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DEFERRED INVARIANT STATISTICAL CONVERGENT TRIPLE
SEQUENCES VIA ORLICZ FUNCTION

MUALLA BIRGUL HUBAN, MEHMET GURDAL

ABSTRACT. In this paper, we shall study deferred invariant statistical conver-
gence and strongly deferred invariant convergence with triple sequences via
Orlicz function. We also introduce some inclusion relations.

1. INTRODUCTION

The idea of statistical convergence was given by Zygmund [26]. Later, this
concept was introduced by Fast [7] and Steinhaus [22]. Under different names
statistical convergence has been studied many different areas [B, [0, [10]. The deferred
Cesaro mean D, , of sequences of real numbers was introduced by Agnew [I] and it
was investigated by Dagadur and Sezgek [4], Et and Yilmazer [6], Kiigiikaslan and
Yilmaztiirk [I1], Temizsu [23] and many authors. Several authors including Schaefer
[21], Mursaleen [I3] [14], Savas [19] and others have studied invariant convergent
sequences [I7]. Mursaleen defined strongly o-convergence [15]. In [3], Bromwich
firstly studied double sequences and many others was investigated this notion [8]25].
Recently, the concept of statistical convergence for triple sequences was presented
by Sahiner et al. [24]. Also, the readers should refer to the monographs [2] and [16]
for the background on the sequence spaces and related topics.

In this paper, we introduce deferred invariant statistical a—convergence, strongly
deferred invariant g—convergence and o-statistical g—convergence which are some
combinations of the definitions for deferrred statistical convergence, strongly de-
ferred invariant convergence, Orlicz function, o-statistical convergence and triple
sequences. In addition to these definitions, natural inclusion theorems will also be
presented.

2. DEFINITIONS AND NOTATIONS

Before we enter the motivation for this paper and the presentation of the main
results we give some preliminaries.
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26 M. B. HUBAN, M. GURDAL

The idea of the statistical convergence of sequence of real numbers is based on
the notion of natural density of subsets of N, the set of all positive integers which
is defined as follows:

Definition 2.1. A sequence © = (xy) is said to be statistically convergent to the
number & € R if for every e > 0,
1
lim —{k<n:|z,—& >e}|=0,
k—ocon

where the vertical bars indicate the number of elements in the enclosed set.

In several literary works, statistical convergence of any real sequence is identified
relatively to absolute value. While we have known that the absolute value of real
numbers is special of an Orlicz function [I8], that is, a function % :R — R in such
a way that it is even, non-decreasing on R™, continuous on R, and satisfying

¢(z) = 0 if and only if 2 = 0 and ¢(z) — oo as = — oc.

Further, an Orlicz function 5 : R — R is said to satisfy the Ay condition, if there
exists an positive real number M such that ¢(2z) < M.¢(z) for every x € RT.
Deferred Cesaro mean as a generalization of real (or complex) valued sequence

r = () by
1 q(n)

> awk, n=1,23,..

=p(n)+1

Prathn = Ty —p@m |

where {p (n)} and {q(n)} are sequences of nonnegative integers satisfying the con-
ditions
p(n) < g¢(n) and lim ¢(n) = co.
n—oo
Deferred density of K C N defined by
: < K
5108 = 1 1P < B0 0), ke K
n—>00 q(n) —p(n)

Definition 2.2. ([I1]) A real valued sequence x = (xy) is said to be deferred
statistically convergent to & provided that

e <k<q@), e -gl2e)]
n—c0 q(n) —p(n)
for each € > 0 and it is written by xi, — £ (DSp4) -

0

Remark. If p(n) =0 and q (n) = n, then the above definition is coincide with the
definition of statistical convergence.

