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ON A UNIQUENESS CONDITION FOR CR FUNCTIONS ON
HYPERSURFACES

ABTIN DAGHIGHI

ABsTRACT. Let f be a smooth CR function on a smooth hypersurface M C
C™, such that f vanishes to infinite order along a C'°°-smooth curve v C M.
Assume that for each g € v there exists a truncated double cone C at ¢ in
M, such that at least one of the following three conditions holds true: (a)
There is a constant § € R, such that C C {|Re(ewf)| < |Im(ei9f)|}. (b)
Cc{Ref >0} (¢) |f(2)/*" 9 = 0, 2 — ¢, z € C. Then f vanishes on an
M-open neighborhood of .
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Our starting point is the following definition of vanishing to infinite order on a
submanifold.

Definition 1.1 (See Baouendi & Zachmanoglou [9], p.9). Let Q C RY be an open
set and let M and v C M, be two differentiable submanifolds of Q2. We say that a
continuous complex-valued function f, defined on M, vanishes to infinite order on
7, if for every o € R, the function,

z = f(2)(dist(z,v))?, (L.1)

is bounded in any compact set of M.
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Remark 1.2. Let f, M,~ be as in Definition and let 0 € . We automatically
know that for o > 0, f(z)(dist(z,v))?, is bounded on any compact subset of M, and
that for any pair of & < 0, ¢ > 0, it is bounded on the intersection, of any compact
subset of M with {z € M: dist(z,v) > c}. On the set {z € M: dist(z,v) < 1}
it is obvious that f(z)(dist(z,v))?, is bounded on every compact subset if and
only if, for every k € N, f(z)(dist(z,7))™*, is bounded locally near each point of
~. Hence, vanishing to infinite order on +, is equivalent to the requirement that
f(2)(dist(z,7))~* is bounded locally near each point of +, for each fix k € N. We
shall be interested in the version of Definition where Q@ C R?" and where we
identify R?" with C*. Let M C C" be a CR submanifold and let ¥ C M be a
submanifold. We say that a continuous C'R functiorﬂ f: M — C, vanishes to
infinite order on ~y if for every a € «, and Vk € N, there exists a constant Cy > 0,
and U C M an open neighborhood of a satisfying,

|f(2)] < Cr(dist(z,7))*, =z€U. (1.2)

Note that for any p € «, we have (sufficiently near p), | f(2)]]z — p\_(kH) < Ciy1 =
1£(2)] - |z = p| ™" < Chy1 |2 — pl, thus letting z — p, we sce that,

im ) _o ke, (1.3)

= |z - pff
(where the case k = 0 is due to the fact that |f(z)| < Ci ]z —p| = 0 as z — p).

In the case of a generic embedded C'R submanifolds M C C™, there exists (con-
trary to the case of complex manifolds) choices of M allowing for smooth CR
functions which vanish to infinite order at a point p € M, but not identically, see
e.g. Schmalz [25]. In our main result we shall use so-called truncated double cones
at a point in a hypersurface.

Definition 1.3. Let M be a C'-smooth N-dimensional real manifold. We define
a set C(q) C M to be a truncated double cone in M at ¢ € M if there exists a
parametrization of M by local Euclidean coordinates (x1,...,2zx) centered at g,
such that C(q) is parametrized, in the variables (x1,...,2x), by an open nonempty
truncated double cone at g in RY.

For a smooth hypersurface M C C", where n > 2, we denote T°M := T,M N
JpTp M, where J is the complex structure map on 7T'C" defined by J,, on each T,,C".
It is still an open problem, to determine necessary and sufficient conditions, under
which a CR* function (by which we mean a C*°-smooth C'R function) on a C*°-
smooth hypersurface, such that the function vanishes to infinite order along a curve,
is forced to vanish identically. The work of Nirenberg [22] initiated the following
question on unique continuation, see Fornaess & Sibony [12]: Let Q C C"*, n > 2,
be a domain with smooth boundary. Let v be a smooth curve in 0, transverse to
T5(082), for every p € 4. Does it hold true that if f € C*° (€2), holomorphic on
and vanishes to infinite order on ~y, then f =07
In our main result we provide some additional conditions under which we have an
affirmative answer to the question.

