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TOPOLOGICAL DEGREE METHOD FOR FRACTIONAL

LAPLACIAN SYSTEM

ESMA ABADA, HAKIM LAKHAL AND MESSAOUD MAOUNI

Abstract. In this paper, we study the existence of weak solutions for a semi-

linear fractional elliptic system with Dirichlet boundary conditions. We apply

the Leray-Schauder degree method in order to obtain a result about the exis-
tence of solutions.

1. Introduction

Fractional calculus is the general case of integral and derivatives calculus. Over
the last four decades or so, fractional calculus has acquired big attention and gained
enormous reputation amid reaserchers and it has developed rapidly, mostly because
of its applications in different branches such as: mechanics, engineering, physics, bi-
ology, signal and image processing, economic, dynamic systems and other sciences,
see for example the work of HongGuang Sun, Yong Zhang, Dumitru Baleanu, Wen
Chen and YangQuan Chen in [13], see also [1, 4, 6, 14, 20]. One of the most impor-
tant branches of fractional calculus is fractional differential equations, which have
several applications see for example [5, 15, 10, 18, 22, 24, 25].

The present work studies the existence of weak solutions in fractional Sobolev
space for a semilinear fractional elliptic system of non-local equations involving
the fractional Laplacian with Dirichlet boundary conditions. This problem can
be regarded as the fractional version of the problem in [12] where the study is
about establishing the existence of weak solutions in the classical Sobolev space
for a semilinear elliptic system of local equations involving the classical Laplacian
with Dirichlet boundary conditions. By comparison between the two problems, it
appears that the fractional problem is more intresting by his non-local property.

In recent years, fractional elliptic systems have captivated the interest of many
reaserchers such as in [17] Manasss de Souza studies the existence and multiplicity
of solutions for a class of fractional elliptic systems, in [26] the authors study the
multiplicity of solutions for a critical fractional elliptic system involving concave-
convex nonlinearities and in [11] Haining Fan sudies the multiplicity of positive
solutions for a fractional elliptic system with critical nonlinearities.
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Different methods are used to study the existence of solutions for semilinear
fractional elliptic problems for example in [23] Shangjian Liu uses Stampaccia’s
theorem to study the existence of solutions and in [21] the authors study the exis-
tence of solutions for a fractional elliptic problem and they find non-trivial solution
using the Mountain Pass theorem.

The study of semilinear elliptic coupled systems involving the Fractional Lapla-
cian is also important in applied sciences see [2, 3, 8, 16, 19, 27].

The fractional Laplacian has a variety of definitions (see [7]) among which fol-
lowing definition: as an integral in the sens of the Cauchy principle value in the
real space

(−∆)su(x) := C(n, s)p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, x ∈ Rn

∀u ∈ S , ∀s ∈ (0, 1)

C(n, s) := π−(2s+n/2) Γ(s+ n/2)

Γ(−s)
,

and S is the Schwartz space.

Our purpose in this paper is to study the existence of weak solutions. For this we
will use a topological method which is based on the Leray-Schauder degree. This
method is very interesting in solving nonlinear problems because of its homotopy
invariance property. This study concerns the following problem (−∆)su(x) + g1(x, u(x), v(x)) = f1(x) in Ω,

(−∆)sv(x) + g2(x, u(x), v(x)) = f2(x) in Ω,
u = v = 0, on Rn\Ω,

(1.1)

where Ω ⊂ Rn is a bounded open set with a Lipschitz boundary,
with s ∈ (0, 1), f = (f1, f2) ∈ L2(Ω) × L2(Ω) and g1, g2 : Ω × R × R → R are
satisfying the Caratheodory conditions1 and the following assumptions :

(H1) The Nemytski operators G and F respectively defined as:
G(u, v)(x) = g1(x, u(x), v(x)) and F (u, v)(x) = g2(x, u(x), v(x)) are con-
tinuous and bounded from L2(Ω)× L2(Ω) into L2(Ω).

(H2) Sign assumption:{
g1(x, s, p)s ≥ 0 ∀s, p ∈ R and a.a x ∈ Ω.

g2(x, s, p)p ≥ 0 ∀s, p ∈ R and a.a x ∈ Ω.