Also, Dagadur and Sezgek [4] introduced deferred statistical convergence of dou-
ble sequences. Let x = (z,x) be a double sequence and B (t) = b(t) — a(t),
v (u) = d (u) — ¢ (u) . Then the double sequence x is said to be deferred statistically
convergent to & if for every € > 0,

iy k) a(t) <n<b(), c(u) <k<d(u); e —&l2eb| _
tu—ro0 B )y (u) a
Recently, the concept of statistical convergence for triple sequences was presented

by Sahiner et al. [24], as follows: A function z : Nx N x N — R (or C) is called
a real (complex) triple sequence. A triple sequence (k) is said to be convergent

0.
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to L in Pringsheim’s sense if for every € > 0, there exists ng (¢) € N such that
|€ngt — L| < € whenever n, k,1 > ny.
A subset K of N x N x N is said to have natural density d3 (K) if

K
P,q,7—00 pq’["

exists,

where the vertical bars denotes the number of (n, k,{)’s in K such that n <p, k <¢
and [ <.

Definition 2.3. ([24]) A real triple sequence (znk;) s said to be statistically con-
vergent to the number £ if for each ¢ > 0,

63({(n,k,l) eENXxNxN: ‘J;nkl_ﬂ ZE})ZO

A continuous linear functional ¢ on £, the space of real bounded sequences, is
said to be a Banach limit if

(i) ¢(z) > 0, for the sequence x = (x,) with x,, > 0 for all n € N,

(ii) ¢ (e) = 1, where e = (1,1, 1, ...) and

(i) ¢ (Zo(n)) = ¢ (zn) for all T € lo.

The mapping o is assumed to be one-to-one and such that ¢™ (n) # n for all
n,m € Z*, where ¢ (n) denotes the m th iterate of the mapping o at n. Thus,
¢ extends the limit functional on ¢, the space of convergent sequences, in the
sense that ¢ (z,) = limz, for all x € ¢. In the case o is translation mappings
o(n) = n + 1, the o-mean is often called a Banach limit. The space V, of the
bounded sequences whose invariant means are equal may be defined, as follows;

RN : :
V, = {x €l : mlgnOo oo ;xak(n) = ¢, uniformly in n} .
In [21I], Schaefer proved that a bounded sequence x = (z) of real numbers is
o-convergent to ¢ if and only if

N
nll{rolo E kz_l Lok(m) = 3

uniformly in m. A sequence x € £, is said to be almost convergent to the value &
if all of its Banach limits equal to &.

The concept of almost convergence of sequences of real numbers z = (z,,) was
firstly introduced by Lorentz [I2]. A bounded sequence x = () is almost conver-
gent to & if and only if

1 n
i o D omee =
uniformly in m.

Let X and Y be two sequence spaces and A = (a,j) be an infinite matrix. If for
each x € X the series A,, (z) = Y 72 | ankxy, converges for each n and the sequence
Az = (A,z) € Y, we say that A maps X into Y. By (X,Y) we denote the set
of all matrices which maps X into Y. A matrix A is called regular if A € (¢, c¢)
and limg 00 Ay (2) = limg o0 2 for all © = (z4), oy € ¢, as usual, stands for the
set of all convergent sequences. It is well known that the necessary and sufficient
conditions, in order to be A regular, are

(a) [A]l = sup, X lank| < 03

(b) lim,, a,x = 0, for each k;



28 M. B. HUBAN, M. GURDAL
(c) limy, >~ ank = 1.

3. MAIN RESULTS

Following the above definitions and results, we aim in this section to introduce
some new notions of deferred invariant statistical q;—convelrgence7 strongly deferred
invariant g-convergence and o-statistical a—convergence for the triple sequences.
We also introduce some inclusion relations.

Definition 3.1. Let x = (xnk1) be a triple sequence and B (t) = b(t) — a(t),
v(u) =d(u)—c(u), n(v) = f(v) —e(v). Then deferred Cesaro mean Dg~, of the
triple sequence x is defined by

b(?) d(u) f(@)

(Dpyn®) iy = »3()— Z Z Z ZTnkl,

n=a(t)+1 k=c(u)+1l=e(v)+1

where {a (t)}, {b(t)}, {c(u)}, {d(u)}, {e(v)}, {f (v)} are sequences of nonnega-
tive integers satisfying the conditions
a(t)<b(t), clu)<d(u), e®) < f(v)
and
lim b(t) = o0, lim d(u) =00, lim f(v)= 0.

t—o0 U—00 V—00

Definition 3.2. Let q; : R — R be an Orlicz function. Then, the sequence v =
(ki) is said to be deferred statistically ¢-convergent to the number £ € R if for
every € > 0,

limuu)vﬁoom {a (%) <n§b(t),~c(u) < kgd(u})‘7 e() <1< f(v)
t O (@ — &) = eq|.