1By which we mean that X f = 0, for all sections X, of HO' M.
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Theorem 1.4 (Main result). Let M C C", be a C*°-smooth real hypersurface. Let
v C M be a real C*°-smooth curve such that,

TM + Ty =T.M, z€n. (1.4)

Let f € CR™®(M) such that f vanishes to infinite order along . Assume that for
each q € vy, there exists a truncated double cone C at q in M, such that at least one
of the following holds true:

(a) There is a constant § € R, such that C C {|Re(e" f)| < |Im(e® f)|}.

(b) Cc {Ref > 0}.

(c) |f(z)|‘z_q‘ —0,2z—¢q,z€C.
Then f vanishes on an M -open neighborhood of 7.

2. PRELIMINARY DEFINITIONS AND REMARKS

Remark 2.1. For a smooth vector field X on an open © C R™ and any point
p € Q there exists a unique integral curve, k, satisfying x : [0,T) — Q, (for a
maximal T) &£(t) = X (k)(t), of X which passes through p when ¢t = 0 i.e. kK(0) = p.
We shall denote this integral curve by ¢t — ®x ,(p). It is further known that if
X = X(¥) =: Xy, ie., X depends upon a parameter ¥ then T' = T(p,?) is a
lower semi-continuous function of (p,?¥) and ¢t — ®,(p) is continuous on the set
0<t<T(p¥), as (p,¥) vary on an open neighborhood of (p, 0)E|

Definition 2.2. Let H be a collection of smooth vector fields on 2. By a polygonal
path of a finite number of integral curves, of vector fields in H joining ¢’ € Q to
q € Q we mean a piecewise smooth curve & : [0, 1] — § such that x(0) = ¢, k(1) = ¢
and 0 = sp < 81 < --- < s = 1 such that,

k(s) = @ijtj(s)(/i(sj_l)), sjm1<s<s;, 1<j<k, (2.1)

where X7 € H and t;(s) is a smooth diffeomorphism of [s;_1, s;] onto some closed
interval of R with ¢;(s;_1) = 0. For t = (¢1,...,t;) € R* one may use the notation,

q = Pxrgy1 (Pxz,, (o Dxrty (@) (2.2)
for expressing that ¢’ can be reached from ¢ by a polygonal path of integral curves of
the vector fields X7 (in the given order). This gives a mapping R¥ x Q > (¢,q) — €,
which for fixed choice of X',..., X* and for ¢ near 0 in R*, is given by,

(t,q) = Px1 ) (Pxz (- Py (@) ) =2 Px (), (2:3)

(where we are using the notation X = (X1!,..., X*)) for more details on this map,
see Baouendi et al. [5], p.69.

Definition 2.3. Let M C R", for a positive integer n, be a submanifold and let
p € M. We say that a submanifold M’ C R" is equivalent to M at p, denoted
M ~, M', if: p € M’ and there exists an open neighborhood V' C R", of p, such
that VN M =V N M'. The equivalence class of M, under the equivalence relation
~p, is called the germ of the submanifold M at p. If N C M is a submanifold and
p € N, then a submanifold N’ C R”, is said to belong to the germ of N at p in M,

2This is a consequence of the fundamental theorem of ODE, see e.g. Hartmann [I6], p.94,
which is usually stated in terms of a unique solution v(t) = n(t, to, 70, ), (defined for a maximal
interval, which may depend on tp,~0 and the parameters &, i.e. t € (a(to,70,£),b(to,70,£))) to
the initial value problem ~/(t) = f(¢,7,€), 7(to) = Y0- In our case f(t,v,9) = (Xy7v)(¢), where X
is a vector field.
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if N' C M and belongs to the germ of the submanifold N at p. Any submanifold of
R™ that belongs to the germ of a submanifold M at a point p € M, will be called
a representative (or member) of the germ of the submanifold M at p.

