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COMMON FIXED POINT THEOREMS FOR MULTIVALUED

MAPPINGS ON METRIC SPACES WITH A DIRECTED GRAPH

JAMSHAID AHMAD,ABDULLAH EQAL AL-MAZROOEI

Abstract. The purpose of this article is to establish the existence of common
fixed points of multivalued Θ-contraction mappings on a metric space endowed

with a graph. Presented theorems are generalizations of recent fixed point

theorems due to Hussain et al. [Fixed Point Theory and Applications (2015)
2015:185]. An example is also given to support our generalized result.

1. Introduction and Preliminaries

The Banach Contraction Principle is one of the cornerstones in the development
of Nonlinear Analysis, in general, and metric fixed point theory, in particular. The
method of successive approximation introduced by Liouville in 1837 and systemati-
cally developed by Picard in 1890 culminated in formulation of Banach Contraction
Principle by Polish Mathematician Stefan Banach in 1922. This theorem provides
an illustration of the unifying power of functional analytic methods and usefulness of
fixed point theory in analysis. Extensions of the Banach contraction principle have
been obtained either by generalizing the domain of the mapping or by extending
the contractive condition on the mappings see [2, 3, 4, 13, 14, 15, 16, 17, 22, 23, 24].

Very recently, Jleli and Samet [18] introduced a new type of contraction and
established some new fixed point theorems for such contraction in the context of
generalized metric spaces.

Definition 1.1. Let Θ : (0,∞)→ (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;
(Θ2) for each sequence {αn} ⊆ R+, limn→∞Θ(αn) = 1 if and only if limn→∞(αn) =

0;

(Θ3) there exists 0 < k < 1 and l ∈ (0,∞] such that lima→0+
Θ(α)−1
αk = l;

A mapping T : X → X is said to be Θ-contraction if there exist the function Θ
satisfying (Θ1)-(Θ3) and a constant α ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) 6= 0 =⇒ Θ(d(Tx, Ty)) ≤ [Θ(d(x, y))]α. (1.1)

Theorem 1.2. [18] Let (X, d) be a complete metric space and T : X → X be a
Θ-contraction, then T has a unique fixed point.
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To be consistent with Samet et al. [18], we denote by Ψ the set of all functions
Θ : (0,∞)→ (1,∞) satisfying the above conditions(Θ1 −Θ3) .

Hussain et al. [12] modified and extended the above family Θ of functions Θ :
(0,∞) → (1,∞) and proved the following fixed point theorem for Θ-contractive
condition in the setting of complete metric spaces.

(Θ
′

1) Θ is nondecreasing and Θ(t) = 1 if and only if t = 0;
(Θ4) Θ(a+ b) ≤ Θ(a) + Θ(b) for all a, b > 0.

To be consistent with Hussain et al. [12], we denote by Ω the set of all functions

Θ : (0,∞)→ (1,∞) satisfying the conditions Θ
′

1 and (Θ2 −Θ4).

Theorem 1.3. [12] Let (X, d) be a complete metric space and T : X → X be a
self-mapping. If there exists a function Θ ∈ Ω and positive real numbers k1, k2, k3

and k4 with 0 ≤ k1 + k2 + k3 + 2k4 < 1 such that

Θ(d(Tx, Ty)) ≤ [Θ(d(x, y))]k1 ·Θ(d(x, Tx))]k2 · [Θ(d(y, Ty))]k3 · [Θ((d(x, Ty) + d(y, Tx))]k4

(1.2)
for all x, y ∈ X, then T has a unique fixed point.

For more details on Θ−contractions, we refer the reader to [5, 26, 33].
One of the generalization of the domain of the mapping is partially ordered

metric spaces was first investigated in 2004 by Ran and Reurings [31], and then by
Nieto and Lopez [29].

To extend this concept, Jachymski [20] introduced a new approach in metric
fixed point theory by replacing order structure with a graph structure on a metric
space. In this way, the results obtained in ordered metric spaces are generalized
(see also [19] and the reference therein); in fact, Gwodzdz-lukawska and Jachymski
[11] developed the Hutchinson-Barnsley theory for finite families of mappings on a
metric space endowed with a directed graph.