Definition 3.3. Let 5 : R — R be an Orlicz function. Then, the sequence v =
(Znkt) is said to be strongly (Dgyn)¢-convergent to £ € R if

d(u) f()

. 1
t,ul,ggooW Z Z Z (b Tnkl —

n=a(t)+1 k=c(u)+1l=e(v)+1

Definition 3.4. Let qb : R — R be an Orlicz function. Then, the sequence v =
(Ttuw) of real numbers is o-statistically ¢-convergent to £ if for every e > 0,

{n<t k<u, l<w: d)( )gk(q)gz(r)—f)zg}’=0

lim
t,u,v—00 tuv

uniformly in p,q and r, and is written as Tiyy — € (SU)¢ .

Definition 3.5. A sequence x = (Tyyy) is called to be deferred invariant convergent
to £ e R if

d(u) f(w)

}%W Z Z Z Pt ()0l (r) = €

n=a(t)+1 k=c(u)+11= eU)Jrl

uniformly in p,q,r.
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Definition 3.6. Let 5 : R — R be an Orlicz function. Then, the sequence v =
(Tt ) 1 called to be strongly deferred invariant ¢-convergent to & € R if

b(t) d(u) f()

. 1
i e 2 2 2 Ol w T Tam =€) =0
Y n=a(t)+1 k=c(u)+1l=e(v)+1

uniformly in p,q and r, and is written as Tiy, — £ (Dgw)f

Remark. If we take b(t) =t, d(u) =u, f(v) =v,a(t) =0, c(u) =0, e(v) =0,
¢ = |z| and a real valued sequence x = (z;) instead of & = (Tyw), then above
definition of strongly deferred invariant qg-convergence coincides with strongly o-
convergence in [15].

Definition 3.7. Let 5 : R — R be an Orlicz function and 55 = |z|®. Then, the
sequence ¥ = (Tpyy) 18 called to be strongly s-deferred invariant ¢-convergent to
EeRif
b(t) d(u) f()
th'zfr'luﬁ( ) (v) Z Z Z ¢S Lon(p),Lok(q),Lal(r) — f) =0
)7 n=a(t)+1 k=c(u)+1l=e(v)+1

uniformly in p, q, v and is shown as Ty, — & (Dﬁw)f’s , where 0 < s < o0.

Remark. If we take b(t) = ¢, d(u) = u, f(v) =v,a(t) =0, c(u) =0, e(v) =
0, ¢s = |z|° and a real valued sequence x = (z) instead of v = (Tyuy), then

above definition of strongly s-deferred invariant ¢-convergence coincides with the
definition of strongly s-invariant convergence in [19].

Definition 3.8. Let 5 : R = R be an Orlicz function. Then, the sequence v =
(Ttuw) 15 called to be deferred invariant statistically ¢-convergent to £ € R if for
every € > 0,

fa() <n<bt),c(uw) <k <d(u),e(w) << f(v)

: 1
im0 5y ) n
10 (Ton (), Tor () Tot () — €) 2 5}‘ =0

uniformly in p,q and r, and is written as Ty, — £ (DSgw)f

Remark. If we take b(t) =t, d(u) =u, f(v) =v, a(t) =0, c(u) =0, e(v) =0,
¢ = |z| and a real valued sequence © = (x;) instead of x = (T4uy) , then above defi-
nition of deferred invariant statistically g-convergence coincides with the definition
of invariant statistically convergence in [20].

