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Weierstrass transform associated
with the Hankel operator *

Slim Omri, & Lakhdar Tannech Rachdi

Abstract
Using reproducing kernels for Hilbert spaces, we give best approximation
for the Weierstrass transform associated with the Hankel transform. Also,
estimates of extremal functions are checked.

1 Introduction

The Hankel transform H,,, p > —1/2, is defined for all integrable functions on
T2;L+1

[0, 400 with respect to the measure mdr as

Hu(N) = g7 / " Frgu e
YT T 1) Jy T ’

where j, is the modified Bessel function of the first kind and index pu.

Many harmonic analysis results related to the transform H,, are established
in [6, 9, 13, 18, 20, 21].

Our purpose in this work is to define and study the Weierstrass transform
W, associated with the Hankel transform H,,.

This transform is defined by

52p+1

+oo
WD) = [ a6 g

where &:(r,s), t > 0 is the heat kernel associated with the Hankel transform
which will be defined later. This integral transform which generalizes the usual
Weierstrass transform [11, 15, 16], solves the heat problem

{ glt(u)(rv t) = %(Tv t)?
U(T, 0) = f(r)a
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2 Weierstrass transform associated with the Hankel operator

where ¢,, is the singular differential operator defined on ]0, 00| by
9% 2u+10
bp=255+ . o
or r Or
Building on the ideas of Saitoh, Matsuura, Fujiwara and Yamada [5, 12, 14,

15, 16], and using the theory of reproducing kernels [2], we give a best approx-
imation of this transform and nice estimates of the associated extremal function.

2pu+1
Let L2([0, +o0], mdr) be the Hilbert space of square integrable func-
r2;,a+1
tions on [0, +o00[ with respect to the measure mdn and (.|.), its inner

product.

For v € R, we consider the Sobolev type space H# ([0, +00[), consisting of func-
2p+1

tions f € L*(]0, o0, dr) such that the function

240 (p + 1)

A— (14 X)"PH, (F) V),
2p+1

T20T (4 1)
is the Hilbert space when equipped with the inner product

belongs to the space L?([0, +oo[ dr). Then for v > pu+1, HZ([0, +00])
+o0 ) )\2u+1
o = [ 0 XM DD N gy

Moreover, the kernel

K,(r,s) = /+OO Ju(Ar)ju(As) A2 d\
o 0 (L+A2)» 20D(p+1)

is a reproducing kernel of the space H"([0, +oc[), where

_ 2T(p+1) S e

jul) = TEER ) = T )Y e e G0 2 C

2 n=0
and J,, is the Bessel function of the first kind and index p. Using the properties
of the Hankel transform H,, and its connection with the convolution product,
we show that the Weierstrass transform W, ; is a bounded linear operator from

2pu+1
7mdﬂ and that for all f € H%([0, +o00]),

Wit (D)2, < £l

Next, for £ > 0, we define on the space H¥([0, +00[), the new inner product
by setting

H* ([0, 400]) into L2([0, +o0[

(Flghv.e = 19w + Wit (F) Wit (9)) -
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We show that H ([0, +o0o[) equipped with the inner product (.|.), ¢, is a Hilbert
space and we exhibit a reproducing kernel, that is

+oo . . 2u+1
’Cuyf(rv S) = / jﬂ()\;)j#(AS)Q 2 A dA.
) AR+ ST ()

The last section of this paper is devoted to study the extremal function. More

T2H+1
dr), the

precisely, for all v > p+1, £ > 0and g € L2([0,+oo[7m
%

infimum of
(€012 +11g = Woa (DI s S € HE(0, +00D

is attained at one function fg‘ 9 called the extremal function. We establish also,
the following estimates

e For all f € HA([0, +oo[) and g = W, .(f),

lim [|7¢, - /], = 0.

£—0t v
e For all f € HZ([0,+00[) and g = W, (f),

5lir(r)l+ fé 4(r) = f(r), uniformly.

2 The Hankel transform

We denote by

e dv, the measure defined on [0, +o0[ by
T2/1,+1
dyu(r) = mdr,
o LP(dv,), p € [1,400], the space of measurable functions f on [0, +00]
satisfying

+oo )
|f||w:(/0 f<r>|pcm<r>) < oo, ifp € [1,+of:

[fllso, = ess sup [f(r)] < oo, if p = +o0.
’ ref0,+o00]
e (.|.), the inner product on L? (dv,) defined by
+oo -
Ulae= [ 1))
e (. o(R) the space of even continuous functions f on R such that

lim f(r)=0.

