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CALDERON-REPRODUCING FORMULA FOR THE

CONTINUOUS WAVELET TRANSFORM RELATED TO THE

WEINSTEIN OPERATOR

KHALED HLEILI, MANEL HLEILI

Abstract. In this paper, we introduce the continuous wavelet transform as-
sociated with the Weinstein operator and we prove for this transform a repro-

ducing inversion formulas of Calderón’s type. Next, we study the extremal

functions associated to the continuous wavelet transform.

1. Introduction

We consider the Weinstein operator (see[1, 2]) defined on Rn×]0,+∞[ by

∆W =

n+1∑
j=1

∂2

∂x2
j

+
2α+ 1

xn+1

∂

∂xn+1
= ∆n + `α, α >

−1

2
,

where ∆n is the Laplacian operator in Rn and `α the Bessel operator with respect
to the variable xn+1 defined by

`α =
∂2

∂x2
n+1

+
2α+ 1

xn+1

∂

∂xn+1
, α >

−1

2
.

For n > 2, the operator ∆W is the Laplace-Beltrami operator on the Riemanian
space Rn×]0,+∞[ equipped with the metric [1]

ds2 = x
2(2α+1)
n−1

n+1

n+1∑
i=1

dx2
i .

The Weinstein operator ∆W has several applications in pure and applied Math-
ematics especially in Fluid Mechanics (see e.g. [3, 18]). The harmonic analysis
associated with the Weinstein operator is studied by Ben Nahia and Ben Salem
(see [1, 2]). In particular the authors have introduced and studied the generalized
Fourier transform associated with the Weinstein operator. This transform is called
the Weinstein transform. Our investigation in the present work consists to study
the extremal functions for wavelet transforms associated with the Weinstein oper-
ator; this transform was first introduced by Grossmann and Morlet [7] and became
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an active field of research, due to the fact that wavelet analysis has applications in
the diverse subjects of communication, seismic data, signal and image processing
[4, 5].
We denote by Lp(dνα), 1 6 p 6 +∞, the Lebesgue space constituted of measurable
functions f on Rn+1

+ such that

‖f‖να,p =

(∫
Rn+1

+

|f(x)|pdνα(x)

) 1
p

< +∞, 1 6 p < +∞,

‖f‖∞,p = ess sup
x∈Rn+1

+

|f(x)| < +∞,

where dνα is the measure defined on Rn+1
+ by

dνα(x) =
x2α+1
n+1

(2π)
n
2 2αΓ(α+ 1)

dx.

For f ∈ L1(dνα) the Weinstein transform is defined by

∀λ ∈ Rn+1
+ , FW (f)(λ) =

∫
Rn+1

+

f(x)Λ(−x, λ)dνα(x),

where Λ(−x, λ) denotes the Weinstein kernel.
The Weinstein translation operators τx, x = (x′, xn+1) ∈ Rn+1

+ are defined on
L2(dνα) by

FW (τx(f))(λ) = Λ(λ, x)FW (f)(λ), x, λ ∈ Rn+1
+ . (1.1)

(For more details see the next section).
Let ψ be an admissible wavelet in L2(dνα). The generalized continuous wavelet
transform Tψ associated with the Weinstein operator is defined for a function f in

Lp(dνα), p = 1, 2 and for all (a, x) ∈]0,+∞[×Rn+1
+ by

Tψ(f)(a, x) =

∫
Rn+1

+

f(y)ψa,x(y)dνα(y).

where

ψa,x(y) = τ−x(aα+n+2
2 ψ(a.))(y), y ∈ Rn+1

+ .

We study some of its properties, and we prove reproducing inversion formulas for
this transform.
Let σ be a positive function on Rn+1

+ satisfying :

σ(x) > 1, x ∈ Rn+1
+ (1.2)

and
1

σ
∈ L1(dνα). (1.3)

We define the space Ωσ(Rn+1
+ ), by

Ωσ(Rn+1
+ ) = {f ∈ L2(dνα),

√
σFW (f) ∈ L2(dνα)}. (1.4)

The space Ωσ(Rn+1
+ ) provided with inner product

〈f, g〉σ =

∫
Rn+1

+

σ(x)FW (f)(x)FW (g)(x)dνα(x), (1.5)
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and the norm ‖f‖σ =
√
〈f, f〉σ, is a Hilbert space.