Weuse 8/ (t) =b (t)—a' (t), (u) =d (u)—c (u),n (v) = f' (v)—€ (v) where
{d )}, {V )}, {¢ (W)}, {d W)}, {e ()}, {f (v)} are sequences of nonnegative

integers satisfying the conditions

a (t)<b(t), d(u)<d(u), @) <f(v)
and
lim &' (t) =00, lim d (u) =00, lim f' (v) =00

t—o0 UuU—00 V—+00

in the next theorem.
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Theorem 3.9. Let ¢ : R — R be an Orlicz function and {a (t)}, {b(t)}, {c(u)}
{d(w)}, {e()}, {f (W)}, {a" O}, ¥ @)}, { (W)}, {d" ()}, {e (v )} {f (v} o

sequences of non-negative integers satisfying a (t) < a’ (t) < V' (t) < b(t), c(u) <
d(u) <d(u) <d(u), e) <e ) < f (v)<f) foralt,u,v €N and

lim sup B{t)y(u)n(v) < 00

)1
tu’u—)ooﬁ/() () ()
(

Then, Tiyy — € (DSgw) implies Tiuo — & (DSpryrr), -

S -

(3.1)

¢

Proof. From the inclusion
{(n,k,0):a (t) <n <V (t),cd (u) <k<du),e W <l<f(v)
0 & (Ton (), Tok(q) Tot(r) = &) Z €
C{(n,k,l):at) <n<b(t),c(u) <k<d(u),e
;6 (Ton (), Bk (@) B0y — €) Z €}
now, we can write

limy 4 p—so00 —L  H{(n,k, ) :d (t) <n<b(t), d(u)<k<d(u)),

B/ (1) (u)n! (v) -
e ) <i<f(v); o (‘ra-n(p)’xgk(q)’xo-l(r) - f) > EH
(3.2)
AWy k) 1 .
<l 0 G ) T @ (7O <n b0,
( ) <k< d(u)’ 6( ) << f( ) ¢ (xan'(p),xok(q),xol(r) _5) > 6}‘ .

From and , we have Ty, — & (DSB"Y'F')E' O

Theorem 3.10. Let ¢ : R — R be an Orlicz function and {a (t)}, {b(t)}, {c(u)}
{d(w}, {fe@)}, {f ()}, {a @O}, {V O}, { (W)}, {d" (W)}, { (v )} {f" (v)} b
sequences of non-negative integers satisfying a (t) < a’ (t) < b’ (t) < b(t), c(u
d(u) <d(u) <d(u), e() <e W) < f (v)<f) foralt,u,veN and
B W) _
b R0 ) (o)

Then, Ty, — & (Dﬁw) implies Ty —> & (Dpgryray )¢

D -

) <

Proof. In the light of hypothesis, one can see that
b(t) d(u) )

1
T @ YooY D (T Terg) ety — §)

n=a(t)+1ln=c(u)+1ll=e(v)+1
v'(t) d'(u) £

1
= 50 (@) Z > Z ¢ (Zom (1), Zo (@), Tt (r) — )

n=a’(t)+1n=c’'(u)+1ll=e’(v)+1

LB WY @) 1
= B 0w B0 W )
b'(t) d’(u) f'(v)

O (Tom (), Lok (g), Tot(r) =€) -
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From the definition, taking limits as ¢, u, v — oo the desired result is obtained. [

Definition 3.11. Let % :R — R be an Orlicz function. A triple sequence {xnpi} is
said to be ¢-bounded if there exists M > 0 such that ¢ (zpk) < M for alln,k,l € N.

We denote the space of all bounded triple sequences by 3, (5)

Theorem 3.12. Let 5 : R — R be an Orlicz function. Then, the following state-
ments hold: _

(i) If Xty — & (DB’YU) then Ty, — &€ (DS/BW) B
(ii) If £ = (1) € 62, (5) and Tyuy — € (DSpg)?  then Tyuy — € (Dpoy)?