7| =00



4 Weierstrass transform associated with the Hankel operator

Let ¢, be the Bessel operator defined on ]0, +-00[ by

u// + 2:u’+ 1u/

Eu(u) = ”

then for all A € C, the following problem,

)

0, (u) = —\?u,
u(0) =1,
w/(0) =0,

admits a unique solution given by j,(A.), where

_2MT(u+1) S e

Ju(2) =T(u+1)) i (22", zecC, (21)

]M(Z) ~ /1'+n+]-) 2

2
and J,, is the Bessel function of the first kind and index p [1, 3, 10, 22].
The eigenfunction j,, satisfies the following properties

e The function j, has the Mehler integral representation, for all x € R

W+ [ 212 g : s
Ju(@) = ﬁr(u+(1/z))/o(1 %) tdt, if p>—1/2;

cos , if p=-1/2.
eForalln € Nand z € R
3, ()] < 1. (2.2)

e The function j, satisfies the product formula [10, 22|, for all 7, s € [0, +-00]

C(p+1) /” (Vi ing)2 i
(V12 + 82+ 2rscosf)(sinf)**dh, if p>—1/2;

Jo1y2(r+s) + i 1/2(r —s)
2 b

Ju(r)ju(s) =

if p=—1/2.

Using the product formula, we will define and study the Hankel translation
operator and the convolution product.

Definition 2.1 1) For all r € [0, +o0], the Hankel translation operator TF is
defined on LP(dv,) by

M(p+1) /Tr 2 . ‘
f(\/r2 + 52 + 2rscosf)(sin 6)°#dl, if u > —1/2;
i (s = d T(p+ 1/2)T(1/2)
FOE = HE V2

3 ; if u=-1/2.
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2) The convolution product of f,g € L*(dv,) is defined by

—+oo
Frug) = [ D)),
0
The following assumptions hold

e The product formula can be written
V(r, s) € [0, 4+00[x[0, +oof, 7 (ju(A))(s) = Ju(Ar)ju(As).

e For all f € LP(dv,), p € [1,+0o0], and for all r € [0, 4+o00[ the function 7/(f)
belongs to the space LP(dy,) and

||7'ru(f)||p7/t < ||f||p,/r (2.3)

e Let p,q,r € [1,400] be such that 1/p+1/g = 1+1/r. For all f € L”(dv,) and
g € L(dv,), the function f *, g belongs to L"(dv,) and we have the following
Young inequality

1f % gllrn < N lpoll gl .- (2.4)

e For all f € L'(dvy,) and X € [0, +o0[, the function 74'(f) belongs to L' (d~,)
and we have

—+oo —+oo
| #owam = [ . (25)
Definition 2.2 The Hankel transform H,, is defined on L*(dv,) by [17]

+oo
HNW) = [ SN0, AeR
where j, is the modified Bessel function defined by the relation (2.1).

The Hankel transform satisfies the following properties

e For all f € L'(dy,) the function H,(f) belongs to the space C, (R) and

HH (D lloone < N F 11,
e For all f € L'(dvy,) and r € [0, 00|

Hu(T2(F))(N) = Gu(r)HL(F) (V). (2.6)
e For f,g € L' (dv,)
Hu(f *09) = Hu(FIHu(9)-
Theorem 2.3 (Inversion formula for H,) Let f € L*(dv,) such that H,(f) €
L(dv,), then for almost every r € [0, 400, we have

—+o0

fr) = o Hu(f)()\)ju()‘r)d'Yu(/\)-



6 Weierstrass transform associated with the Hankel operator

Theorem 2.4 (Plancherel theorem) The Hankel transform H,, can be extended
to an isometric isomorphism from L*(dv,) onto itself. In particular for all
f.g9 € L*(dv,), we have (Parseval equality)

+oo

+oo - _
/0 f(r)g(r)dy,(r) = ; Hu (PN Hu(9) (N dyu(N)-

Remark 2.5 i) Let f € L'(dvy,) and g € L*(dv,), by the relation (2.4), the
function f*, g belongs to L*(dv,), moreover

Hu(f *49) = Hu(f)Hu(g)-

i) For all f,g € L*(dv,) the function f *, g belongs to the space Cyo(R) and
we have

Frug=MHu(Hu(f)Hu(9))- (2.7)

3 Weierstrass transform associated with the Han-
kel operator
In this section, we will define and study the Weierstrass transform associated

with H,,. For this we define some Hilbert spaces and we exhibit their reproduc-
ing kernels.

