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On the Level Spaces of Fuzzy Topological Spaces *

S. S. Benchalli & G.P. Siddapur

Abstract

It is known that if (X,T) is a fuzzy topological space and 0 < a < 1
then the family To, = {a(G) : G € T} where a(G) = {z € X : G(z) > a},
forms a topology on X. In the present paper some level properties have
been modified and it is proved that a fuzzy topological space (X,T)
is a-compact (resp. «-Hausdorff, countably a-compact, a-Lindeldf, a-
connected, locally a-compact) if and only if the corresponding a-level
topological space (X,T,) is compact (resp. Hausdorff, countably com-
pact, Lindelof, connected, locally compact). Some basic properties of a-
level sets have also been obtained.

1 Introduction

The investigation of fuzzy topological spaces by considering the properties which
a space may have to a certain degree or level was initiated by Gantner et. al
[3]. This approach resulted into the investigation of a-Hausdorff axiom [10],
countable a-compactness, a-Lindeldf property [6], local a-compactness [7], a-
closure [4] etc. in fuzzy topological spaces.

Throughout this paper Chang’s [1] definition of fuzzy topological space (ab-
breviated as fts) is used. If X is a set and T is a family of fuzzy subsets of X
satisfying the following conditions (i) to (iii) then T is called a fuzzy topology
on X ; (i) X,¢ € T (ii) arbitrary union of members of T' is again a member of
T and (iii) intersection of finitely many members of 7' is again a member of T
Further (X,T) is called a fuzzy topological space (fts). If (X,T) is a fts and
0 < a < 1 then the family T, = {a(G) : G € T}, of all subsets of X of the form
a(G) = {z € X : G(z) > a} called a-level sets, forms a topology on X [4] and
is called the a-level topology on X.

In this paper, some basic properties of a-level sets have been obtained. The
a-Hausdorff axiom [10] and the local a-compactness of [7] have been modified.
The a-connectedness has been proposed. It is proved that a fts (X,T) is a-
compact (a-Hausdorff, countably a-compact, a-Lindelof, a-connected, locally
a-compact) if and only if the corresponding a-level topological space (X, T,)
is compact (resp. Hausdorff, countably compact, Lindeldf, connected, locally
compact)
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2 «a-Level Sets and Their Basic Properties

If G is any fuzzy set in aset X and 0 < o < 1 (0 < a < 1) then o(G) =
{r e X :G(x) > a} (resp. a*(G) = {r € X :G(z) > a}) is called an a-level
(resp. a*-level) set in X.

The term crisp subset refers to an ordinary subset which is identified with
its characteristic function as a fuzzy subset.

If f: X =Y is a function and A is a fuzzy subset of X then f(A) is a fuzzy
subset of Y defined by f(A)(y) = sup{A(z):x € f~(y)} for each y € Y.
Further, if B is a fuzzy subset of Y then f~!(B) is a fuzzy subset of X defined
by f~1(B)(x) = B(f(x)) for each z € X.

Some basic properties of a-level sets are given in the following.

Theorem 2.1 Let X, Y be any two sets and 0 < o < 1. The following state-
ments are true.

1. If G is any fuzzy set in X then G(z) < a(G)(z) holds for all x € X with
G(z) > a.

If G < H then o(G) C a(H) for any two fuzzy sets G, H in X.
a(G) = G if and only if G is a crisp susbet of X.
a(a(@)) = a(Q) for any fuzzy set G in X.

a(\/ G)y) = Uoz(GA) for any family {Gx : X\ € A} of fuzzy sets in X.
A A

vt e

6. a(/\ G)y) = ﬂa(G,\) for any family {Gx : A € A} of fuzzy sets in X.
A A

7. If f: X =Y, then f(a(Q)) = a(f(Q)) for each fuzzy set G in X.
S8 Iff: X =Y, then f~1(a(G)) = a(f~1(Q)) for each fuzzy set G inY.

9. a(G x H) = a(G) x a(H) for any two fuzzy sets G, H in X where G x H
is a fuzzy set in X XY given by (G x H)(z,y) = G(z) N H(y) for each
(z,y) e X xY.

Proof. (1). Let v € X with G(z) > a. Then = € a(G) so that (a(G))(z) =
1> G(z) > o and therefore G(z) < (a(G))(x).

(2) If x € a(G) then G(z) > a and therefore H(z) > G(x) > «a. Conse-
quently = € o(H).