Proof. (i) Let @yyy — & (Dﬁvn) For an arbitrary € > 0, we get

¢ (Ton (p),To(q), Tot(r) —§) 2 €
o) dw)  f)
1
tame O 2o D 9 (Ten),Tok(g) Toie) — €)
n:a(t)+1k'=£(u)+1l=e('u)+1
¢ (Ton (p), Lok (q) Tot(r) — &) <€
dw)  f(w)

B Z YooY (@ Tt T — §)

n=a(t)+Lk=c(u)+1i=(0) +1
6 (Ton () Tok (q) Tot(r) =€) 2 €
ooy Ha(t) <n<b(t), c(u) <k <d(u), e(v) <l < f(v)
L& (Ton (p) Tok(g) Tot () — €) > 5}‘

for each p, ¢, r. Hence, we have

04,000 7500 fa(t) <n <b(t), c(u) <k<du),
( ) <ls< f( ) ¢($U”( ). Lak(q), Lol (r) —f) > 5}‘ =0.

uniformly in p, ¢, r, that is T4, — & (Dngm)d)
(i) Suppose that (z4yy) — & (DSM,]) and « = (Z4yy) is bounded, say

0 (Ton (o). Tok(q) Tot(r) =) <M
for all n, k,l and p,q,r. Given € > 0, we get

d(u) ()

W Z > Y w6

=a(t)+1lk=c(u)+1ll=e(v)+1
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b(t) (u) f(v)

:ﬁ(tmlu)n(v) Z Z Z ‘?5 Tan(p), Tk (q), ot (r) — )

n=a(t)+1k= c(u)+1l e(v)+1
& (Tom (p), Tak (), Tot(r) — €) = €
d(u) f(v)

+ 5w E: Yoo D (@) Tor(a) Taiir) — §)

n=a(t)+1k= c(u)+1l e(v)+1
6 (Ton () Tok(q) Tot(r) = §) <€
b(t) d(u) f(v)
M
< B (wn() > > X1
_n= a(t)+1k=c(u)+1ll=e(v)+1
¢ (Ton(p), Tok(q) Tat(r) —€) 2 €
b(t) d(u) f(v)

S GEOTIO) o> >t

_ n=a(t)+1lk=c(u)+1ll=e(v)+1

& (Ton (), Tk (q), Tot(r) —€) <€

Ha(t) <n<b(t), clu) <k <d(u), e(v) <l<f(v)
: & (T (), Tor (@) o) — €) 2 2|
et Ha ) <n<b(t), c(u) <k <d(u), e(v) <I< f(v)

6 (2on () Tor (@) Zat(r) = €) < 5}‘

M
S B0 (o)

for each p, q,r, hence we have
b(t) d(u) f(v)

tﬁﬂw5777424* Yo Y Y (EerwTewTem —§) =0

n=a(t)+1lk=c(u)+1ll=e(v)+1

uniformly in p, ¢, r, and the proof is completed. O

Theorem 3.13. Let d) R — R be an Orlicz function. If the sequence {L clu) e(v) }

is bounded, then (Tyy,) — (S )~

(e

implies (Tiyp) — & (DS,B'YU)U

Proof. Let (xyy) — & (S)f then for every e > 0,

1
lim {(n kD) < (t,u,v): ¢ (xa-n(p)7xo.k(q),z0.1(7.) — f) > 5}‘ =0

t,u,v—00 t’u,v

uniformly p, g, 7. Hence, for every € > 0
lime, w000 gayarayreey 17 S 01, k< d(u), 1< f(v)
16 (Tn (1), To (), Tt (1) ~ §) > 5}’ =0
uniformly in p, ¢, r. From the inequality
Ha(t) <n<b(t), clu)<k<d(u), e(v)<l< f(v)
: & (20n ()Tt () Tot(r) — ) 2 €
< Hn <b(t), k<d(u), I<f(v): g(mgn(mxg;ﬂ(q)’xaz(r) — 5) > s} ,