Let v be a real number, v > u + 1. We denote by

e H/ ([0, +o0]) the subspace of L?(dvy,) formed by the functions f, such that
the maps

A= (LA PHL(F)OV),
belongs to L*(d,,).

e (.|.), the inner product on H ([0, +00[) defined by

+oo
o = [ 0+ 22 MDD ).
o ||.||, the norm of H#([0,+o00[) defined by

Al = VS Lo

Remark 3.1 Forv > u+ 1, the function
1
(1+A2)/2

belongs to L*(dv,). Hence for all f € HX([0,+00]), the function H,(f) belongs
to L' (dvy), then by inversion formula 2.3, we have for almost every r € [0, 00|

A —

—+o0

fr) = | H (M) ju(Ar)dyu(A).
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Proposition 3.2 For v > p+ 1 the function K, defined on [0, 4+00[x[0, +00]
by
400 - .
Ju(Ar)gu(As)
Ko (r, s) = Tl AT )IAAS) g oy,
o) = [ 2, )

is a reproducing kernel of the space HX([0,+00[), that is
i) For all s € [0,400], the function

r— K, (r,s),

belongs to H([0, +00]).
ii) (The reproducing property) For all f € HE(]0,4+00[) and s € [0, +00],

<f|ICV(7S)>V = f(S)

Proof. i) From Remark 3.1 and the relation (2.2), we deduce that for all
s € [0, +o0], the function

Ju(As)
A (142w’

belongs to L'(dv,) N L*(dvy,). Then, the function K, is well defined and by
Theorem 2.3, we have

Ky(r,s) = HH(M)(T).

By Plancherel theorem, it follows that for all s € [0, +o0], the function K, (., s)
belongs to Lg(dyu), and we have

ju(AS)

M, (ICV(.,s))()\) = e (3.8)

Again, by the relation (2.2) and Remark 3.1, it follows that the function
A (L + A2 H, (Ko (. 8)) (N,
belongs to L?(dy,,).

ii) Let f be in HX(]0, +00[). For every s € [0, 400[, we have

+oo
(FIKu (- 8)) :/0 (14X Hu(H N H(Ko (- 9)) (N dyu(A),

and by the relation (3.8), we get

“+oo
(FI (s 8)) = ; Hu(F)N)dp(As)dyu(N).

The result follows from Remark 3.1.



8 Weierstrass transform associated with the Hankel operator

The heat equation associated with the Hankel transform is given by

9]
guu(ﬁ t) = Eu(rv t)a (39)
where £, is the Bessel operator defined above.

Let E be the kernel defined by

+oo
B(r,t) /0 eV (I ) dy (V) (3.10)

e—r2/4t

Then, the kernel E solves the equation (3.9).

Definition 3.3 The heat kernel associated with the Hankel transform is defined
by

Eilr,s) =T (E(.,t))(s) (3.11)

2 2 .
e~ (ri+s)/at g

= 4(2t)”+1 i o)
Then, we have the following properties

i) Forallt >0, & > 0.

ii) From the relations (2.3),(2.6),(3.10) and (3.11), for all ¢ > 0, r € [0, +o0],
the function & (r,.) belongs to L'(dvy,) and for all A € [0, +00[, we have

Ho(E(r, ) (A) = e 5 (W),

iii) From the relations (2.3), (2.5), (3.10) and (3.11), for all ¢ > 0 and
s € [0, +oo[, the function &/(., s) belongs to L'(dy,) and we have

+oo +oo
/ E(r, s)dy,(r) = / E(r,t)dy,(r) =1.
0 0
iv) For all s € [0, +o0], the function
(Tv t) — 5t(r7 8)7
solves the heat equation (3.9).

In the following, we shall define the Weierstrass transform associated with the
Hankel transform and we establish some properties that we use later.
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Definition 3.4 The Weierstrass transform associated with the Hankel trans-
form is defined on L*(d,,), by

Wit (f)(r)

(E(,t) %, f)(r) (3.12)
+oo
- / Ex(r, 5) £ () (s).

For the classical Weierstrass transform, one can see [11, 15, 16].

Proposition 3.5 i) For all f € L*(dv,), the function W, +(f) solves the heat
equation (3.9), with the initial condition

lim W,.(f)=f, in Lz(d'yu).

t—0+

i) For allt >0 and v > p+ 1, the transform W, ; is a bounded linear operator
from HE([0, 4+00]) into L*(dvy,) and for all f € HX([0,400]) we have

||Wu,t(f)H2,M < ||f‘|v
Proof. i) From the relations (3.11), (3.12), the derivative’s theorem and the

fact that for all s € [0, +oo], the function (r,t) — &:(r, s) solves the heat equa-
tion (3.9), we deduce that the function W, ,(f) is a solution of (3.9).