We Define the measure γα on ]0,+∞[×Rn+1
+ by

dγα(a, x) = a2α+n+1da⊗ dνα(x),

and Lp(dγα), p ∈ [1,+∞], the Lebesgue space on ]0,+∞[×Rn+1
+ with respect to

the measure γα with the Lp-norm denoted by ‖.‖γα,p.
Building on the ideas of Matsuura et al. [9], Saitoh [11, 13] and Yamada et al. [19],
and using the theory of reproducing kernels [10], we give best approximation of
the mapping Tψ on the Hilbert space Ωσ(Rn+1

+ ). More precisely, for all ρ > 0, h ∈
L2(dγα), the infimum

inf
f∈Ωσ

{ρ‖f‖2σ + ‖h− Tψ(f)‖2γα,2},

is attained at one function f∗ρ,h, called the extremal function and given by

f∗ρ,h(y) =
1

aα+n+2
2

∫ +∞

0

∫
Rn+1

+

∫
Rn+1

+

h(a, x)

(
FW (ψ)(λa )Λ(−λ, y)Λ(λ, x)

Cψ + ρσ(λ)

)
× dνα(λ)dγα(a, x),

The extremal functions are studied in several directions [14, 15].
This paper is organized as follows, in the second section we recall some harmonic
analysis results related to the Weinstein operator and its associated Fourier trans-
form FW . In the third section we define and study the continuous wavelet trans-
form Tψ and we prove an improved version of the so-called Calderón’s reproducing
formula. The last section of this paper is devoted to give an application of the
theory of reproducing kernels to the Tikhonov regularization, which gives the best
approximation of the wavelet transform Tψ.

2. Preliminaries

In order to set up basic and standard notation we briefly overview the Weinstein
operator and related harmonic analysis. Main references are [1, 2].

In the following we denote by
• Rn+1

+ = Rn × [0,+∞[.

• x = (x1, ..., xn, xn+1) = (x′, xn+1) ∈ Rn+1
+ .

• −x = (−x′, xn+1)
• Ce(Rn+1), the space of continuous functions on Rn+1, even with respect to the
last variable.
• Se(Rn+1) the Schwartz space of rapidly decreasing functions on Rn+1, even with
respect to the last variable.
We consider the Weinstein operator ∆W defined on Rn+1

+ by

∆W =

n+1∑
j=1

∂2

∂x2
j

+
2α+ 1

xn+1

∂

∂xn+1
, α >

−1

2
.

Then

∆W = ∆n + `α,
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where ∆n is the Laplacian operator in Rn and `α the Bessel operator with respect
to the variable xn+1 defined by

`α =
∂2

∂x2
n+1

+
2α+ 1

xn+1

∂

∂xn+1
.

The Weinstein kernel Λ is given by

∀(x, λ) ∈ Rn+1 × Cn+1, Λ(x, λ) = jα(λn+1xn+1)ei〈λ
′,x′〉,

where jα is the spherical Bessel function defined by

jα(z) = Γ(α+ 1)

+∞∑
k=0

(−1)k

k!Γ(α+ 1 + k)
(
z

2
)2k, z ∈ C.

The Weinstein kernel satisfies the following properties:
(i) For all z, t ∈ Cn+1, we have

Λ(z, t) = Λ(t, z), Λ(z, 0) = 1 and Λ(λz, t) = Λ(z, λt),∀λ ∈ C.

(ii)

∀x, y ∈ Rn+1, |Λ(x, y)| 6 1. (2.1)

Definition 2.1. The Weinstein transform is given for f ∈ L1(dνα) by

∀λ ∈ Rn+1
+ , FW (f)(λ) =

∫
Rn+1

+

f(x)Λ(−x, λ)dνα(x).

Some basic properties of this transform are as follows. For the proofs, we refer
[1, 2].
• For every f ∈ L1(dνα), the function FW (f) is continuous on Rn+1

+ and we have

‖FW (f)‖να,∞ 6 ‖f‖να,1.