(3.3)
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we have

Aot {a () <n<b(t), e(w) <k <d(u), e(v) <1< f()
L (Ton(p),Ton (g) Tot () — €) 2 EH
b(t)—a@)+a(t)d(u)—cu)+c(u) f(v)—e(w)+e(v) 1T 1 1

b(t) —a(t) d(u) —c(u) fo)—e(v) b(t)d(u) f(v)
X Ha (@) <n<b(t), clu)y<k<d(u), e(t) << f(t)

: & (T ), Tk (@) Bo1) — €) 2 <

a(t) c(u) e (v) 1 1 1
= (” b(t)—a(t)) (” d(u)—c<u>> (” f(v)—e(v)> b () d(u) f (o)
x Hn <b(t), k<d(), 1< £ () (Ton(p) Torig) Tat(r) — £) > 5}’

for each p, ¢, r. By the 1) we obtain (Zy,) — & (DSgW)f . O

Theorem 3.14. Let 5 =R — R be an Orlicz function, © = (Ttuy) be a triple
sequence and b(t) =t, d(u) = u, f(v) =v for all t,u,v € N. Let {a ()}, {c(u)},

{e (v)} be arbitrary sequences. Then, Ty, — f(DSg,m)f if and only if Ty —

£(9)2.

Proof. Let b(t) = t, d(u) = u, f(v) = v for all t,u,v € N and {a(t)}, {c(u)},

{e (v)} be arbitrary three given sequences. We assume that (DSgw)i—limnu,vﬁoo Tiuw =
&. We shall apply the same technique given in [I]. We define the sequences as

at)y=tY >aq (t(l)) =t? >q (t(2)> =t® >

c(u)=u) > ¢ (u(l)) =u? > ¢ (u(z)) =u® >

e(w)=0vM >e (v(l)) =@ > (v(2)> =B >
for all t,u,v € N.

Theset 1l <n<t 1<k<u, I1<i<w: (E(x(,n(p)’xok(q))xgz(r) - {) > 8} can
be written as follows

—

n<tk<ul<ov: (E(a:[,n(p)’x(,k(q)ﬁgz(r) —&) > e}
= {n <tW k<u® 1 <o® (E(:v,,n(p)yxak(q)’xgz(r) — f) > 5}

U {t(l) <n< t,u(l) <k<uoM<l<uv: g(mgn(mxak(q)’xaz(r) - 5) > s}
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U {t <n<t, u <k<u, I <oW: (E(azgn(p),xak(q)’xd(” -&) > 5}
U {t <n<t, k<u®, 1 <oW 0§ (Ton(p) Tor(g) Toir) — £) = E}

U {n t( ) <k<u, oM <i<uv: a(mo-n(p)7xo.k(q)7xa.l(7.) — f) > E}
U {n <t W <k <u, 1 <o® g(xan(p)’xgk(q)’xgz(r) —&) > e}
U{t <n<t, k<u® oM <1 <v:¢(2omp) 20 5(q), % Uz()—§)26}

U {n < ),k < u(l),v(l) <l<w: (,25 (zon(p)7x0k(q)7xgz(r) - f) > 6} .
Accordingly, the sets can be written as:
{n <tW ke <u® 1 <o g(xan(p)@gk(q),xazm — 5) > s}