Definition 2.4 (See Baouendi et al. [5], p.94). Let M be a smooth C'R manifold
and let p € M. By a known theorem (see Baouendi et al. [5], p.68) there exists a
C*°-smooth submanifold W C M, p € W, satisfying (i) if p € W', where W’ is
another C'*°-smooth submanifold to which all vector fields of T°M are tangent at
every point then there is an open V.C M, p € V, with W NV c W' NV, (ii) for
every open U C M, p € U, there exists N € Z,, and open V| C Vo C U, with
p € Vi, such that any ¢ € V1 N W can be reached by a polygonal path of N integral
curves, of vector fields in T°M, contained in W N V5.

We denote by o(p), the members of the germ of W at p, in M, such that the tangent
space at each point of the member contains T,/ M. We call o(p) the local CR-orbit
at p.

Any representative of o(p) contains a C' R submanifold of M which passes through
p and whose C'R dimension equals the C'R dimension of M.

Definition 2.5 (See e.g. Baouendi et al. [5], p.20). Let M C C™ be an embedded
CR submanifold and pg € M. M is said to be minimal at pg, if there is no real
submanifold S C M, py € S, such that the following two conditions hold true
simultaneously: (1) 75 M is tangent to S at every p € S. (2) dimgS <dimg M.

If a CR submanifold M C C", is not minimal at a point pg € M, then we shall
say that pg is a non-minimal point of M.

3. SOME KNOWN RESULTS USED IN THE PROOF OF THEOREM [L.4]

The problem of unique continuation for C'R functions has been studied by many
authors, see e.g. Rosay [23], Airapetyan & Khenkin [I], Hunt et al. [I8], Baouendi
& Treves [7], Alinhac et al. [3], Grachev [I4], Schmalz [25], Berhanu & Mendoza [§],
Huang et al. [I7] and Baouendi & Rothschild [6], Alexander [2] and very recently
(in relation to growth conditions) Della Sala & Lamel [I1]. Here we mention just a
few, which we shall make use of.

Theorem 3.1 (Alinhac et al. [3], p.635). Let W C C be an open neighborhood
of 0, let W := Wn{Imz > 0}, and let A C C" be a totally real C*-smooth
submanifold. Let F € O(W™) and continuous up to the boundary such that F
maps W N {Im z = 0} into A. If F vanishes to infinite order at the origin then F
vanishes identically in the connected component of the origin in W+.

Theorem 3.2 (Huang et al. [I7] and Baouendi & Rothschild [6]). If f(z) is a
holomorphic function in the intersection, with the upper half plane, of a domain
containing 0, f continuous up to the boundary, vanishing to infinite order at 0 (in
the sense that f(z) = O(|z|") for every N € N) and Ref(x) > 0, x :=Rez, then f
must vanish identically.

Theorem 3.3 (Huang et al. [I7], See Remark regarding stronger version). If
f = u + v is holomorphic in HY := {z € C : Imz > 0}, and continuous up
to (=1,1) C OH™, such that |v(t)| < |u(t)] for t € (=1,1), and if f vanishes to
infinite order at 0, then f = 0.
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Given any of the conditions in the last two theorems, there is a certain technique
of reducing to one-variable, to be applied for obtaining a uniqueness result (see
Lemma . The following is a version of a uniqueness theorem for hypersurfaces
due to Shafin [26], where the author originally requires that the hypersurface has
a positive eigenvalue of the Levi form at 0 and that the growth condition in the
theorem is independent of direction, but the proof reveals that the result holds true
given one-sided holomorphic extension and that the growth conditions are only
required with respect to an open non-empty double cone at 0.