Remark. The assumption (H1) is realised if for example g1 and g2 satisfy the
following growth conditions:

there exist a, b ∈ L2(Ω) and K1,K2, r1, r2 ∈ R∗+ such that

|g1(x, s, p)| ≤ a(x) +K1|s|+K2|p|,∀s, p ∈ R and a.a x ∈ Ω.

|g2(x, s, p)| ≤ b(x) + r1|s|+ r2|p|,∀s, p ∈ R and a.a x ∈ Ω.

The organization of this paper is as follows. In section 2, we present some
preliminaries and the main result of this paper. Section 3 contains a fixed point

1g1, g2 satisfy the Caratheodory conditions, i.e. g1(., s), g2(., z) are measurables for all s, z ∈ R2

and g1(x, .), g2(y, .) are continuous for almost every x, y ∈ Ω .
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formulation of our problem. Section 4 gives a proof of the main result. Finally, in
section 5 we give some conclusions.

2. Preliminaries and main result

In this section, we recall some definitions, properties and propositions about the
fractional Sobolev spaces Hs (Rn) and Ds,2(Ω), which we will use later.

Let Ω ⊂ Rn be a bounded Lipschitz2 open domain, L2(Ω) be the classical space of
square integrable functions on Ω, which equipped with the usual inner product and
norm < ., . >L2(Ω), ‖.‖L2(Ω) is a Hilbert space.

For s ∈ (0, 1), we consider the classical fractional Sobolev space

Hs (Rn) =

{
u ∈ L2 (Rn) :

|u(x)− u(y)|
|x− y|n2 +s

∈ L2 (Rn × Rn)

}
,

which equipped with the inner product and norm

< u, v >Hs(Rn)=

∫
Rn

u(x)v(x)dx+

∫∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx,

‖u‖Hs(Rn) :=
(
‖u‖2L2(Rn) + [u]2Hs(Rn)

) 1
2

,

where

[u]Hs(Rn) :=

(∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

is a Hilbert space.

Next, we need to introduce the following fractional space in Ω. Namely, we set

Ds,2(Ω) = {u ∈ C∞c (Rn), supp(u) ⊂ Ω}
‖‖Hs(Rn)

.

Here Ω is a bounded Lipschitz open domain, therefore we can set

Ds,2(Ω) = {u ∈ Hs (Rn) , such that u = 0 in Rn\Ω} .
Equipped with the inner product and norm inherited from Hs(Rn)

〈u, v〉Ds,2(Ω) = C(n, s)

∫∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dydx,

‖u‖Ds,2(Ω) =

(∫∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dydx

) 1
2

is a Hilbert space.

Ds,2(Ω) is a closed subspace of Hs(Rn).

The norm ‖.‖Ds,2(Ω) is equivalent to the Hs-norm according to the following propo-
sition.

Proposition 2.1 (see [7]). Let Ω be a Lipschitz bounded open subset of Rn and
s ∈ (0, 1) such that n > 2s. Let u : Ω → R be a measurable function compactly
supported. Then, there exists a positive constant cemb > 0 depending on n, s and Ω
such that

‖u‖L2(Ω) ≤ cemb‖u‖Ds,2(Ω).

2The domain Ω has to be Lipschitz in order that the fractional Sobolev inequalities hold true
for the funtions defined on Ω, for more details see [7].
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Proposition 2.2 (see [9]). Let s ∈ (0, 1), n ≥ 1, Ω ⊂ Rn be a Lipschitz bounded
open set and T be a bounded subset of L2(Ω). Suppose that

sup
f∈T

∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|n+2s
dxdy < +∞.

Then T is precompact in L2(Ω).

Now, we take the space L2(Ω)× L2(Ω), with the norm

‖(u, v)‖L2(Ω)×L2(Ω) = ‖u‖L2(Ω) + ‖v‖L2(Ω).

Next, we consider the space Ds,2(Ω)×Ds,2(Ω), with the norm that we will denote
by ‖(·, ·)‖Ds,2(Ω)×Ds,2(Ω)

‖(u, v)‖Ds,2(Ω)×Ds,2(Ω) = ‖u‖Ds,2(Ω) + ‖v‖Ds,2(Ω).

Throughout the paper, we always assume that n > 2s.
The following theorem is the main result of this paper.