• Let f ∈ L1(dνα) such that FW (f) ∈ L1(dνα), then for almost every x ∈ Rn+1
+

f(x) =

∫
Rn+1

+

FW (f)(λ)Λ(λ, x)dνα(λ). (2.2)

• For f ∈ Se(Rn+1), if we define

FW (f)(y) = FW (f)(−y),

then

FWFW = FWFW = Id.

• For all f, g ∈ Se(Rn+1), we have∫
Rn+1

+

f(x)g(x)dνα(x) =

∫
Rn+1

+

FW (f)(λ)FW (g)(λ)dνα(λ). (2.3)

• The Weinstein transform FW (f) is a topological isomorphism from Se(Rn+1)
onto itself and for all f ∈ Se(Rn+1)∫

Rn+1
+

|f(x)|2dνα(x) =

∫
Rn+1

+

|FW (f)(λ)|2dνα(λ). (2.4)
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The translation operator τx, x = (x′, xn+1) ∈ Rn+1
+ associated with the Wein-

stein operator ∆W is defined for f ∈ Ce(Rn+1) which is even with respect to the
last variable and for all y = (y′, yn+1) ∈ Rn+1

+ by

τx(f)(y) =
Γ(α+ 1)
√
πΓ(α+ 1

2 )

∫ π

0

f(x′+y′,
√
x2
n+1 + y2

n+1 + 2xn+1yn+1 cos θ) sin2α(θ)dθ.

In particular for all x, y ∈ Rn+1
+ we have τx(f)(y) = τy(f)(x) and τ0(f) = f .

Moreover for all Lp(dνα), 1 6 p 6 +∞, the function x 7−→ τx(f) belongs to Lp(dνα)
and we have

‖τx(f)‖να,p 6 ‖f‖να,p. (2.5)

By using the generalized translation, we define the generalized convolution product
f ∗W g of functions f, g ∈ L1(dνα) as follows

f ∗W g(x) =

∫
Rn+1

+

τ−x(f̌)(y)g(y)dνα(y), x ∈ Rn+1
+ ,

where −x = (−x′, xn+1) and f̌(y) = f̌(y′, yn+1) = f(−y′, yn+1).
This convolution is commutative and associative. Then (see e.g. [1]), if 1 6 p, q, r 6

+∞ are such
1

p
+

1

q
− 1

r
= 1, the function f ∗W g belongs to Lr(dνα) and we have

the following Young’s inequality

‖f ∗W g‖να,r 6 ‖f‖να,p‖g‖να,q.

This then allows us to define f ∗W g for f ∈ Lp(dνα) and g ∈ Lq(dνα). Moreover
for f ∈ L1(dνα) and g ∈ Lq(dνα), q = 1 or 2, we have

FW (f ∗W g) = FW (f)FW (g).

Moreover, if f and g are in L2(dνα), then f ∗W g belongs to Ce,0(Rn+1) consisting
of continuous functions h on Rn+1, even with respect to the last variable, such that

lim
|x|−→+∞

h(x) = 0 and we have

f ∗W g = F−1
W (FW (f)FW (g)).

Thus, for every f, g ∈ L2(dνα), the function f ∗W g belongs to L2(dνα) if and only
if FW (f)FW (g) belongs to L2(dνα) and in this case, we have

FW (f ∗W g) = FW (f)FW (g).

3. Generalized continuous Wavelet transform associated with the
Weinstein operator

In this section we recall some results introduced and proved by Gasmi, Ben
Mohamed and Bettaibi in [6].

Definition 3.1. Let ψ ∈ L2(dνα) be a nonzero function, we say that ψ is an
admissible wavelet associated to the Weinstein operator if

0 < Cψ =

∫ +∞

0

∣∣FW (ψ)(
λ

a
)
∣∣2 da
a
< +∞. (3.1)
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Let a be a nonnegative real number. The dilation operator Da of a measurable
function ψ, is defined by

Da(ψ)(x) = aα+n+2
2 ψ(ax), x ∈ Rn+1

+ .

Then, we have immediately the following properties:
(1) For all ψ ∈ L2(dνα)

‖Da(ψ)‖να,2 = ‖ψ‖να,2.
(2) For all x ∈ Rn+1

+

Daτx = τ x
a
Da.