Consistent with Jachymski [19], let (X, d) be a metric space and ∆ denotes the
diagonal of X× X. Let G be a directed graph such that the set V (G) of its vertices
coincides with X and E(G) be the set of edges of the graph which contains all loops,
that is, ∆ ⊆ E(G). Let E∗(G) denotes the set of all edges of G that are not loops
i.e., E∗(G) = E(G)−∆. Also assume that the graph G has no parallel edges and,
thus one can identify G with the pair (V (G), E(G)).

Definition 1.4. [19] An operator T : X → X is called a Banach G-contraction or
simply a G-contraction if

(a) T preserves edges of G; for each x, y ∈ X with (x, y) ∈ E(G), we have
(T (x), T (y)) ∈ E(G),

(b) T decreases weights of edges of G ; there exists α ∈ (0, 1) such that for all
x, y ∈ X with (x, y) ∈ E(G), we have d(T (x), T (y)) ≤ αd(x, y).

If x and y are vertices of G, then a (directed) path in G from x to y of length
k ∈ N is a finite sequence {xn} ( n ∈ {0, 1, 2, ..., k} ) of vertices such that x0 = x,
xk = y and (xi−1, xi) ∈ E(G) for i ∈ {1, 2, ..., k}.

Notice that a graph G is connected if there is a (directed) path between any

two vertices and it is weakly connected if G̃ is connected, where G̃ denotes the
undirected graph obtained from G by ignoring the direction of edges. Denote by
G−1 the graph obtained from G by reversing the direction of edges. Thus,

E
(
G−1

)
= {(x, y) ∈ X ×X : (y, x) ∈ E (G)} .
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It is more convenient to treat G̃ as a directed graph for which the set of its edges
is symmetric, under this convention; we have that

E(G̃) = E(G) ∪ E(G−1).

IfG is such that E(G) is symmetric, then for x ∈ V (G), [x]G denotes the equivalence
class of the relation R defined on V (G) by the rule:

yRz if there is a path in G from y to z.

If T : X → X is an operator. Set

XT := {x ∈ X : (x, T (x)) ∈ E(G)}.

Jachymski [20] used the following property:
(P) : for any sequence {xn} in X, if xn → x as n→∞ and (xn, xn+1) ∈ E(G),

then (xn, x) ∈ E(G).

Theorem 1.5. [20] Let (X, d) be a complete metric space and let G be a directed
graph such that V (G) = X. Let E(G) and the triplet (X, d,G) has property (P)
and T : X → X a G-contraction. Then the following statements hold:

(1) T has a fixed point if and only if XT 6= ∅;
(2) if XT 6= ∅ and G is weakly connected, then T is a Picard operator;
(3) for any x ∈ XT , T |[x]G̃

is a Picard operator;

(4) if XT ⊆ E(G), then T is a weakly Picard operator.

For detailed discussion on Picard operators, we refer the reader to Berinde et.
al [7, 8].

Latif and Beg [25] introduced a notion of K− multivalued mapping as an ex-
tension of Kannan mapping to multivalued mappings. Rus [32] coined the term
R− multivalued mapping which is a generalization of a K− multivalued mapping.
Abbas and Rhoades [1] introduced the notion of a generalized R− multivalued map-
pings, which in turn generalize R− multivalued mappings, and obtained common
fixed point results for such mappings.
Let (X, d) be a metric space. Denote by P (X) the family of all nonempty subsets
of X, by Pcl (X) the family of all nonempty closed subset of X.
A point x in X is a fixed point of a multivalued mapping T : X → P (X) iff x ∈ Tx.
The set of all fixed points of multivalued mapping T is denoted by Fix(T ).

Suppose that T1, T2 : X → Pcl (X) . Set

XT1,T2 := {x ∈ X : (x, ux) ∈ E(G) where ux ∈ T1(x) ∩ T2(x)}.

A mapping T : X → Pcl (X) is said to be upper semicontinuous, if for xn ∈ X and
yn ∈ Txn with xn → x0 and yn → y0, implies y0 ∈ Tx0.