Theorem 2.3. Under the assumptions (H1) and (H2), the problem (1.1) has at
least one weak solution (u, v) ∈ Ds,2(Ω)×Ds,2(Ω).

3. Fixed point formulation of the problem (1.1)

In this section, we are interested to the following problem to define a certain
map, which is used to formulate a fixed point problem.

For (u, v) ∈ L2(Ω)× L2(Ω), we consider the linear problem (−∆)sϕ(x) + tg1(x, u(x), v(x)) = tf1(x) in Ω,
(−∆)sφ(x) + tg2(x, u(x), v(x)) = tf2(x) in Ω,
ϕ = φ = 0 on Rn\Ω,

(3.1)

where (f1, f2) ∈ L2(Ω)× L2(Ω).

Lemma 3.1. For (f1, f2) ∈ L2(Ω) × L2(Ω) and under the assumption (H1), the
problem (3.1) has a unique weak solution (ϕ, φ) ∈ Ds,2(Ω)×Ds,2(Ω).

Proof. For all (u, v) ∈ L2(Ω) × L2(Ω), we have g1(., u, v), g2(., u, v) ∈ L2(Ω) from
the assumption (H1).

To prove the existence and uniqueness of weak solution for the problem (3.1) we
will use the Lax-Milgram theorem.

First of all, we multiply the first and second equation of the problem (3.1) by
ψ1 ∈ Ds,2(Ω) and ψ2 ∈ Ds,2(Ω) respectively, integrate over Rn, use the definition
of the fractional Laplacian (−∆)s and obtain the following weak formulation of the
problem (3.1) 

(ϕ, φ) ∈ Ds,2(Ω)×Ds,2(Ω),

a1(ϕ,ψ1) = l1(ψ1) ∀ψ1 ∈ Ds,2(Ω),

a2(φ, ψ2) = l2(ψ2) ∀ψ2 ∈ Ds,2(Ω),

(3.2)

with
a1(., .) : Ds,2(Ω)×Ds,2(Ω) −→ R

(ϕ,ψ1) 7→ a1(ϕ,ψ1) = C(n, s)
∫∫

R2n

(ϕ(x)−ϕ(y))(ψ1(x)−ψ1(y))
|x−y|n+2s dydx,
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l1 : Ds,2(Ω) −→ R
ψ1 7→ l1(ψ1) =

∫
Ω
tf1(x)ψ1dx−

∫
Ω
tg1(x, u(x), v(x))ψ1dx,

a2(., .) : Ds,2(Ω)×Ds,2(Ω) −→ R
(φ, ψ2) 7→ a2(φ, ψ2) = C(n, s)

∫∫
R2n

(φ(x)−φ(y))(ψ2(x)−ψ2(y))
|x−y|n+2s dydx,

l2 : Ds,2(Ω) −→ R
ψ2 7→ l2(ψ2) =

∫
Ω
tf2(x)ψ2dx−

∫
Ω
tg2(x, u(x), v(x))ψ2dx.

Let us prove that the bilinear forms a1(., .) and a2(., .) are continuous and co-
ercives in Ds,2(Ω)×Ds,2(Ω). In addition, we prove that the linear forms l1 and l2
are continuous.

Using the Cauchy-Schwarz inequality, we have

|a1(ϕ,ψ1)| =
∣∣∣∣C(n, s)

∫∫
R2n

(ϕ(x)− ϕ(y))(ψ1(x)− ψ1(y))

|x− y|n+2s
dydx

∣∣∣∣
≤ C(n, s)

∫∫
R2n

|ϕ(x)− ϕ(y)‖ψ1(x)− ψ1(y)|
|x− y|n+2s

dydx

≤ C(n, s)‖ϕ‖Ds,2(Ω)‖ψ1‖Ds,2(Ω),

hence the bilinear form a1(., .) is continuous.

Applying the Cauchy-Schwarz inequality and Proposition (2.1), we obtain

|l1 (ψ1)| =
∣∣∣∣∫

Ω

tf1(x)ψ1dx−
∫

Ω

tg1(x, u(x), v(x))ψ1dx

∣∣∣∣
≤ ‖f1‖L2(Ω) ‖ψ1‖L2(Ω) + ‖g1(., u, v)‖L2(Ω) ‖ψ1‖L2(Ω)

≤
[
‖f1‖L2(Ω) + ‖g1(., u, v)‖L2(Ω)

]
‖ψ1‖L2(Ω)

≤ cemb
[
‖f1‖L2(Ω) + ‖g1(., u, v)‖L2(Ω)

]
‖ψ1‖Ds,2(Ω) ,

therfore l1 is continuous.