(3) If G is crisp and if z € X then G(z) =0 or 1. If G(z) = 0 then = ¢ a(G)
and therefore (a(G))(x) = 0 which proves G(z) = a(G(z)). In case if G(x) = 1,
then G(x) =1 > « and therefore © € «(G) which proves (a(G))(z) = 1 = G(z).
The converse part follows as a(G) is crisp.
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(4) Follows from (3) as «a(G) is crisp.
(5) If x € a(\/ G») then Sup(Gx(z)) > «. Consequently there exists a A,

such that Gx,(z) > a which implies z € a(Gy,) and hence z € Ua(GA).
A
Therefore a(\/ G,) C Ua(GA). Similarly Ua(GA) C a(\/ G») and hence the
A A A

A
equality.

(6) If z € a(/\ G,) then (/\ Gy)(z) > a and therefore G)(z) > « for each
A A
A. This implies that z € «(G,) for each A and therefore = € /\a(G,\). Thus

A
oz(/\GA) C ﬂa(GA). Similarly ﬂa(GA) C a(/\ Gi).
A A A A

(7) If y € f(a(@)) then there is an element x € a(G) such that y = f(x).
Now G(z) > o and therefore Sup{G(z):z € f~*(y)} > a which implies
(f(@)(y) > a. Then y € a(f(G)). Thus f(a(G)) C a(f(G)). Similarly it
can be shown that a(f(G)) C f(a(G)) and hence the result follows.

(8) Let x € f~1(a(@)). Then f(z) =y € a(Q) so that G(y) = G(f(x)) > a.
Therefore [f~(G)] (z) > a which implies z € a [f~!(G)] and hence it follows
that f~1(a(G)) C a(f~1(G)). Similarly a(f~1(G)) € f~'(a(G)) and hence
the equality.

(9) If (z,y) € (G x H) then (G x H)(z,y) > « and therefore z € aQ)
and y € a(H). So (z,y) € a(G) x a(H). Thus a(G x H) C a(G) x a(H).
Similarly it can be shown that a(G) X a(H) C a(G x H) and hence the equality
follows.

3 Level Spaces and Main Results

In the beginning of this section we deal with Rodabaugh’s [10] a-Hausdorff fts.

Definition 3.1 Let 0 < o < 1 (0 < a < 1). A fts (X,T) is said to be a-
Hausdorff (resp. o*-Hausdorff) if for each xz, y in X with x # y, there exist G,
H in T such that G(z) > « (resp. G(x) > o), H(y) > « (resp. H(y) > «) and
GANH=0.

We have the following

Theorem 3.2 Let 0 < o < 1. If a fts (X, T) is a-Hausdorff, then (X,T,) is
Hausdorff topological space.
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Proof. Let z,y € X with  # y. Then there are G, H in T such that G(z) > «,
H(y) > o and GA H = 0. Then «(G) and «(H) are open sets in (X,T,) and
z € a(G),y € a(H). Also a(G) Na(H) = ¢ since GA H = 0. Hence (X, T,) is
Hausdorff topological space.

The converse of the above theorem holds for the case of @ = 0, which is
given in the following.

Theorem 3.3 Let (X,T) be a fts. If (X,Ty) is Hausdorff topological space,
then (X,T) is 0-Hausdor{f fts.

Proof. Let x,y € X with x # y. Then there are open sets U,V in (X, Ty) such
that € U,y € Vand UNV = ¢. Let U = 0(G),V = 0(H) for some G, H in T
Then it follows that G(x) > 0 and H(y) > 0. Further GAH =0asUNV = ¢.
Hence (X, T) is 0-Hausdorft.

Definition 3.4 Let X be a set and 0 < a <1 (0<a<1). A family {Gr}, of
fuzzy sets in X is said to be a-disjoint (resp. o*-disjoint) if/\GA < « (resp.

A
A\ Gx < ).
A

It is evident that two fuzzy sets G, H in X are a-disjoint (a*-disjoint) if and
only if for each z in X either G(z) < « (resp. G(x) < a) or H(z) < «
(resp.H(z) < ).

Rodabaugh’s definition is suitably modified in the following.

Definition 3.5 Let 0 < o < 1 (0 < a < 1). A fts (X,T) is said to be a-
Hausdorff (resp. a*-Hausdorff) if for each z, y in X with x # y, there exist G,
H in T such that G(x) > « (resp. G(z) > «), H(y) > « (resp. H(y) > a) and
G, H are a-disjoint (resp. o*-disjoint).

For the modified class of a-Hausdorff fuzzy topological spaces we have the fol-
lowing.

Theorem 3.6 Let 0 < a < 1. A fts (X,T) is a a-Hausdorff if and only if
(X, Ty) is Hausdorff topological space.

Proof. Let (X,T) be a-Hausdorff. Let z,y € X with « # y. Then there exist
G, H in T with G(z) > o, H(y) > a« and GAH < a. Then o(G), a(H) are open
sets in (X, T, ) such that z € a(G), y € a(H) and o(G)Na(H) = a«(GNH) =
{reX: (GANH)(x)>a}=¢as GAH < a. Therefore (X, T,) is a-Hausdorfl.