Theorem 3.4. Let M C C" be a C*°-smooth hypersurface, 0 € M. Let f be a
C*>°-smooth CR function near 0 such that f has holomorphic extension to one side
at 0 and there is a double cone, C, at 0 in M, lim,_,q |f(z)|‘z‘ =0, z € C. Then
f =0 on an M-neighborhood of the origin.

We shall use the following results, in the proof of Theorem (see the proof of
Claim .

Theorem 3.5 (See Treves [30], proof of Theorem I11.3.3, p.91). Let M be a C*-
smooth real manifold equipped with a locally integrable structure L, let V C M be
an open subset and X a Ct-smooth section of L over V (denoted X € T*(V,L)).
Let v : [0,1] — Q be an integral curve of Re X and let f be a distribution solution
to the system of equations induced by L (i.e. X f =0 onV, for each X € T1(V,L)).
If f =0 on an open neighborhood of v(0), then f =0 on an open neighborhood of
(D).

We have the following special case, where M C C™ is a C*°-smooth hypersurface,
L = H%'M, i.e. tangential CR vector field{] (where we identify] Re L with T°M).

Corollary 3.6 (to Theorem . Let M C C™ be a C*°-smooth hypersurface and
let py € M. Assume there is an integral curve of a CR wvector field, such that the
curve originates at p, and whose end point is po. If f is a continuous CR function
on M which vanishes on an open M -neighborhood of pf,, then f vanishes on an
open M -neighborhood of pg.

4. PROOF OF THEOREM [L.4]
We begin with the following lemma.

Lemma 4.1. Let M C C*, be a C*°-smooth real hypersurface, 0 € M. Let v C M
be a real C'*°-smooth curve, 0 € 7y, such that,

TM + Ty =T.M, z € 7. (4.1)

Let f € CR>(M) such that f vanishes to infinite order on . Assume f has
holomorphic extension to at least one side of M, near 0. Assume that there is a
truncated double cone, C, at 0 in M such that at least one of the following holds
true:

(a) There is a constant § € R, such that C C {|Re(e’ f)| < |Im(e® f)|}.
(b) CC {Ref >0}

3For the fact that HO 1M/ is integrable see e.g. Baouendi et al. [5], p.36 (a short proof of the,
in itself not sufficient, involutivity can be found in e.g. Boggess [10]).

4This is done via the identification X w, X € T°M, with inverse Y — Y 4+ Y,
Y € TO'M, see e.g. Zampieri [36], p.112 and p.116.
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@ |f(z)]"' =0,2=0zeC
Then f =0 on an M -open neighborhood of 0.

Proof. Let U be an open subset of C", such that V := U N M is open in M,
0 € M, and there exists a function F € 6(U)NC°UUV), F|y = f|v. Let D C C"*
be a complex line passing through 0 such that ToD + ToM = THC™, and, for any
sufficiently small open B C C™, 0 € B, such that BN DN M is a connected C*°-
smooth curve. Since we know that F' has C'*°-extension to the boundary, then for
each o € N" the function %Zf has continuous extension to the boundary, thus
vanishing to infinite order on v of f, implies,

. *F

peg,r;r}ao 0z~ (p) =0 (42)
Next, pick a sufficiently small open subset B C C™, 0 € B, such that U := BNU,
satisfies that M N OU N D is a C°°-smooth curve. Assuming further that U is a
bounded domain and that U N D is a bounded simply connected domain, bounded
by a finite union of smooth curves, there is a bijective holomorphic map Z from
the (non-empty, bounded and simply connected one-dimensional complex) domain
U+t :=U N D, onto an open half-set, W+ C C as in Theorem and furthermore
Z extends to a homeomorphism up to the boundary, see e.g. Taylor [28], p.342 (for
a short proof of the fact that a bijective holomorphic map of a domain necessarily
has holomorphic inverse, see e.g. Rudin [24], p.217). So we can assume Z is a
biholomorphism of U N D and a homeomorphism of U N D. Since % is an open
mapping of U N D with open inverse we can assume #(0) is the origin, belonging
to the boundary of W™ in C. Now given a holomorphic coordinate 2 centered at
0, for D near 0, and setting #(z) =: ¢, we can (by the chain rule) for any j € N,