Similar to the calculus of a1(., .) and l1, we can obtain that a2(., .) and l2 are con-
tinuous.

Moreover

a1(ψ1, ψ1) =C(n, s)

∫∫
R2n

(ψ1(x)− ψ1(y))(ψ1(x)− ψ1(y))

|x− y|n+2s
dydx

= C(n, s)

∫∫
R2n

(ψ1(x)− ψ1(y))2

|x− y|n+2s
dydx

= C(n, s)‖ψ1‖2Ds,2(Ω),

thus, a1(., .) is coercive.

a2(ψ2, ψ2) =C(n, s)

∫∫
R2n

(ψ2(x)− ψ2(y))(ψ2(x)− ψ2(y))

|x− y|n+2s
dydx

= C(n, s)

∫∫
R2n

(ψ2(x)− ψ2(y))2

|x− y|n+2s
dydx

= C(n, s)‖ψ2‖2Ds,2(Ω),

hence, a2(., .) is coercive.

Consequently, we may apply the Lax-Milgram theorem and we conclude that the
problem (3.1) has a unique weak solution (ϕ, φ) ∈ Ds,2(Ω)×Ds,2(Ω).

�
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According to the previous lemma, we can define the following map noted A by

A : [0, 1]× L2(Ω)× L2(Ω) −→ Ds,2(Ω)×Ds,2(Ω)

(t, u, v) 7→ A(t, u, v) = (ϕ, φ),

where (ϕ, φ) is a weak solution to the problem (3.1).

(u, v) is a weak solution for the problem (1.1) if and only if (u, v) is a solution
to the following problem {

(u, v) ∈ L2(Ω)× L2(Ω),

(u, v) = A(1, u, v).
(3.3)

We will prove using the Leray-Schauder degree that the problem (3.3) has at least
one solution.

4. Proof of main result

This section is devoted to prove our main result, using some lemmas which give
results about the conditions of the Leray-Schauder degree method.

Firstly, we want to construct a ball which contains any possible solution, this is
what gives us the following lemma.

Lemma 4.1 (Priori estimate). Under the assumption (H2), there exists R > 0,
∀(u, v) ∈ L2(Ω)× L2(Ω) such that{

A(t, u, v) = (u, v)
t ∈ [0, 1], (u, v) ∈ L2(Ω)× L2(Ω)

}
⇒ ‖(u, v)‖L2(Ω)×L2(Ω) < R+ 1.

Proof. Let A(t, u, v) = (ϕ, φ) = (u, v), we obtain (−∆)su(x) + tg1(x, u(x), v(x)) = tf1(x) in Ω,
(−∆)sv(x) + tg2(x, u(x), v(x)) = tf2(x) in Ω,
u = v = 0 on Rn\Ω.

(4.1)

Let us multiply the first and second equation in (4.1) by u(x) and v(x) respectively,
integrate over Rn and obtain{
C(n, s)

∫∫
R2n

|u(x)−u(y)|2
|x−y|n+2s dydx = t

∫
Ω
f1(x)u(x)dx− t

∫
Ω
g1(x, u(x), v(x))u(x)dx,

C(n, s)
∫∫

R2n

|v(x)−v(y)|2
|x−y|n+2s dydx = t

∫
Ω
f2(x)v(x)dx− t

∫
Ω
g2(x, u(x), v(x))v(x)dx.