Conversely, suppose (X,T,) is a-Hausdorfl. Let z,y € X with « # y. Then
there exist open sets U,V in (X, T,,) such that z € U, y € V and UNV = ¢. Let
U=a(G) and V = a(H) for some G,H € T. Then z € «(G) and y € a(H).
Therefore G(x) > « and H(y) > «. Further GA H < a as UNV = ¢. Hence
(X,T) is a-Hausdorff.
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Let 0 <a<1(0<a<1l). Afamily {G): X € A} of fuzzy subsets of a fts
(X,T) is said to be an a-shading ( a*-shading) of X if for each x € X, there
exists a G, in {G : A € A} such that G (z) > a (> «a).

The following definition is due to Gantner et. al [3].

Definition 3.7 Let 0 < o < 1 (0 < « < 1). A fts (X,T) is said to be a-
compact (resp. a*-compact) if each a-shading (resp. o*-shading) of X by open
fuzzy sets has a finite a-subshading (resp. o*-subshading).

We have the following

Theorem 3.8 Let 0 < a < 1. A fts (X,T) is a-compact if and only if (X, T,)
18 compact topological space.

Proof. Let (X,T) be a-compact. Let U = {Uy : A € A} be an open cover of
(X, T,). Then, since for each Uy, there exists a G in T such that Uy = «a(G)),
we have U ={a(G,) : A € A}. Then the family V. = {Gr: A€ A} is an a-
shading of (X, T). To see this, let € X. Since U is an open cover of (X, T,),
there is an Uy, € U such that x € Uy,. But Uy, = a(G,,), for some G, € T.
Therefore € «a(G,,) which implies that G, (x) > a. By a-compactness of
(X,T), V has a finite a-subshading say {GAi}le. Then {a(GAi)}le forms a
finite subcover of U and thus (X, T,) is compact.

Conversely, let (X,T,) be compact and U ={G, : A € A} be an open a-
shading of (X,T). Then the family V' = {«(G)) : A € A} is an open cover of
(X,T,). For, let z € X. Then there exists a G, in U such that Gy, (z) > a.
Therefore z € «(Gy,) and (Gy,) € V. By compactness of (X,T,), V has
a finite subcover say {a(Gy,)};_,. Then the family {G),},_, forms a finite
a-subshading of U and hence (X,T') is a-compact.

Countable compact fts have been studied in [6, 11-13].

Definition 3.9 Let 0 < a <1 (0 < a <1). A fts (X,T) is said to be count-
ably a-compact (resp. countably o*-compact) if every countable open a-shading
(resp. countable open a*-shading) of X has a finite a-subshading (resp. finite
a*-subshading).

It is easy to verify the following

Theorem 3.10 Let 0 < o < 1. A fts (X, T) is countably a-compact if and only
if (X,Ty) is countably compact topological space.

Lindelof fuzzy topological spaces were studied in [6, 8, and 12]. Lindelsf
fuzzy topological spaces, using shading families, were introduced in [16].

Definition 3.11 Let 0 < o < 1 (0 < a < 1). A fts (X,T) is said to be
a-Lindelof (resp. o*-Lindelof) if and only if every open a-shading (resp. open

a*-shading) of X has a countable a-subshading (resp. countable o*-subshading).

Again it is easy to verify the following.
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Theorem 3.12 Let 0 < a < 1. A fts (X,T) is a-Lindelof if and only if (X, Ty,)
1s Lindelof topological space.

Definition 3.13 Let 0 < a < 1 (0 < a < 1). Let X be a non-empty set. A
fuzzy set A in X is said to be an empty fuzzy set of order « (resp. order o*) if
Alx) < a (resp. A(z) < ) for each z € X.

A fuzzy set A in X is said to be non-empty of order « (resp. order o*) if
there exists z, € X such that A(z,) > « (resp. A(z,) > a).

Connectedness in fuzzy topological spaces was studied in [5, 9].

Connectedness, using shading families, is given in the following.

Definition 3.14 Let 0 < a < 1 (0 < a < 1). A fts (X,T) is said to be
a-disconnected (resp. o*-disconnected) if there exists an a-shading (resp. o*-
shading) family of two open fuzzy sets in X which are non-empty of order «
(resp. order o* ) and a-disjoint (resp. o*-disjoint).

Definition 3.15 Let 0 < a < 1 (0 < a < 1). A fts (X,T) is said to be
a-connected (resp. «*-connected) if there does not exist an a-shading (resp.
a*-shading) family of two open fuzzy sets in X which are non-empty of order «
(resp. order o*) and a-disjoint (resp. o*-disjoint).