A clique in an undirected graph G = (V,E) is a subset of the vertex set W ⊂ V ,
such that for every two vertices in W , there exists an edge connecting the two. This
is equivalent to saying that the subgraph induced by W is complete i.e., for every
x, y ∈W (G), we have (x, y) ∈ E(G).

The aim of this paper is to prove some common fixed point results for multivalued
generalized graphic Θ-contraction mappings on a metric space endowed with a
graph. Our results extend and unify various comparable results in the existing
literature ([12, 21, 25]).
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2. Main Results

Definition 2.1. Let T1, T2 : X → Pcl(X) be two multivalued mappings. Suppose
that for every vertex x in G and for every ux ∈ Ti (x) , i ∈ {1, 2} we have (x, ux) ∈
E(G). A pair (T1, T2) is said to be a graphic Θ−contraction if there exist some
Θ ∈ Ω and for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and

Θ (d(ux, uy)) ≤ [Θ(d(x, y))]k1 [Θ(d(x, ux))]k2 [Θ(d(y, uy))]k3 [Θ(d (x, uy)+d (y, ux))]k4

(2.1)
hold, where k1, k2, k3 and k4 are non negative real numbers such that 0 ≤ k1 + k2 +
k3 + 2k4 < 1.

Now we state our main theorem.

Theorem 2.2. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆. If mappings T1, T2 : X → Pcl(X) form a
graphic Θ-contraction pair, then following statement hold:

(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2 6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2

6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅
provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).

(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.

Proof. To prove (i), let x∗ ∈ T1(x∗). Assume x∗ /∈ T2 (x∗), then since the pair
(T1, T2) form a graphic Θ-contraction, so there exists an x ∈ T2 (x∗) with (x∗, x) ∈
E∗ (G) such that

Θ (d(x∗, x)) ≤ [Θ(d(x∗, x∗))]k1 [Θ(d(x∗, x∗))]k2 [Θ(d(x, x∗))]k3 [Θ(d(x∗, x) + d(x∗, x∗))]k4

= [Θ(d(x, x∗))]k3+k4

a contradiction because k3 +k4 < 1. Hence x∗ ∈ T2 (x∗) and so Fix(T1) ⊆ Fix(T2).
Similarly, Fix(T2) ⊆ Fix(T1) and therefore Fix(T1) = Fix(T2). Also, if x∗ ∈
T2(x∗), then we have x∗ ∈ T1(x∗). The converse is straightforward.

To prove (ii), let Fix (T1) ∩ Fix (T2) 6= ∅. Then there exists x ∈ X such that
x ∈ T1(x) ∩ T2(x). As ∆ ⊆ E(G), we conclude that XT1,T2 6= ∅.

To prove (iii), suppose that x0 is an arbitrary point of X. If x0 ∈ T1 (x0) or
x0 ∈ T2 (x0), then the proof is finished. So we assume that x0 /∈ Ti (x0) for
i ∈ {1, 2}. Now for i, j ∈ {1, 2} with i 6= j, if x1 ∈ Ti(x0), then there exists
x2 ∈ Tj(x1) with (x1, x2) ∈ E∗(G) such that

1 < Θ (d(x1, x2)) ≤ [Θ(d(x0, x1))]k1 [Θ(d(x0, x1))]k2 [Θ(d(x1, x2))]k3 [Θ(d(x0, x2) + d(x1, x1))]k4

≤ [Θ(d(x0, x1))]k1 [Θ(d(x0, x1))]k2 [Θ(d(x1, x2))]k3 [Θ(d(x0, x1) + d(x1, x2))]k4

Using (Θ4), then we have

Θ (d(x1, x2)) ≤ [Θ(d(x0, x1))]k1 [Θ(d(x0, x1))]k2 [Θ(d(x1, x2))]k3 [Θ(d(x0, x1)]k4 [Θ(d(x1, x2))]k4

= [Θ(d(x0, x1))]k1+k2+k4 [Θ(d(x1, x2))]k3+k4 .
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Therefore, we write

1 < Θ (d(x1, x2)) ≤ [Θ(d(x0, x1))]
k1+k2+k4
1−k3−k4

= [Θ(d(x0, x1))]λ. (2.2)