The family (E(.,t))
L? (d'Yu)

40 1S an approximate identity, in particular for all f €

%iII(l)E(.,t) s, f=f in  L*(dv,).
ii) From the relations (2.4) and (3.12), for all f € L?(dv,), we have

IVt (D)l e = HEC, 1) 5 flly
SHEC Ol 11z,
= 1 £llg, = Hu(f)

pn <1, -

Notations. For all positive real numbers &, ¢ and for v > u + 1, we denote
by
e (.|.)v.¢, the inner product defined on the space H([0,4o00[) by

(F19)ve = E(F19)w + Wt (H) Wit (9)) -

o H} ([0, +00[), the space H.([0, +00[) equipped with the inner
product (.|.),.¢ and the norm

I = ENFIE + 1t (DIIE -

Then, we have the following main result [11, 15].
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Theorem 3.6 For all {,t >0 and v > p+ 1, the Hilbert space Hj, ([0, +00()
admits the following reproducing kernel,

oo (rA)fu(sA
Cucro) = [ g s e )

that is
i) For all s € [0,+00], the function r — K, ¢(r, s) belongs to H), ([0, +00]).
i) (The reproducing property.) For all f € H ([0, +00[) and s € [0, +o0,
(1K 8))e = f(s).
Proof. i) Let s € [0, +o00[. From the inequality (2.2), we have
|ju()‘5)| < 1
6(1+>\2)u+672t)\2 = 5(1+/\2)y'

Then by the hypothesis v > u + 1, we deduce that for all s € [0, +o0c[, the
function

Ju(As)
A—
5(1 + )\2)11 + 67215)\2 ’

belongs to L'(dy,) N L?*(dv,), and by the Plancherel theorem, the function

s Ky e(r,s) = M, (g(l - ;’5)9? — ) (r) (3.13)

belongs to L?(d~,,), moreover the function

(1+A%)¥/25,(Xs)
5(1 + AQ)V + 672t)\2 )

N (14 20221, (K 5) ) () =
belongs to L?(d~,,).
This proves that for all s € [0,4o00], the function K, ¢(.,s) belongs to the

space HJ, ([0, +o0]).
ii) Let f be in H} ([0, +0oo[). By the relation (3.13), we get

o0 - s
<f|ICV,5('a S)>V = /0 (1 + )\Z)UHM(JC)()‘) X ({(1 + }\75)(3\_’_) 6_2t’\2> d’Yu(/\)-

(3.14)
On the other hand, we have
Wit (K () (1) = (B 50 K 9)) (),
and by the relations (2.7), (3.10) and (3.13), we get
Ju(As)e=t
W/‘L7t (’CV,f('7 S)) (7") = H# (5(1 :)\2)1/ + e—2t\? ) (T) (315)
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By the same way

WD) = Hu(e™ 1) (). (3.16)

Thus,

Wit Wi (K 9)) = () 10 if))f D

Using the Parseval formula, we get

ju(As)eft)‘Q
£(1+A2)I/ +€—2t)\2

Wt (D)Wt (Ko (9) ) ) = (™ Hou(£)] o (317)

Combining the relations (3.14) and (3.17), we obtain

+oo
el )ve = | HulH)NuAs)dr(A).

The desired result arises from Remark 3.1.

4 The Extremal Function

This section contains the main result of this paper, that is the existence and
unicity of the extremal function related to the generalized Weierstrass transform
studied in the previous section.

Theorem 4.1 Letv > p+1, £€>0 and g € L?(dvy,). Then there is a unique
function fg , € HY([0,+00]), where the infimum of

(€11 + 1lg = W DIB s € BE(O, 00D },

s attained. Moreover, the extremal function fg*’ g s given by

+o0
féq(r) :/0 9(5)Qe(r, s)dyu(s), (4.18)
where,
oo o=t 5 (Ar) i, (\s
Quros) = [ E I . (419)

Proof. The existence and unicity of the extremal function ff  is given by
[11, 15, 16]. On the other hand, we have

£.0(8) = 9ot (Ko (9)))
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and by (3.15), we obtain

ju(As)e=tA
fé*yg(s) = <9|H#(§(1 i E\z)z 4 e—2tA? )>“

_ /0+°° g(r)( /O+°° fe(lt_)\: i‘;giﬁjg(;;)? d%(A))d%(r)

—+o00
= /O g(’l“)Qg(ﬁ S)d'ﬂt(r)'

Corollary 4.2 Letv > p+1, €>0 and g € L*(dv,). The extremal function
fE 4, satisfies the following inequality

Cp—1) [T
12015, < gty [ € laOPa(r),

Proof. We have
+oo 2,2
fia) = [ TR g Qelr ) o).