(3)

FWDa = D 1
a
FW . (3.2)

Proposition 3.2. For all ψ ∈ Lp(dνα), 1 6 p 6 +∞ and (a, x) ∈]0,+∞[×Rn+1
+ ,

the function ψa,x defined by

ψa,x(y) = τ−x(Da(ψ))(y), y ∈ Rn+1
+ , (3.3)

belongs to Lp(dνα) and we have

‖ψa,x‖να,p 6 a
(α+n+2

2 )− 2α+n+2
p ‖ψ‖να,p. (3.4)

Proof. The case p = +∞ is trivial. Let 1 6 p < +∞, from (2.5), we get

‖ψa,x‖pνα,p = ‖τ−x(Daψ)‖pνα,p

6
∫
Rn+1

+

|Da(ψ)(y)|pdνα(y)

= ap(α+n+2
2 )−(2α+n+2)‖ψ‖pνα,p.

�

Definition 3.3. Let ψ be an admissible wavelet in L2(dνα). The generalized
continuous wavelet transform Tψ associated with the Weinstein operator is defined

for a function f in Lp(dνα), p = 1, 2 and for all (a, x) ∈]0,+∞[×Rn+1
+ by

Tψ(f)(a, x) =

∫
Rn+1

+

f(y)ψa,x(y)dνα(y). (3.5)

We have the following expressions of the transform Tψ
(i) For every f ∈ Lp(dνα), p = 1, 2,

Tψ(f)(a, x) = f ∗Da(ψ̌)(x). (3.6)

(ii) For every f ∈ L2(dνα)

Tψ(f)(a, x) = 〈f, ψa,x〉να . (3.7)

Theorem 3.4. Let ψ be an admissible wavelet in L2(dνα). We have
(i) Palncherel’s formula for Tψ: For every f ∈ Ωσ(Rn+1

+ ),∫
Rn+1

+

|f(x)|2dνα(x) =
1

Cψ

∫ +∞

0

∫
Rn+1

+

|Tψ(f)(a, x)|2dγα(a, x), (3.8)

where Ωσ(Rn+1
+ ) is the space defined by relation (1.4).
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Lemma 3.5. Let ψ be an admissible wavelet in L2(dνα). For every f ∈ Ωσ(Rn+1
+ ),

the function Tψ(f) belongs to Lp(dγα), p ∈ [2,+∞] and we have

‖Tψ(f)‖γα,p 6 C
1
p

ψ ‖ψ‖
1− 2

p

να,2
‖f‖να,2.

Proof. • For p = 2, the Plancherel theorem for the continuous wavelet transform
(3.8) gives

‖Tψ(f)‖γα,2 =
√
Cψ‖f‖να,2.

• For p = +∞, from relations (3.4) and (3.7), we have

|Tψ(f)(a, x)| 6 ‖ψa,x‖να,2‖f‖να,2
6 ‖ψ‖να,2‖f‖να,2,

so,
‖Tψ(f)‖γα,∞ 6 ‖ψ‖να,2‖f‖να,2.

We get the result from the Riesz-Thorin theorem [16, 17]. �

Lemma 3.6. Let ψ be an admissible wavelet in L2(dνα) such that FW (ψ) ∈
L∞(dνα). Then, for every 0 < ε < δ <∞, the function

Kε,δ(λ) =
1

Cψ

∫ δ

ε

|FW (ψ)(
λ

a
)|2 da

a
,

belongs to L2(dνα) and we have

‖Kε,δ‖2να,2 6 ln(
δ

ε
)
δ2α+n+2 − ε2α+n+2

C2
ψ(2α+ n+ 2)

‖ψ‖2να,2‖FW (ψ)‖2να,∞.

Proof. Using Hölder’s inequality for the measure
da

a
, we get for every λ ∈ Rn+1

+

|Kε,δ(λ)|2 6 1

C2
ψ

ln(
δ

ε
)

∫ δ

ε

|FW (ψ)(
λ

a
)|4 da

a
.