Similarly, for the point x2 in Tj (x1) , there exists x3 ∈ Ti(x2) with (x2, x3) ∈ E∗ (G)
such that

1 < Θ (d(x2, x3)) ≤ [Θ(d(x1, x2))]k1 [Θ(d(x1, x2))]k2 [Θ(d(x2, x3))]k3 [Θ(d(x1, x3) + d(x2, x2))]k4

≤ [Θ(d(x1, x2))]k1 [Θ(d(x1, x2))]k2 [Θ(d(x2, x3))]k3 [Θ(d(x1, x2) + d(x2, x3))]k4

Using (Θ4), then we have

1 < Θ (d(x2, x3)) ≤ [Θ(d(x1, x2))]k1 [Θ(d(x1, x2))]k2 [Θ(d(x2, x3))]k3 [Θ(d(x1, x2)]k4 [Θ(d(x2, x3))]k4

= [Θ(d(x1, x2))]k1+k2+k4 [Θ(d(x2, x3))]k3+k4 .

Therefore, we write

1 < Θ (d(x2, x3)) ≤ [Θ(d(x1, x2))]
k1+k2+k4
1−k3−k4

= [Θ(d(x1, x2))]λ. (2.3)

Continuing this way, for x2n ∈ Tj(x2n−1), there exist x2n+1 ∈ Ti (x2n) with
(x2n, x2n+1) ∈ E∗ (G) such that

1 < Θ (d(x2n, x2n+1)) ≤ [Θ (d(x2n−1, x2n))]λ. (2.4)

In a similar manner, for x2n+1 ∈ Tj(x2n), there exist x2n+2 ∈ Ti (x2n+1) such that
for (x2n+1, x2n+2) ∈ E∗ (G) implies

1 < Θ (d(x2n+1, x2n+2)) ≤ [Θ (d(x2n, x2n+1))]λ. (2.5)

Hence from (2.4) and (2.5), we obtain a sequence {xn} in X such that for xn ∈
Tj(xn−1), there exist xn+1 ∈ Ti (xn) with (xn, xn+1) ∈ E∗ (G) and it satisfies

1 < Θ (d(xn, xn+1)) ≤ [Θ (d(xn−1, xn))]λ. (2.6)

Therefore

1 < Θ (d(xn, xn+1)) ≤ [Θ (d(xn−1, xn))]λ

≤ [Θ (d(xn−2, xn−1))]λ
2

·
·
·

≤ [Θ (d(x0, x1))]λ
n

From (2.7), we obtain lim
n→∞

Θ (d(xn, xn+1)) = 1 that together with (Θ2) gives

lim
n→∞

d(xn, xn+1) = 0. (2.7)

From the condition (Θ3), there exist 0 < h < 1 and l ∈ (0,∞] such that

lim
n→∞

Θ(d(xn, xn+1))− 1

d(xn, xn+1)h
= l.
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Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit,

there exists n1 ∈ N such that

|Θ(d(xn, xn+1))− 1

d(xn, xn+1)h
− l| ≤ B

for all n > n1. This implies that

Θ(d(xn, xn+1))− 1

d(xn, xn+1)h
≥ l −B =

l

2
= B

for all n > n1. Then

nd(xn, xn+1)h ≤ An[Θ(d(xn, xn+1))− 1] (2.8)

for all n > n1, where A = 1
B . Now we suppose that l = ∞. Let B > 0 be an

arbitrary positive number. From the definition of the limit, there exists n1 ∈ N
such that

B ≤ Θ(d(xn, xn+1))− 1

d(xn, xn+1)h

for all n > n1. This implies that

nd(xn, xn+1)h ≤ An[Θ(d(xn, xn+1))− 1]

for all n > n1, where A = 1
B . Thus, in all cases, there exist A > 0 and n1 ∈ N such

that

nd(xn, xn+1)h ≤ An[Θ(d(xn, xn+1))− 1] (2.9)

for all n > n1. Thus by (2.7) and (2.10), we get

nd(xn, xn+1)h ≤ An([(Θd(x0, x1))]h
n

− 1). (2.10)

Letting n→∞ in the above inequality, we obtain

lim
n→∞

nd(xn, xn+1)h = 0.