n<t® k<u? <o qg(xan(p),xak(q)@az(r) — f) > 5}

Il
=

(-

t@ <n <tW @ <k <u® 0@ <1 <oW g(l'an(p)’xak(q)’xgl(r) — f) > 5}

C

t® <n <t u® <k <u® 1<0® 9 (fﬂo-n(p),xo.k(q)’l'al(r) - f) > 5}

C

t® <n<tW k<u® <@ qz(mgn(p)7xak(q)7xgz(r) — 5) > 6}

t@ u® <k <u® 0@ <] <o (E(xgn(p)’xak(q)’mgz(r) — f) > 5}

(-
3
IA

t@u® <k <u® 1 <0® a(xan(p)7mc,k(q)7xoz(r) — 5) > 5}

C

t@ <n <tk <u® 0@ <] <oW 5(3:0”(,,),%“(1)7%,(” —&) > 5}

(-

C
3
IN

n<t® k<u? 0@ <1 <o (’E(I‘gn(p)yxo-k(q)’l'o-l(r) -&) > E},

tV <n<t,u® <k <u,l <o : (E(.To-n(p)’l‘o-k(q)’xo-l(,,‘) —&) > 5}
= {t(l) <n<tuV <k<ul<ov®: g(x,,n(p)’xak(q)’xgz(r) — 5) > 5}
u {t(l) <n<tuV) <k<uv® <1 <o®: a(xa-n(p)’mo.k(q)7xo.l(7.) — 5) > 5}

and

{t(l) <n<tk<u® oW <i<u: (Z(xan(p),xak(q)’xc,z(r) - f) > 5}
= {t(l) <n<tk< U(Q),U(l) <l<w: g(l‘o-n(p%xa-k(q) Tol(r) — ﬁ) > 6}

{t(l) <n<tu® <k<u® oW <i<v:g (Ton(p), Tk (q),Tol(r) — §) > E}

{n < t(l),u(l) <k< u,v(l) <l<w: (E(x(,n(p)’xgk(q))mgz(r) — §) > s}
= {n <t@ M <k <u0® <i<w: g(wo-n(p)ﬁmo-k(q%xa-l(r) — §) > 5}

U {t@) <n<tW M <k <uo® <l<v: %(l’o-n(p)7ma.k(q),xo.l(r) — 5) > s} .
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Now, the set {1 <n<tP1<k<u® 1<l<v®: qz(mgn(p)’xak(q),x[,z(r) -&) > E}

can be written as
{n <tk <u® |1 <o g(l'o-n(p)’xo.k(q))xal(r) -&) > s}
= {n <t k<u® 1 <0® qg(gcgn(p),xgk(q)’xgzm — §) > 5}

Ut® <n <t@ u® <k <u® 0@ <1 <@ g(xan(p),xak(q)vxaz(r) -£) > 5}

(-

t® <n<t® u® <k <u® 1< g(xan(p),mak(q)@az(r) — f) > 5}

Ugt® <n<t@ k<u® 1 <o® $($J7z(p)7xo-k(q)’xo-l(r) — f) > 5}

C

n<t® u® <k <u® v® <1 <@ g(l'an(p)7xa.k(q),xal(r) - 5) > s}

C

t® u® <k <u®, 1<0® q?(mgn(p),xgk(q)@az(” — f) > 5}

{
{
{
{
{n
U {t(3) <n<t@ kE<u® @ <1 <@ g(xgn(p),xgk(q)’xaz(ﬂ — 5) > 5}
U {n < t(?’), k< u(?’),v@) <l1<0v® a(xo-n(p)vl'ok(qxxgl(r) — f) > 5} .
For the general form, the set
{T<n<t® 1<k <a® ™1 <1 <0® ™5 G (050 Ton(g) Toi(r) — €) 2 €}
is written
{n <™ k< a1 <0 G (@0 o) 2o10) — E) Z €]
= {n <tk <ul 1 <0® 2 G (2o gy o) T010) ~ 6) Z €}

Ut < < ¢l ) < < glh2mh) y09) < ] <037 1 G (@) Tk g), Tot(r) — &) > 5}

(-

th) < p <= ghe) < < g lha=D) < yyha) qz(mgn(p)’xak(q),xgz(r) -&) > 5}

Ut <n <D, k< u®), 1< 0™ 5 G (0 ) Tor(q) Tor(r) — €) 2 €}

C

(-

{n <)y h2) < (2= g(he) < plhe=1) g(xgn(p),xok(q%xgz(r) — f) > 5}
{n th0) |y (h2) < < q(h2m) < ga) (Z(.To-n(p),l‘o.k(q)’l'o.l(,,,) —&) > 5}
U {t(hl) <n<t®D | g <)yt <1 < oD B (200 o) Toigry — £) > E}

