka + bks) + bk
+ chs] } g [(ak1 — cks) [k1(aky — cks) + ko(aka + bks) + bley + chs]

. . 2
+ (bky + cho) [aky — chg — ky (bhy + cha) — ks (aky + bkg)ﬂ :

4. EXAMPLE

We build a computerized example of Smarandache trajectory curves of a trajec-
tory unit speed curve of a moving point particle of constant mass m in space E3
in this section using PAF. Assume that a constant-mass point particle p follows

12
the track (s) = <5COS§ 8 cose

—sing, —
Frenet apparatus is written as

ETREE 13 ) (see Figure 1). This trajectory’s

FIGURE 1. Trajectory curve ¢ = ((g).

5sing 12sing
T(§) - < 13 , — COSG, 13 ) )

5cosg . 12 cosg
N = |-
(<) ( 3 Sins 3 )

12 5
B(<)= [ —-=-2.0,—2
(s) ( 30 13) ,

k=1, 7=0.
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\

FIGURE 2. T'G-Smarandache trajectory curve.

FI1GURE 3. T P-Smarandache trajectory curve.

Since (¢(s), B(s)) = 0 and (¢(s), N(s)) < 0, then we get O(¢) = g As a result of
the given knowledge, we may construct the PAF apparatus as follows:

5si 125si
T(s) = (— Sf;g,—cosg, —f;ng) ;

12 5
G(§) - (1_3703 1_3> )
5cosg . 12 cosg
P(g) - ( 13 , SH1 G, 13 ) )
k1 =0, ko =1, ks = 0.
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FIGURE 5. TGP-Smarandache trajectory curve.

In this article, we look at the Smarandache trajectory curves for the first time in
terms of definitions (see Figures 2-5).
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