Thus, there exists n2 ∈ N such that

d(xn, xn+1) ≤ 1

n1/h
(2.11)

for all n > n2. Now we prove that {xn} is a Cauchy sequence. For m > n > n2 we
have,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1

i1/h
. (2.12)

By the convergence of the series
∑∞
i=1

1
i1/h

, we get d (xn, xm) → 0 as n,m → ∞.
Therefore {xn} is a Cauchy sequence in X. Since X is complete, there exists an
element x∗ ∈ X such that xn → x∗ as n→∞.
Now, if Ti is upper semicontinuous, then as x2n ∈ X, x2n+1 ∈ Ti (x2n) with
x2n → x∗ and x2n+1 → x∗ as n → ∞ implies that x∗ ∈ Ti (x∗) . Using (i), we
get x∗ ∈ Ti (x∗) = Tj (x∗) . Similarly the result hold when Tj is upper semicontin-
uous.
Suppose that Θ is continuous. Since x2n converges to x∗ as n→∞ and (x2n, x2n+1) ∈
E (G) , we have (x2n, x

∗) ∈ E (G) . For x2n ∈ Tj (x2n−1) , there exists un ∈ Ti (x∗)
such that (x2n, un) ∈ E∗ (G) . As {un} is bounded, lim sup

n→∞
un = u∗, and lim inf

n→∞
un =
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u∗ both exist. Assume that u∗ 6= x∗. Since (T1, T2) is a graphic Θ−contraction, so
we have

1 < Θ (d(x2n, un)) ≤ [Θ(d(x2n−1, x
∗))]k1 [Θ(d(x2n−1, x2n))]k2

×[Θ(d(x∗, un))]k3 [Θ(d(x2n−1, un) + d(x∗, x2n))]k4 .

Using (Θ4), then we have

1 < Θ (d(x2n, un)) ≤ [Θ(d(x2n−1, x
∗))]k1 [Θ(d(x2n−1, x2n))]k2

×[Θ(d(x∗, un))]k3 [Θ(d(x2n−1, un)]k4 [Θ(d(x∗, x2n))]k4 .

On taking lim sup
n→∞

and using the continuity of Θ, we get

Θ (d(x∗, u∗)) ≤ [Θ(d(x∗, u∗))]k3+k4 ,

a contradiction because k3 + k4 < 1. Hence u∗ = x∗. Similarly, taking the lim inf
n→∞

gives u∗ = x∗. Since un ∈ Ti (x∗) for all n ≥ 1 and Ti (x∗) is a closed set, it follows
that x∗ ∈ Ti (x∗) . Now from (i), we get x∗ ∈ Ti(x∗) and hence Fix(T1) = Fix(T2).

Finally to prove (iv), suppose the set Fix (T1) ∩ Fix (T2) is a clique of G̃. We are
to show that Fix (T1) ∩ Fix (T2) is singleton. Assume on contrary that there exist
u and v such that u, v ∈ Fix (T1) ∩ Fix (T2) but u 6= v. As (u, v) ∈ E∗(G) and
(T1, T2) form a graphic Θ−contraction, so for (ux, vy) ∈ E∗ (G) implies

Θ (d(u, v)) ≤ [Θ(d(u, v))]k1 [Θ(d(u, u))]k2 [Θ(d(v, v))]k3 [Θ(d (u, v) + d (v, u))]k4

Using (Θ4), then we have

Θ (d(u, v)) ≤ [Θ(d(u, v))]k1 [Θ(d(u, u))]k2 [Θ(d(v, v))]k3 [Θ(d (u, v)]k4 [Θ(d (v, u))]k4

Using (Θ1), then we have

Θ (d(u, v)) ≤ [Θ(d(u, v))]k1+2k4

a contradiction as k1 + 2k4 < 1. Hence u = v. Conversely, if Fix(T1) ∩ Fix(T2) is

singleton, then it follows that Fix(T1) ∩ Fix(T2) is a clique of G̃. �

For specific choices of function Θ, we obtain some significant results. First, by

taking Θ(t) = e
√
t in (2.1), we get the following result.