and any ¢ € W, express ‘?325 (¢) as finite sum of multiples of %if (#71(q)), and

algjg;l (q), k,1 € {1,...,7} Here we are considering the restriction of F' to D NU,
so there is only one complex coordinate z (which explains why we write j instead
of a multi-index «). By , we obtain that (F o 27!) is a continuous map of
U N D (holomorphic on U N D) which vanishes to infinite order at Z(0) € OW.
Since M is smooth, D a complex one-dimensional manifold We can (by appropriate
choice of B, if necessary we replace U N D but keep the same notation) assume
that both & N D and Z(U N D) have C*°-smooth boundary. In particular we can
assume (F o %~1) is smooth up to the boundary. If condition (c) holds true then,
by Theorem f vanishes on an open M-neighborhood of 0. If condition (c¢) does
not hold true, then by assumption one of (a) or (b) must hold true. Then we
are able to choose D such that D NV (for sufficiently small V) belongs to the
intersection with M of a double cone as in (a) or (b). We obtain that (F o #Z~!)
maps an interval containing 0 into (a) {|Rez| < |Imz|} (if necessary after a fixed
rotation of its image, by some 6 € R), or (b) {Rez > 0}. In the case (a) Theorem
applies and in the case (b) Theorem applies, in each case implying that
the function (F o Z~1!) vanishes on the connected component of the origin in W+,
which implies that it vanishes on an open subset of W™ so using that % has open
inverse we obtain (by the identity theorem) F' = 0 on & N D, and by continuity
f=0o0on DNV. Now D was an arbitrary complex one-dimensional manifold which
sufficiently near 0 had intersection with M belonging to a certain double cone near
0. This can be repeated for all one-dimensional complex D which are perturbations
of D, each passing through 0, and whose intersection with M belong, near 0, to the
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given double cone. So F vanishes on the union of intersections D N, as D varies
over such complex one dimensional manifolds. The union of all such D covers an
open subset of U, so again by the identity theorem f = 0 near 0. O

We shall use the following observation.

Observation 4.2. Any representative, W, of o(pg), po € M, is an embedded CR
submanifold (see e.g. Baouendi et al. [B], p.95). This implies T°W C TSM for
each z € W. Assume pg (for the remainder of this observation) is non-minimal. By
definition of non-minimality at py, C Rdim(M) < dimgo(py) < dimgM, and since
the real codimension of M is one, CR—dim(M) = dimgo(po), thus T,W = TSW =
T¢M for each z € W, which implies that W is a complex (n — 1)-dimensional
manifold containing pg. By the transversality condition for ~, it must be
transversal to any member of the local CR orbit at a point of v. If # C M is a
small open neighborhood of py, then every point in % which also belongs to v is
associated to a family of complex (n—1)-dimensional manifolds (each a member of a
different local CR orbit). In the case of real codimension one, the restriction of the
CR function f to any complex submanifold 20,,, C M, passing through py € v is a
holomorphic function, hence f vanishes within 20,,, as soon as 20, is a member
of the local orbit at pg € . This concludes the observation.

Given a reference point py € 7, we parametrize -y, locally near a sufficiently small
neighborhood # C M of pg, by introducing smooth local coordinates,

’YQW = {(¢17"'7¢2n—2a¢) : (bl == ¢2n—2 = 0}, (43)

where pg = (0, ) is a point of yN#'.