By a change of variable λ = µa, we obtain

‖Kε,δ‖2να,2 6
1

C2
ψ

ln(
δ

ε
)

∫ δ

ε

[∫
Rn+1

+

|FW (ψ)(
λ

a
)|4dνα(λ)

]
da

a

6
1

C2
ψ

ln(
δ

ε
)
δ2α+n+2 − ε2α+n+2

2α+ n+ 2
‖FW (ψ)‖2να,2‖FW (ψ)‖2να,∞.

Now, relation (2.4) gives the desired result. �

In the following we establish reproducing inversion formula of Calderón’s type
for the mapping Tψ.

Theorem 3.7. Calderón’s formula. Let ψ be an admissible wavelet in L2(dνα)
such that FW (ψ) ∈ L∞(dνα). Then for every f ∈ L2(dνα) and 0 < ε < δ < ∞,
the function

fε,δ(s) =
1

Cψ

∫ δ

ε

∫
Rn+1

+

Tψ(f)(a, x)ψa,x(s)dγα(a, x),

belongs to L2(dνα) and satisfies

lim
(ε,δ)−→(0+,+∞)

‖fε,δ − f‖να,2 = 0. (3.9)
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Proof. By (1.1), (2.3), (3.3) and (3.6), we get∫
Rn+1

+

Tψ(f)(a, x)ψa,x(s)dνα(x)

=

∫
Rn+1

+

f ∗W Da(ψ̌)(x)τ−s(Da(ψ̌))(x)dνα(x)

=

∫
Rn+1

+

FW (f)(λ)|FW (Da(ψ))(λ)|2Λ(λ, s)dνα(λ).

Now, using Fubini-Tonnelli’s theorem, (2.1), (3.2), Lemma 3.6 and Hölder’s in-
equality, we have

1

Cψ

∫ δ

ε

∣∣∣∣∣
∫
Rn+1

+

Tψ(f)(a, x)ψa,x(s)dνα(x)

∣∣∣∣∣ a2α+n+1da

6
∫
Rn+1

+

|FW (f)(λ)|

(
1

Cψ

∫ δ

ε

|FW (ψ)(
λ

a
)|2 da

a

)
dνα(λ)

=

∫
Rn+1

+

|FW (f)(λ)|Kε,δ(λ)dνα(λ)

6
ln( δε )

√
δ2α+n+2 − ε2α+n+2

Cψ
√

2α+ n+ 2
‖f‖να,2‖ψ‖να,2‖FW (ψ)‖να,∞.

Then, from Fubini’s theorem and (2.2), we obtain

fε,δ(s) =

∫
Rn+1

+

FW (f)(λ)Kε,δ(λ)Λ(λ, s)dνα(λ)

=F−1
W (FW (f)Kε,δ)(s).

On the other hand, from relation (3.1), the function Kε,δ belongs to L∞(dνα), from
this fact and (2.4), the function fε,δ ∈ L2(dνα), and we have

FW (fε,δ) = FW (f)Kε,δ.
Using the previous result and (2.4), we get

‖fε,δ − f‖2να,2 =

∫
Rn+1

+

|FW (f)(λ)|2(Kε,δ(λ)− 1)2dνα(λ).

The relation (3.9) follows from

lim
(ε,δ)−→(0+,+∞)

Kε,δ(λ) = 1,

and the dominated convergence theorem. �

4. The extremal function related to the continuous wavelet
transform

The main result of this section can be stated as follows.

Proposition 4.1. Let ψ be an admissible wavelet in L2(dνα) . For every f ∈
Ωσ(Rn+1

+ ), the operators Tψ are bounded linear operators from Ωσ(Rn+1
+ ) into Lp(dγα), p ∈

[2,+∞], and we have

‖Tψ(f)‖γα,p 6 C
1
p

ψ ‖ψ‖
1− 2

p

να,2
‖f‖σ.
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Proof. Let f ∈ Ωσ(Rn+1
+ ). According to Lemma 3.5, the operator Tψ(f) belongs to

Lp(dγα), p ∈ [2,+∞], and

‖Tψ(f)‖γα,p 6 C
1
p

ψ ‖ψ‖
1− 2

p

να,2
‖f‖να,2.