U {n <t | < uh2) plhs) <] < plha=1) a(mo-n(p)7wo.k(q)7xa.l(7.) — §) > 5} .

tlh1) > l,t(h1+1) =0,
uh?) > l,u(h2+1) =0,

vhs) > 1,v(h3+1) =0
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are satisfied for the fixed positive integers hi, ho and hs. Consequently,

o {n <tk<ul<lv:¢ (xgn(p)7xak(q)7$0l(r) — f) > 5}‘

(h1+1) (h2+1) (h3+1

(9) i) Apd)
Z Z Z YANAY Au AU J Ktuvnkl
i= Jj=

is obtained here. Here,

AL . 1(9) _ p(g+1)
Au® -0 — g, G+
Apd) - ) _ G+

Moreover, since Ty, — & (Dsﬁ'm) the sequence

tlotl) < t(9)7u(i+1) <k< u(i)7

1
Kivonkt = {At(g)Au(l)A’U(j) {
PG <] < ) (Z(xan(p)’xgk(q)’mgl(r) - f) > E}‘} (3.4)

is convergent to zero for all g,4,j € N. If we consider the matrix Z = (zpuonki)
defined by

A AuD pp) T < <39 D) < < (0]
Ztuonkl = tuv ot <1 <o) i =1,2,3,..
0, otherwise

then the statistical convergence of the sequence & = (x4, ) is equivalent to the con-
vergence of Z-transform of the sequence given by (3.4). Since the matrix (zpyvnki)
is regular,

lim L {n<tk<ul<v (b(a:gn(p)xk(q)xz(,,) 5)25}‘20

t,u,v—00 tuv

is obtained. This step completes the proof.

Conversely, since {g%g fy((z)) dEZ;} is bounded for b (t) = ¢, d (u) = u, f (v) = v,

by Theorem 3.13, we have x4y, — £ (S )0 implies Ty, — f(DSBW)f O

When o(p) =p+1,0(q) = q+1, o(r) = r+ 1, from Definitions 3.5 — 3.8
we have the following definitions of deferred almost convergence, strongly deferred
almost (g—convergence7 strongly s-deferred almost gg—convergence, deferred almost
statistically qg—convergence for a sequence & = (zpp) -

Definition 3.15. A sequence x = (Tyyy) 18 called to be deferred almost convergent
to £ e R if

b(t) d(u) f(@)

t 'u.hvn—1>oo W Z Z Z Tnpgpktqltr =&

n=a(t)+1lk=c(u)+1ll=e(v)+1

uniformly in p,q,r.
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Definition 3.16. Let QNS: R — R be an Orlicz function. Then, the sequence x =
(Ttuw) 1 called to be strongly deferred almost ¢-convergent to £ € R if
b(t) d(u) f(v)
[T SHID DD DI AN I
fuvros ﬁ ( ) ( T] n a(t)+1k=c(u)+1ll=e(v)+1

uniformly in p,q,r.

Definition 3.17. Let ¢ : R — R be an Orlicz function and ¢s = |z|®. Then, the
sequence & = (Tpyy) 18 called to be strongly s-deferred almost ¢-convergent to £ € R
if

d(u) f()

B e TTID D VD S AU Y

n=a(t)+1lk=c(u)+1ll=e(v)+1

uniformly in p,q,r where 0 < s < oco.

Definition 3.18. Let 5: R — R be an Orlicz function. Then, the sequence x =
(Ttuw) 18 called to be deferred almost statistically ¢p-convergent to & € R if for every
e >0,

limy 4 p— 00 W Ha(t) <n<b(t), c(u) <k <d(u), e(v)<l< f(v)
: 5($n+p,k+q,l+r -§) = 5}‘ =0
uniformly in p,q,r.
Incase o (p) =p+1,0(q) =q+1, o(r) =r+1, we have the following remark.

Remark. So, the similar inclusions given by Theorems 3.12 — 3.14 hold between
strongly deferred almost ¢p-convergent sequences, deferred almost statistical ¢-convergent
sequences and o-statistical ¢-convergent sequences.
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