The strategy of the proof is as follows:

e We construct a open M-neighborhood, denoted C; (see ), of (0,¢),
such that every point of C; belongs to the global Sussmann orbit, S, ), of
some point (0, ) (with ¢ near ¢@).

e We then proceed to prove that f =0 on Cg, see Claim and the proof
of the latter claim is divided into two main cases based upon minimality.

e In the first case (denoted (i)) appearing in the proof of Claim Lemma
[Tl is invoked.

e The second case (denoted (ii)) is divided into two subcases (based upon ex-
istence and non-existence respectively, of minimal points in a given global
orbit passing v near the reference point). Observation is used to handle
the easy subcase when all points of a given global orbit are non-minimal.
The second subcase requires more work in terms of invoking known propa-
gation results in fusion with the properties of Cy.

Remark shows that if we pick a nonzero vector field Z € T'(#,T°M), and we
introduce the parameter 9, (to be further specified later) on which Z depends, i.e.
Z = Zy, then there is a unique integral curve, n(t, (0,¢),?) =: @z, ((0,¢)), of Z
originating at (0, ) defined for ¢ € [0,T((0,¢),?)), where T((0,),9)) is a lower
semi-continuous function near ((0,¢),0), (i.e T is the maximal time parameter as
in Remark , specifically, given any ¢ > 0, (0,$) € yN#, and any ¥y, there
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exists a §(p, Yo, €) such that,

(1(8:0) = (0, 9)] < 62,90, A (|0 = 9] < 8(p,00,0)) =
T((6,¢).9) 2 T((0.9).90) =€ (44)

hence T is bounded from below as ((¢, ¢),¥) varies on an open box-neighborhood
of (¢,¥0). This in turn implies that ®z, ((0,¢)), which defines the end point of the
integral curve of the vector field Zy passing through (0, ¢), varies smoothly with
respect to the base point, near (0,¢). For each z € v, we let S, denote the set of
points of M which can be reached from ¢ by a polygonal path (see the definition
in the preliminaries) of integral curves to sections of T°M (S is called the global
Sussmann orbit at ¢). Let # be sufficiently small such that there is a basis, of
vector fields vy, ..., v2,—o (We assume each vy, is normalized), for the set of sections
of T°M over # . Let,
2n—2
Zy = Zog+ Z vk (45)
k=1
We shall use Zg = 0, in which case we already know that each Zy is a section of
T°M, and we shall use Y9 = 0.
Given ¥y = 0, we set T(¢) := T((,0),0). We complement vy, ..., v2,—2 to full
basis by adjoining a vector field va,, 1 which along ~ coincides with %.

Next we consider the map,

v (19’ 90) — ‘I)(Z19+(Lpf¢)v2n71),1((0’ 95)) (46)
Since vy, ...,v2,_1 form a basis for T%# , the map ¥ has nonzero determinant at
(0,¢) (see e.g. Baouendi et al. [5], p.65) so let {pvay_1 + Z?ZIQ Y051 | — 9| <
v, |9 < v} =: B, C TM be such that the image of any subdomain of B,, containing
(0, %), under VU, is an open subset of M, and such that the maximal time parameter
T above is bounded from below on B, by 7T(¢)/8. In particular we must chose
e < T(¢)/8 above and v < §(,0,¢€). Let a = min{1/8,T(4)/8,v/8}. Define the
following sets,
C(@) = U ¢Zﬂ7a((07<p))7 (47)
Y] <a
.- U . (48)
p€{s: [s—¢|<a}
Now for fixed ¢ (sufficiently near ¢ as above) and || < a, we have,

02,.a((0,9)) = ®z,.0 (Pray_r.0—2((0,9))) = ¥((ad, 9)). (4.9)

Also for fixed ¢ such that |p — | < a, the union, U|19|<a @y, 4(0,¢) belongs to
S(0,p) (the global Sussmann orbit). Since we already know that its image under ¥
is an open subset of M containing (0, ) we obtain that the union, U‘@*@|<U S,
contains an M-open neighborhood of (0, ¢).

Claim 4.3. f =0 on Cg.