By (1.2), we have ‖f‖2σ >
∫
Rn+1

+

|FW (f)(x)|2dνα(x), and (2.4) gives the result. �

Definition 4.2. Let ρ > 0 and let ψ be an admissible wavelet in L2(dνα), we
denote by 〈, 〉σ,ρ the inner product defined on the space Ωσ(Rn+1

+ ) by

〈f, g〉σ,ρ =

∫
Rn+1

+

(Cψ + ρσ(x)) FW (f)(x)FW (g)(x)dνα(x), (4.1)

and the norm ‖f‖σ,ρ =
√
〈f, f〉σ,ρ.

Proposition 4.3. Let ψ be an admissible wavelet in L2(dνα). Then the Hilbert
space (Ωσ(Rn+1

+ ), 〈., .〉σ,ρ) has the following reproducing Kernel

Kσ,ρ(x, y) =

∫
Rn+1

+

Λ(λ, x)Λ(−λ, y)

Cψ + ρσ(λ)
dνα(λ), (4.2)

that is
(i) For every y ∈ Rn+1

+ , the function x 7−→ Kσ,ρ(x, y) belongs to Ωσ(Rn+1
+ ).

(ii) For every f ∈ Ωσ(Rn+1
+ ), and y ∈ Rn+1

+ , we have the reproducing property,

〈f,Kσ,ρ(., y)〉σ,ρ = f(y).

Proof. From relations (2.1), (1.2) and (1.3), the function

Ψy : λ 7−→ Λ(−λ, y)

Cψ + ρσ(λ)
,

belongs to L1(dνα)∩L2(dνα). Then, the function Kσ,ρ is well defined and by (2.2),
we have

Kσ,ρ(x, y) = F−1
W (Ψy)(x), x ∈ Rn+1

+ .

By (2.4), it follows that the function Kσ,ρ(., y), belongs to L2(dνα) and we have

FW (Kσ,ρ(., y))(x) = Ψy(x), x ∈ Rn+1
+ . (4.3)

Then by (2.1), (1.3) and (4.3), we obtain

‖Kσ,ρ(., y)‖2σ 6
1

ρ2
‖ 1

σ
‖να,1. (4.4)

This proves that for every y ∈ Rn+1
+ , the function Kσ,ρ(., y) belongs to Ωσ(Rn+1

+ ).
(ii) From (4.1) and (4.3), we obtain

〈f,Kσ,ρ(., y)〉σ,ρ =

∫
Rn+1

+

FW (f)(λ)Λ(λ, y)dνα(λ).

On the other hand, from relation (1.3) the function 1√
σ

belongs to L2(dνα). Hence

for every f ∈ Ωσ(Rn+1
+ ), the function FW (f) belongs to L1(dνα). From this result

and (2.2), we obtain

〈f,Kσ,ρ(., y)〉σ,ρ = f(y).

This completes the proof of the proposition. �
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Theorem 4.4. Let ψ be an admissible wavelet in L2(dνα) and a > 0, for every
h ∈ L2(dγα) and for every ρ > 0, there exists a unique function f∗ρ,h, where the
infimum

inf
f∈Ωσ

{ρ‖f‖2σ + ‖h− Tψ(f)‖2γα,2}, (4.5)

is attained. Moreover the extremal function f∗ρ,h is given by

f∗ρ,h(y) =

∫ +∞

0

∫
Rn+1

+

h(a, x)Vσ,ρ(x, y)dγα(a, x),

where Vσ,ρ(x, y) =
1

aα+n+2
2

∫
Rn+1

+

FW (ψ)(λa )Λ(−λ, y)Λ(λ, x)

Cψ + ρσ(λ)
dνα(λ).

Proof. The existence and unicity of the extremal function f∗ρ,h satisfying relation

(4.5) is given by [8, 9, 12]. On the other hand from Propositions 4.1 and 4.3, we
have

f∗ρ,h(y) = 〈h, Tψ(Kσ,ρ(., y))〉γα , (4.6)

where 〈, 〉γα denoted the inner product of L2(dγα), and Kσ,ρ is the kernel given by
relation (4.2). From (2.3), (1.1), (3.3), (3.5) and (4.3), we obtain

Tψ(Kσ,ρ(., y))(a, x) =

∫
Rn+1

+

FW (Kσ,ρ(., y))(s)FW (ψa,x)(s)dνα(s)

=

∫
Rn+1

+

Λ(s, x)Λ(−s, y)

Cψ + ρσ(s)
FW (Da(ψ))(s)dνα(s).