Applying the assumption (H2) and the Cauchy-Schwarz inequality, we have

{
C(n, s)

∫∫
R2n

|u(x)−u(y)|2
|x−y|n+2s dydx ≤ ‖f1‖L2(Ω)‖u‖L2(Ω),

C(n, s)
∫∫

R2n

|v(x)−v(y)|2
|x−y|n+2s dydx ≤ ‖f2‖L2(Ω)‖v‖L2(Ω),

and the proposition 2.1 implies that{
C(n,s)
c2emb

‖u‖2L2(Ω) ≤ ‖f1‖L2(Ω)‖u‖L2(Ω),
C(n,s)
c2emb

‖v‖2L2(Ω) ≤ ‖f2‖L2(Ω)‖v‖L2(Ω).
(4.2)

Adding the two inequalities of (4.2), we get

‖(u, v)‖L2(Ω)×L2(Ω) ≤
c2emb
C(n, s)

‖f1‖L2(Ω) +
c2emb
C(n, s)

‖f2‖L2(Ω).
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If we set R =
c2emb

C(n,s)‖f1‖L2(Ω) +
c2emb

C(n,s)‖f2‖L2(Ω), we obtain

‖(u, v)‖L2(Ω)×L2(Ω) < R+ 1.

We deduce that there isn’t any solution (u, v) for the equation A(t, u, v) = (u, v)
in the boundary of BR+1 = {(u, v) ∈ L2(Ω)× L2(Ω); ‖(u, v)‖L2(Ω)×L2(Ω) < R + 1}
and that’s for all t ∈ [0, 1]. �

Lemma 4.2. Under the assumption (H1),
{
A(t, u, v), t ∈ [0, 1], (u, v) ∈ B̄R+1

}
is

relatively compact in L2(Ω)× L2(Ω).

Proof. Let (tn)∈N ⊂ [0, 1] and {(un, vn)}n∈N ⊂ B̄R+1. So using the assumption
(H1), the sequences {g1(., un, vn)}n∈N and {g2(., un, vn)}n∈N are bounded in L2(Ω).
Firstly, setting A(tn, un, vn) = (ϕn, φn), we get (−∆)sϕn(x) + tng1(x, un(x), vn(x)) = tnf1(x) in Ω,

(−∆)sφn(x) + tng2(x, un(x), vn(x)) = tnf2(x) in Ω,
ϕn = φn = 0 on Rn\Ω.

(4.3)

As in the previous proof of the lemma 4.1, we multiply the first and second equation
in the problem (4.3) by ϕn(x) and φn(x) respectively, integrate over Rn, apply the
Cauchy-Schwarz inequality and obtain{

C(n, s)
∫∫

R2n

|ϕn(x)−ϕn(y)|2
|x−y|n+2s dydx ≤ ‖f1‖L2(Ω)‖ϕn‖L2(Ω) + ‖g1(., un, vn)‖L2(Ω)‖ϕn‖L2(Ω),

C(n, s)
∫∫

R2n

|φn(x)−φn(y)|2
|x−y|n+2s dydx ≤ ‖f2‖L2(Ω)‖φn‖L2(Ω) + ‖g2(., un, vn)‖L2(Ω)‖φn‖L2(Ω).

Then, using the fact that {g1(., un, vn)}n∈N and {g2(., un, vn)}n∈N are bounded in
L2(Ω) and the proposition 2.1, we obtain{

‖ϕn‖2Ds,2(Ω) ≤ cemb

C(n,s) [‖f1‖L2(Ω) +M1]‖ϕn‖Ds,2(Ω),

‖φn‖2Ds,2(Ω) ≤ cemb

C(n,s) [‖f2‖L2(Ω) +M2]‖φn‖Ds,2(Ω).
(4.4)

By simplification and adding the two inequalities of (4.4), we arrive at

‖(ϕn, φn)‖Ds,2(Ω)×Ds,2(Ω) ≤
cemb
C(n, s)

[‖f1‖L2(Ω) +M1] +
cemb
C(n, s)

[‖f2‖L2(Ω) +M2].

Then,

‖(ϕn, φn)‖Ds,2(Ω)×Ds,2(Ω) ≤ K,
where K = cemb

C(n,s) [‖f1‖L2(Ω) +M1] + cemb

C(n,s) [‖f2‖L2(Ω) +M2].

Therfore {(ϕn, φn)}n∈N is bounded in Ds,2(Ω)×Ds,2(Ω), using the compact embed-
ding theorem (proposition 2.2), we deduce that there is a subsequence of {(ϕnk

, φnk
)}k∈N

which converges to (ϕ, φ) strongly in L2(Ω)× L2(Ω). �

Lemma 4.3. Under the assumption (H1), A is continuous from [0, 1] × L2(Ω) ×
L2(Ω) into L2(Ω)× L2(Ω).