Proof. Indeed, there are two cases which can occur given a ¢ € {|p — @] < a}:

(i) (0,¢) is a minimal point of M. It is a known result (due to Trepreau [3I] and
generalized by Tumanov [34], for our precise formulation, see Trepreau [32], p.409)
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that minimality at a point implies holomorphic extension of f to one side of M
near that point i.e. we assume that f has holomorphic extension to one side of M,
near (0,¢). By Lemma We obtain that f = 0 on an M-neighborhood of (0, ¢).
This however, by definition implies that (0, ) does not belong to suppf, which in
turn by the known result of Treves [30], p.91, this implies that S ,)Nsuppf = 0,
so f vanishes on C(y) because the latter set is a subset of S ).

(ii) (0,¢) is a non-minimal point of M. If all points of S,y are non-minimal
then there passes through each, a complex (n — 1)- dimensional manifold and the
vanishing of f near (0, ) (in the sense of Remark propagates along each such
manifold, from (0, ), so f must vanish on S ). Assume instead that there is a
minimal point, ¢, belonging to Sg,. By definition ¢ can be reached from ¢y = (0, ¢)
by a polygonal path of CR curves in §(g .. For a C*°-smooth hypersuface M C C",
it is a known result that holomorphic extension to one side of M, at a given point
q € M, of continuous C'R functions, holds true iff there does not pass a germ of a
complex (n — 1)-dimensional submanifold of M through ¢, and the last condition is
equivalent to minimality at ¢ (see e.g. Baouendi et al. [5], Theorem 1.5.15, p.20).
Also, in the case of C'°°-smooth hypersurfaces holomorphic extension to one side
of M coincides with holomorphic wedge-extension, which in turn propagates along
a given CR curve (the direct consequence of the latter result, stated in the terms
we shall use it, can be found in Trepreau [32], Theorem 2, p.409; the more detailed
cause of propagation can be found in Trepreau [32], p.418, and information about
directionality in Tumanov [33]-[35]). Hence, we can assume f has holomorphic ex-
tension to one side of M, near each point of S ). Let U be an open subset of
C™, such that V := 0U N M contains qg, is open in M, and such that there ex-
ists a function F € OU)NCO(U U V), Fly = f|v. By Lemma[d.1] f = 0 on an
M-neighborhood of gg. Theorem implies that f vanishes at all points of S(g ).
This completes the proof of Claim [4.3] (]

By Claim[£:3] f = 0 on an open M-neighborhood of py and since the latter point
was an arbitrary point of 7y this also completes the proof of Theorem O

5. SOME EXAMPLES ON GEOMETRIC CONDITIONS ON M WITH REDUCED
GROWTH CONDITIONS

Example 5.1 (The Levi flat case). Let M C C™ be a C*°-smooth hypersurface
and let v C M be a C'*°-smooth curve which is not locally the intersection with
a complex line, but satisfies the condition of . Assume M is Levi flat on an
M-open neighborhood, U, of ~.

Then any smooth C'R function which vanishes to infinite order along v must
vanish on an open M-neighborhood of 7: Let py € <, and assume w.l.o.g., po
coincides with the origin, in v and in M. It is a known consequence of the complex
version of Frobenius theorem (see Freeman [I3]) that there passes through each
point of UNry, a complex manifold of complex dimension n—1 (i.e. the C R dimension
of M). In particular every point of U is a non-minimal point of M. Hence we can
apply the proof of (i), to the C*°-smooth C'R function f, vanishing to infinite order
along ~, in the C°-smooth hypersurface U (the reason being that in Claim
the requirements (a)-(c) are not invoked). This will yield that f vanishes on the
Sussmann orbit of each point of yNU, in U. As the proof of our main result shows,
the union of such Sussmann orbits cover an M-open neighborhood of py.
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Example 5.2. When M C C" is a C*°-smooth hypersurface then it was proved by
Rosay [23] (the proof uses a result of Andreotti & Hill []), that if UNny=UND
for a complex ambient line D, transversal to U N M, for some small open U, then
any f € CR° (M) which vanishes to infinite order along U N+, must vanish on
an open M-neighborhood of U N ~. This example does not require that the origin
is a minimal point, and does not have additional growth conditions compared to
Theorem [[4