Theorem 2.3. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆ and T1, T2 : X → Pcl(X) be multivalued
mappings. If for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and√
d(ux, uy) ≤ k1

√
d(x, y) + k2

√
d(x, ux) + k3

√
d(y, uy) + k4

√
d (x, uy) + d (y, ux)

(2.13)
where k1, k2, k3 and k4 are non negative real numbers such that 0 ≤ k1 + k2 + k3 +
2k4 < 1. Then following statement hold:

(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2 6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2 6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅

provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).
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(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.

Remark 2.4. Notice that condition (2.14) is equivalent to

d(ux, uy) ≤ k2
1d(x, y) + k2

2d(x, ux) + k2
3d(y, uy) + k2

4(d (x, uy) + d (y, ux))

+2k1k2

√
d(x, y)d(x, ux) + 2k1k3

√
d(x, y)d(y, uy)

+2k1k4

√
d(x, y)[d (x, uy) + d (y, ux)] + 2k2k3

√
d(x, ux)d(y, uy)

+2k2k4

√
d(x, ux)[d (x, uy) + d (y, ux)] + +2k3k4

√
d(y, uy)[d (x, uy) + d (y, ux)].

Next, in view of Remark 2.4 , by taking k1 = k4 = 0 in Theorem 2.3, we obtain the
following result for multivalued mappings.

Theorem 2.5. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆ and T1, T2 : X → Pcl(X) be multivalued
mappings. If for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and

d(ux, uy) ≤ k2
2d(x, ux) + k2

3d(y, uy) + 2k2k3

√
d(x, ux)d(y, uy)

where k2 and k3 are non negative real numbers such that k2 +k3 < 1, then following
statement hold:

(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2

6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2

6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅
provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).

(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.

On the other hand, by taking k1 = k2 = k3 = 0 in Theorem 2.3, we obtain the
following Chatterjea type result for multivalued mappings.

Corollary 2.6. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆ and T1, T2 : X → Pcl(X) be multivalued
mappings. If for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and

d(ux, uy) ≤ k2
4(d (x, uy) + d (y, ux))

where k4 is non negative real number such 2k4 < 1, then following statement hold:

(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2 6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2 6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅

provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).

(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.
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From Theorem 2.3, by taking k4 = 0, we obtain the extension of Reich contrac-
tion for multivalued mappings.

Corollary 2.7. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆ and T1, T2 : X → Pcl(X) be multivalued
mappings. If for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and

d(ux, uy) ≤ k2
1d(x, y) + k2

2d(x, ux) + k2
3d(y, uy)

+2k1k2

√
d(x, y)d(x, ux)

+2k1k3

√
d(x, y)d(y, uy) + 2k2k3

√
d(x, ux)d(y, uy)

where k1, k2 and k3 are non negative real numbers such that k1 + k2 + k3 < 1, then
following statement hold:

(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2

6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2 6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅

provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).

(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.

If we take k2 = k3 = k4 = 0 in Theorem 2.3, then we get the following
result.

Corollary 2.8. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆ and T1, T2 : X → Pcl(X) be multivalued
mappings. If for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and

d(ux, uy) ≤ k2
1d(x, y) (2.14)

where k1 is a non negative real number such that k1 < 1, then following statement
hold:

(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2 6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2

6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅
provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).

(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.

Finally, by taking Θ(t) = e
n√t in (2.1) we have the following Corollary.

Corollary 2.9. Let (X, d) be a complete metric space endowed with a directed graph
G such that V (G) = X and E(G) ⊇ ∆ and T1, T2 : X → Pcl(X) be multivalued
mappings. If for any x, y ∈ X with (x, y) ∈ E (G) and ux ∈ Ti(x), there exists
uy ∈ Tj(y) for i, j ∈ {1, 2} with i 6= j such that (ux, uy) ∈ E∗ (G) and

n

√
d(ux, uy) ≤ k1

n
√
d(x, y) + k2

n
√
d(x, ux) + k3

n

√
d(y, uy) + k4

n

√
d (x, uy) + d (y, ux)

where k1, k2, k3 and k4 are non negative real numbers such that k1+k2+k3+2k4 < 1,
then following statement hold:
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(i). Fix(T1) 6= ∅ or Fix(T2) 6= ∅ if and only if Fix (T1) = Fix (T2) 6= ∅.
(ii). XT1,T2 6= ∅ provided that Fix (T1) ∩ Fix (T2) 6= ∅.
(iii). If XT1,T2 6= ∅ and G is weakly connected, then Fix (T1) = Fix (T2) 6= ∅

provided that either (a) T1 or T2 is upper semicontinuous, or (b) Θ is
continuous, T1 or T2 is bounded and G has property (P).