We now prove the following

Theorem 3.16 Let 0 < o < 1. A fts (X,T) is a-connected if and only if
(X, T,) is connected topological space.

Proof. Let (X,T) be a-connected. Suppose (X,T,) is disconnected. Then
there exist non-empty disjoint open sets U,V in (X, T, ) such that U UV = X.
Now U = a(G), V = a(H) for some G,H € T. Since U,V are non-empty sets
it follows that G and H are non-empty fuzzy sets of order «. Further {G, H} is
an a-shading of X: For if € X then € U or € V and therefore x € a(G) or
x € a(H) which implies that G(z) > o or H(z) > a. Also G, H are a-disjoint:
For, U NV = ¢ implies that a(G) N a(H) = ¢. Therefore a(G A H) = ¢. That
is{xreX:(GAH)(z)>a} = ¢. Therefore for each x € X,(GANH)(z) < «
and so G, H are a-disjoint. Thus it follows that {G, H} is an a-shading of open
fuzzy sets which are non-empty of order « and are a-disjoint. Therefore (X, T)
is a-disconnected, which contradicts the hypothesis. Hence (X, T, ) is connected
topological space.

Conversely, suppose (X,T,) is connected. Let (X,T") be a-disconnected.
Then there exist an a-shading {G, H} of two open fuzzy sets in X which are
non-empty of order a and a-disjoint. Clearly a(G), a(H) are open sets in
(X,Ty). Further o(G), o(H) are non-empty as G, H are non-empty of order
a. Also a(G)Na(H) = a(GANH) = {z€ X : (GANH)(z) > a} = ¢ since
(GAH)(z) < aas G, H are a-disjoint. Finally o(G)Ua(H) = X: Forif x € X
then either G(x) > o or H(z) > « as {G, H} is an a-shading of X. Therefore
z € (@) or z € a(H) and therefore x € a(G)Ua(H). Thus X C a(G)Ua(H).
Also a(G) U a(H) C X is obvious. Therefore a(G) U a(H) = X. Hence it
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follows that X is the union of two non-empty disjoint open sets in (X, T,)
and therefore (X, T,) is disconnected, which contradicts the hypothesis. Hence
(X,T) is a-connected fts.

Local compactness in fuzzy topological spaces was studied in [2, 3, 7, 14].
The definition of local compactness in [7] is modified in the following.

Definition 3.17 Let 0 < a <1 (0 < a<1). 4 fts (X,T) is said to be locally
a-compact (resp. locally o*-compact) if for each p € X there exists an open
fuzzy set N such that N(p) > « (resp. N(p) > «) and a(N) (resp. a*(N) ) is
a-compact (resp. o -compact).

We prove the following

Theorem 3.18 Let 0 < a < 1. A fts (X, T) is locally a-compact if and only if
(X, Ty) is locally compact topological space.

Proof. Let (X,T) be locally a-compact. Let x € X. There exists an open
fuzzy set N in (X,T) such that N(x) > a and «a(N) is a-compact. Therefore
a(N) is an open set in (X, T, ) containing x such that a(N) is compact subset
in (X,T,): Forif {Uyx =a(Gy): A€ A,Gy €T} is an open cover of a(N) in
(X,T,) then the family {G : A € A} is an open a-shading of a(N) in (X, T).
Since a(N) is a-compact {Gy : A € A} has a finite a-subshading say {G,\i}le.
Then {a(Gy,) =Uy, :i=1,2,.......k} is a finite subcover of {Uy : A € A} for
a(N). So a(N) is a compact subset of (X,T,). Thus for each x € X, there
exists an open set a(N) in (X, T,) such that z € a(N) and «(N) is compact.
Hence (X, T,) is locally compact topological space.

Conversely, suppose (X,T,) is locally compact. Let p € X. Then there
exists an open set a(G) in (X,T,), where G € T, such that p € a(G) and
a(@G) is compact set in (X, T,). Now G € T and G(p) > a. Further a(G) is a-
compact in (X, T'): Forif {H)},., is an open a-shading of a(G) in (X, T'), then
{a(H)) : A € A} is an open cover of a(G). Since a(G) is compact in (X, T,),
{a(H) : A € A} has a finite subcover say {a(Hx,):i=1,2,....... ,k}. Then
{Hy, :i=1,2,....... ,k} is a finite a-subshading of { Hx} ., for a(G). Therefore

every open a-shading for a(G) has a finite a-subshading and therefore o(G) is
a-compact. Thus for each p € X there exists an open fuzzy set G in (X,T)
such that G(p) > a and a(G) is a-compact in (X,T). Hence (X,T) is locally
a-compact .
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