Now, using (3.2), we get

Tψ(Kσ,ρ(., y))(a, x) =
1

aα+n+2
2

∫
Rn+1

+

Λ(s, x)Λ(−s, y)

Cψ + ρσ(s)
FW (ψ)(

s

a
)dνα(s).

This clearly yields the result. �

Theorem 4.5. Let ρ > 0 and let ψ be an admissible wavelet in L2(dνα) and
Kσ,ρ(., y) ∈ L1(dνα). For every h ∈ L2(dγα), we have
(i)

|f∗ρ,h(y)| 6
√
Cψ

ρ
‖h‖γα,2‖

1

σ
‖

1
2
να,1

.

(ii)

f∗ρ,h(y) =

∫
Rn+1

+

Λ(x, y)

Cψ + ρσ(x)

×
(∫ +∞

0

FW (h(a, .))(x)FW (ψ)(
x

a
)aα+n

2 da

)
dνα(x).

(iii)

FW (f∗ρ,h)(x) =
1

Cψ + ρσ(x)

(∫ +∞

0

FW (h(a, .))(x)FW (ψ)(
x

a
)aα+n

2 da

)
.

(iv) ‖f∗ρ,h‖σ 6
√
Cψ

ρ
‖h‖γα,2.
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Proof. (i) According to Proposition 4.3, the function x 7−→ Kσ,ρ(x, y) belongs to

Ωσ(Rn+1
+ ). Now, using (4.6) and Proposition 4.1, we have

|f∗ρ,h(y)| 6 ‖h‖γα,2‖Tψ(Kσ,ρ(., y))‖γα,2
=
√
Cψ‖h‖γα,2‖Kσ,ρ(., y)‖σ.

Then, by (4.4), we obtain

|f∗ρ,h(y)| 6
√
Cψ

ρ
‖h‖γα,2‖

1

σ
‖

1
2
να,1

.

(ii) From relation (4.6), we have

f∗ρ,h(y) =

∫ +∞

0

∫
Rn+1

+

h(a, x)Tψ(Kσ,ρ(., y))(a, x)dγα(a, x).

Since ∫ +∞

0

∫
Rn+1

+

∣∣h(a, x)Tψ(Kσ,ρ(., y))(a, x)
∣∣dγα(a, x)

6 ‖h‖γα,2‖Tψ(Kσ,ρ(., y))‖γα,2.

On the other hand, the function x 7−→ Kσ,ρ(x, y) belongs to Ωσ(Rn+1
+ ) ∩ L1(dνα),

then by Fubini’s theorem, (2.3), (3.2), (3.6) and (4.3), we obtain

f∗ρ,h(y) =

∫ +∞

0

∫
Rn+1

+

h(a, x)Tψ(Kσ,ρ(., y))(a, x)dγα(a, x)

=

∫ +∞

0

∫
Rn+1

+

FW (h(a, .))(x)FW (Tψ(Kσ,ρ(., y))(a, .))(x)dνα(x)a2α+n+1da.

=

∫ +∞

0

∫
Rn+1

+

FW (h(a, .))(x)FW (Kσ,ρ(., y))(x)FW (Da(ψ̌))(x)dνα(x)a2α+n+1da.

=

∫ +∞

0

∫
Rn+1

+

Λ(x, y)FW (ψ)(xa )

aα+n+2
2 (Cψ + ρσ(x))

FW (h(a, .))(x)dνα(x)a2α+n+1da.