Proof. Let {(tn, un, vn)}n∈N ⊂ [0, 1]×L2(Ω)×L2(Ω) be a sequence which converges
to (t, u, v) in [0, 1] × L2(Ω) × L2(Ω) when n → +∞. We pose for all n ∈ N that
A(tn, un, vn) = (ϕn, φn) and A(t, u, v) = (ϕ, φ), we obtain (−∆)sϕn(x) + tng1(x, un(x), vn(x)) = tnf1(x) in Ω,

(−∆)sφn(x) + tng2(x, un(x), vn(x)) = tnf2(x) in Ω,
ϕn = φn = 0 on Rn\Ω,
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and  (−∆)sϕ(x) + tg1(x, u(x), v(x)) = tf1(x) in Ω,
(−∆)sφ(x) + tg2(x, u(x), v(x)) = tf2(x) in Ω,
ϕ = φ = 0 on Rn\Ω.

Making the difference between the two previous systems, we get{
(−∆)s(ϕn(x)− ϕ(x)) = tg1(x, u(x), v(x))− tng1(x, un(x), vn(x)) + (tn − t)f1(x),
(−∆)s(φn(x)− φ(x)) = tg2(x, u(x), v(x))− tng2(x, un(x), vn(x) + (tn − t)f2(x).

As in the proof of the lemma 4.1, we multiply the first and second equation of the
previous system by (ϕn(x) − ϕ(x)) and (φn(x) − φ(x)), integrate over Rn, apply
the Cauchy-Schwarz inequality and the proposition 2.1 and obtain{
‖ϕn(x)− ϕ(x)‖L2(Ω) ≤ c2emb

C(n,s) [‖tg1(x, u(x), v(x))− tng1(x, un(x), vn(x))‖L2(Ω) + |tn − t|‖f1‖L2(Ω)],

‖φn(x)− φ(x)‖L2(Ω) ≤ c2emb

C(n,s) [‖tg2(x, u(x), v(x))− tng2(x, un(x), vn(x))‖L2(Ω) + |tn − t|‖f2‖L2(Ω)].

We have that (tn)n∈N converges to t and {(un, vn)}n∈N converges to (u, v) in
L2(Ω) × L2(Ω) when n → +∞ and from the assumption (H1), we deduce that
{g1(., un, vn)}n∈N, {g2(., un, vn)}n∈N converge respectively to g1(., u, v), g2(., u, v).
Therfore {(ϕn, φn)}n∈N converges to (ϕ, φ) in L2(Ω)×L2(Ω). We conclude that A
is continuous from [0, 1]× L2(Ω)× L2(Ω) into L2(Ω)× L2(Ω). �

Proof of the main result. We have according to the lemma 4.1 that there is no
solution of the equation Id(u, v)−A(t, u, v) = 0 in the boundary of the ball BR+1

and the lemma 4.2 gives us that
{
A(t, u, v), t ∈ [0, 1], (u, v) ∈ B̄R+1

}
is relatively

compact in L2(Ω) × L2(Ω). Furthermore, according to the lemma 4.3, the map A
is continuous from [0, 1] × L2(Ω) × L2(Ω) into L2(Ω) × L2(Ω). Consequently, we
can define the degree d(Id − A(t, ·, ·), BR+1, 0) and with the homotopy invariance
property we have

d(Id−A(t, ·, ·), BR+1, 0) = d(Id−A(0, ·, ·), BR+1, 0) = d(Id,BR+1, 0) = 1 6= 0,

for all t ∈ [0, 1].

Therfore, there exists (u, v) ∈ BR+1 such that

Id(u, v)−A(1, u, v) = 0,

which is equivalent to

A(1, u, v) = (u, v),

and proves that the problem (1.1) has at least one weak solution (u, v) ∈ Ds,2(Ω)×
Ds,2(Ω). �

Conclusion

We can say that the theory of topological degrees is an efficient tool to solve
nonlinear systems, not only elliptic, but also fractional. We hope in a future work
to solve other similar problems in spaces with variable exponents under adapted
conditions (growth, monotony, coercivity, ...) on the p-Laplacian fractional opera-
tor.
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