(iv). Fix (T1) ∩ Fix (T2) is a clique of G̃ if and only if Fix (T1) ∩ Fix (T2) is a
singleton.

Example 2.10. Consider the sequence {xn} as follows:

xn = 1 + 5 + 9 + ...+ (4n− 3) = n(2n− 1).
Let X = {xn : n ∈ N} = V (G),

E (G) = {(x, y) : x ≤ y where x, y ∈ V (G)}
and

E∗ (G) = {(x, y) : x < y where x, y ∈ V (G)}.
Let V (G) be endowed with usual metric d (x, y) = |x− y| . Then (X, d) is a com-
plete metric space. Define T1, T2 : X → Pcl(X) as follows:

T1 (x) = {x1} for x ∈ X
and

T2 (x) =

{
{x1} , x = x1

{x1, xn−1} , x = xn, for n > 1.

If we consider the mapping Θ : (0,∞)→ (1,∞) defined by

Θ(t) = e
√
tet .

We can easily show that Θ ∈ Ω and the pair of mappings (T1, T2) is a graphic
Θ-contraction. Indeed, the following holds:

e
√
d(ux,uy)ed(ux,uy))

≤ ek1
√
d(x,y)ed(x,y)

for some k1 ∈ (0, 1). The above condition is equivalent to

d(ux, uy)ed(ux,uy) ≤ k2
1d(x, y)ed(x,y).

So, we have to check that

d(ux, uy)ed(ux,uy)−d(x,y) ≤ k2
1d(x, y)

for some k1 ∈ (0, 1). For (ux, uy) ∈ E∗ (G) , we consider the following cases:
Case 01. If x = x1, y = xm, for m > 1, then for ux = x1 ∈ T1 (x) , there exists

uy = xm−1 ∈ T2 (y) , such that

d(ux, uy)ed(ux,uy)−d(x,y) = (2m2 − 5m+ 2)e−(4m−3)

< (2m2 −m− 1)e−1

= e−1d (x, y)

Case 02. When x = xn, y = xm with m > n > 1, then for ux = x1 ∈ T1 (x) , there
exists uy = xn−1 ∈ T2 (y) , such that

d(ux, uy)ed(ux,uy)−d(x,y) = (2n2 − 5n+ 2)e−(2m2−4n2+6n−m−2)

< (2m2 − 2n2 −m+ n)e−1

= e−1d (x, y)
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Now we show that for x, y ∈ X, ux ∈ T2 (x); there exists uy ∈ T1 (y) such that
(ux, uy) ∈ E∗ (G) and (2.15) is satisfied. For this, we consider the following cases:

Case 01. If x = xn, y = x1 with n > 1, we have for ux = xn−1 ∈ T2 (x) , there
exists uy = x1 ∈ T1 (y) , such that

d(ux, uy)ed(ux,uy)−d(x,y) = (2n2 − 5n+ 2)e−(4n−3)

< (2n2 − n− 1)e−1

= e−1d (x, y)

Case 02. In case x = xn, y = xm with m > n > 1, then for ux = xn−1 ∈ T2 (x) ,
there exists uy = x1 ∈ T1 (y) , such that

d(ux, uy)ed(ux,uy)−d(x,y) = (2n2 − 5n+ 2)e−(2m2−4n2+6n−m−2)

< (2m2 − 2n2 −m+ n)e−1

= e−1d (x, y)

Thus for all x, y in V (G), (2.15) is satisfied. Hence all the conditions of Corollary
2.8 are satisfied. Moreover, x1 = 1 is the common fixed point of T1 and T2 with
Fix(T1) = Fix(T2).
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