Example 5.3 (The real-analytic case). When M C C" is a C*°-smooth hypersur-
face and v C M a real-analytic curve, then any Lipschitz continuous C'R function
that vanishes to infinite order along -y, vanishes on an M-open neighborhood of ~.
This result is due to Baouendi & Treves [7] (see Treves [30], Theorem I1.8.1, to-
gether with Corollary 11.8.1, p.118, for a textbook version). Let (z1,..., 2z,) denote
holomorphic coordinates, z, = z, + tyn, let 0 € v and U be open in M such that,
0eU,UNM =Un{yn = h(z1,...,2n-1,2n)} for a real-analytic graphing function
h. The unique continuation result of Baouendi & Treves [7] in this real-analytic case,
is a consequence of the so called compact cocycle property for {y, = h(0,z,)}.

Definition 5.4 (see Treves [30], p.115). Let A be a maximally real submanifold of
C™, p € A. A is said to have the compact cocycle property at p if there is a basis of
neighborhoods of p such that, if NV is any one of these neighborhoods, then there is
F e O(N) with F(p) #0 and {w e ANN : F(w) #0} € ANN.

Here is an example, covered by Theorem [L.4] of this paper, where ¥ # 0.

Example 5.5. The following function on R is known to be C*°-smooth but nowhere
real-analytic (see e.g. Kim & Kwon [21]),
1
pla) = 3 =0 (2 — [a1). (5.1)

k=1

where [-] denotes the least upper integer, 6(x) := exp(—-3)exp (—ﬁ) , 0 <
r < 1,and O(z) = 0, ¢ (0,1). Let (21 = o1 + iy1,22 = a2 + iy2) € C? be
holomorphic coordinates and define for each j € Zy, x;(#1,22) € C°(B;) (where

B, := B1 (0, %) , and B, (p) denotes the ball in C x R, of radius r, and center p)
J
such that x; =1 on C; := By (O, %) , (see e.g. HAtirmander [19], Theorem 1.4.1,

p.25, for the existence of such x;). Let B := Ujez+ B, C:= UjEZ+ C;, and define
M := {(z1, 22) € C%: yy = h(21,12)}, where,
2
henay) i | P@) @) (Jaf —ple) L on B 52)
p(x2) , otherwise.

By construction M C C? is: (i) a smooth hypersurface (M = {(21,22) € C? :
¥ = 0} where ¥(z1,22) := y2 — h(z1,22), with g—i = 1, so dy|g # 0) near 0,
(ii) not real-analytic on any open subset, (iii) strictly pseudoconvex on the subset
C C M, and (iv) Levi flat at all points of M \ Bﬁ Then, for any C'°°-smooth curve
v C {0} U (M \ B) with 0 € v we have a decomposition v = X U (7 \ ), where X

5771,0 T — _9; 1 Oh 0 4 0 _ 9
H''9M spanned by (see Boggess [10], p.144), L = —23 <1+i%) 5% 55, + 95, = s, since

h is (recall that we are speaking of the set M \ B) independent of Re z1,Im 1. Thus [L, L] = 0.
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denotes be the set of points z € v. such that every M-neighborhood of z contains
a point where the Levi formﬁ of M is nonzero.

Remark 5.6. After the completion of this paper we were informed that Alexander
[2], Theorem 1, p.2, proved a stronger version of Theorem indeed the condition
that f map the part of the real axis as in Theorem into a non-spiraling set
will imply that either f = 0 or f cannot vanish to infinite order at 0. In fact by
Alexander’s result we may replace the condition (|v(t)| < |u(t)| for t € (—1,1)) with
the condition (Jv(t)| < C |u(t)] for t € (—1,1), and a non-negative constant C'). We
have chosen to state our results using the weaker version found in Theorem [3.3]
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