Using Hölder’s inequality, (1.2), (1.3) and (3.1), we have∫ +∞

0

∫
Rn+1

+

∣∣∣∣∣ Λ(x, y)FW (ψ)(xa )

aα+n+2
2 (Cψ + ρσ(x))

FW (h(a, .))(x)

∣∣∣∣∣ dνα(x)a2α+n+1da

6

√
Cψ

ρ
‖h‖γα,2‖

1

σ
‖

1
2
να,1

,

then, by Fubini’s theorem we deduce that

f∗ρ,h(y) =

∫
Rn+1

+

Λ(x, y)

Cψ + ρσ(x)

×
(∫ +∞

0

FW (h(a, .))(x)
FW (ψ)(xa )

aα+n+2
2

a2α+n+1da

)
dνα(x).
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(iii) The function,

x −→ 1

Cψ + ρσ(x)

(∫ +∞

0

FW (h(a, .))(x)FW (ψ)(
x

a
)aα+n

2 da

)
belongs to L1(dνα)∩

L2(dνα). Then from relation (2.2), we have

f∗ρ,h(y) = F−1
W

(
1

Cψ + ρσ(.)

(∫ +∞

0

FW (h(a, .))(.)FW (ψ)(
.

a
)aα+n

2 da

))
(y).

By (2.4), it follows that the function f∗ρ,h belongs to L2(dνα) and

FW (f∗ρ,h)(x) =
1

Cψ + ρσ(x)

(∫ +∞

0

FW (h(a, .))(x)FW (ψ)(
x

a
)aα+n

2 da

)
.

(iv) From Hölder’s inequality, (1.2) and (3.1), we have

|F (f∗ρ,h)(x)|2 6 1(
Cψ + ρσ(x)

)2 (∫ +∞

0

|FW (h(a, .))(x)|2a2α+n+1da

)
6

Cψ
ρ2σ(x)

(∫ +∞

0

|FW (h(a, .))(x)|2a2α+n+1da

)
,

thus, applying (1.5) and (2.4), we obtain ‖f∗ρ,h‖σ 6
√
Cψ

ρ
‖h‖γα,2.

This completes the proof of the theorem. �

Corollary 4.6. Let ρ > 0 and let ψ be an admissible wavelet in L2(dνα). For every
f ∈ Ωσ(Rn+1

+ )∩L1(dνα) and h = Tψ(f), the extremal function f∗ρ,Tψ(f) satisfies the

following properties

(i) FW (f∗ρ,Tψ(f))(x) =
CψFW (f)(x)

Cψ + ρσ(x)
.

(ii) ‖f∗ρ,Tψ(f)‖σ 6
Cψ
ρ
‖f‖σ.

Proof. Part (i) follows directly from (3.1), (3.2), (3.6) and Theorem 4.5 (iii).
Proposition 4.1 and Theorem 4.5 (iv) gives the result of (ii). �

Proposition 4.7. Let f ∈ Ωσ(Rn+1
+ ) ∩ L1(dνα) and ρ > 0. The extremal function

f∗ρ,Tψ(f) satisfies

lim
ρ−→0+

‖f∗ρ,Tψ(f) − f‖σ = 0.

Moreover, {f∗ρ,Tψ(f)}ρ>0 converges uniformly to f as ρ −→ 0+.

Proof. From Corollary 4.6 (i), we have

FW (f∗ρ,Tψ(f) − f)(x) =
−ρσ(x)

Cψ + ρσ(x)
FW (f)(x). (4.7)

Consequently,

‖f∗ρ,Tψ(f) − f‖
2
σ =

∫
Rn+1

+

ρ2σ3(x)(
Cψ + ρσ(x)

)2 |FW (f)(x)|2dνα(x).

Using the dominated convergence theorem and the fact that
ρ2σ3(x)(

Cψ + ρσ(x)
)2 |FW (f)(x)|2 6 σ(x)|FW (f)(x)|2,
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we deduce that

lim
ρ−→0+

‖f∗ρ,Tψ(f) − f‖σ = 0.

On the other hand, by relations (1.2) and (1.3), the function FW (f) ∈ L1(dνα) ∩
L2(dνα), then from (2.2) and (4.7), we have

f∗ρ,Tψ(f)(y)− f(y) =

∫
Rn+1

+

−ρσ(x)

Cψ + ρσ(x)
FW (f)(x)Λ(x, y)dνα(x).

Again, by dominated convergence theorem and the fact that

ρσ(x)

Cψ + ρσ(x)
|FW (f)(x)Λ(x, y)| 6 |FW (f)(x)|,

we deduce that

lim
ρ−→0+

‖f∗ρ,Tψ(f) − f‖να,∞ = 0.

Which ends the proof. �
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