By Holder’s inequality we get

P < ([ eram)( [ ().

Integrating over [0, +oco[ with respect to the measure dv,(s), we obtain

’ g(/o'hx’ e—TQd’Y;L(T)) (/0+°° e |g(r)|2 Qe (r, )ng d’yﬂ(T)).

However, by the relation (4.19)

—+oo

e 9(r) | Qe(r, 5)

e 5, (O
Q) = (g ) (o) (4.20

then by the Plancherel theorem
+o0 —2tA\? | 2
2 e (A7)
QeI = [ A ().
0 [E(14 A2V + eV

Since, a? +b? > 2ab, a,b > 0, and in virtue of the relation (2.2), it follows that

o0 d
Yu(A)
—_— 4.21
IQetrlE, < 3 | a5 (1.21)
We complete the proof by using the relations (4.20) and (4.21), and the fact
that .
© 1
| e = g
and

/+°O dyu(N) :F(V—,u—l)
0 (14 A2)¥ 20417 (v)
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Corollary 4.3 Let v > p+ 1. For all g1, 92 € L*(dv,), we have
”gl 792”2,;1,

| e

Proof. Let v > 4+ 1. For all r € [0, 400[, the function

fg,yl B fg»!]z“u <

2
e—t)\

— E(L 1 A2)V 4 e2t% Jn

(/\7'),

belongs to L'(dvy,) N L?(dv,).
From the relation (4.18) and the fact that

e’“‘qu()\s)
Qf(ra s) = Hﬂ(f(l +A2)v + e—2tA2 ) (),

we deduce that for all g € L?(dv,) and s € [0, +oc[, we have

+o0 e—tA% 5 (g
Feal)= [ o0 (gt o ) )

Applying Parseval’s equality, we get

o0 —t\? A
o) = [ MO g e )

2
e—tA

€1+ N2 + 222 ) (s),

Hy <Hu (9)

which implies that

2
e—t)\

é‘(]_ + )\2)11 + e—2tA?”’

Hulfeg)N) = Hulg)(N) (4.22)

then for all g1, g2 € L*(dv,),

Applying again the fact that a® + b? > 2ab, a,b > 0, we obtain

’ 2

fﬁ*»gl - f§*792

9 oo (14 A2)ve—2tA ‘Hu(m —92)(A)
_ / dyp(A).

v (¢a +/\2)”+e—2t’\2)2

. . 2 1 [+
fﬁ,m_ff,ngy < Q/o |Hu(91_92)(/\)|2d'7u(/\)

1 2
= Q g1 — 92|‘2,p'
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Corollary 4.4 Let v > p+1. For every f € HE([0,+00[) and g = W, +(f), we
have

dm 5z, - 11, =0
Moreover, (fg,g)£>0 converges uniformly to f as & — 0.

Proof. Let f € HY([0,4+00[) and g = W, (f). From Proposition 3.5, the
function g belongs to L?(dvy,). Applying the relations (3.16) and (4.22), we

obtain 2
: =1+ M) Hu(f) (A
Hulfey— 1A = 55((1+A2))'/+2(J;z/(\2)'

(4.23)

Consequently,

+oo 2 2\2v
2= 110 = [ ey oy IO

Using the dominated convergence theorem and the fact that

E(L+ )™ [Hu (V)

B )\2 v H# >\ 2,
(f(1+/\2)”+672t,\2)2 < (A HL (N

and f € H%(]0, +00[), we deduce that

Jim (172, 1, =0
From Remark 3.1, the function H,(f) belongs to L'(dy,) N L?(dv,), then by
inversion formula and the relation (4.23), we get

+oo 2\v
Fea= N0 = [ St e ), ()

0

So, for all r € [0, +0o0],

+o0 2\v

0 E(14 N2)Y 4 20N

Again, by dominated convergence theorem and the fact that

0+ N)Y HL(F) V)]
€(1+)\2)u+e—2t)\2

< [Hu(F)N]
we deduce that

sup |(f2,— F)(r)| — 0, as € — 0.
re[0,4+o00]
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