Almost Hermitian Golden manifolds

Habib Bouzir and Gherici Beldjilali

Abstract

In this paper, we discuss some geometric properties of almost complex Golden structure (i.e. a polynomial structure with the structure polynomial $Q(X)=X^{2}-X+\frac{3}{2} I$) and we introduce such some new classes of almost Hermitian Golden structures. We give a concrete examples.

M.S.C. 2010: 53B35, 53C15, 53C55, 53D15, 53C25.

Key words: Golden manifold; almost complex Golden structure; almost Hermitian manifold.

1 Introduction

To equip a space with a structure leads to the production of a new mathematical object and consequently to contribute to the development of science. Manifolds equipped with certain differential-geometric structures are richer and more practical spaces, they have been studied widely in differential geometry. Indeed, D. Chinea and C. Gonzalez [1] obtained a classification of the ($2 \mathrm{n}+1$)-dimensional almost contact metric manifold based on $U(n)$ representation theory, which is an analogy of the classification of the $2 n$-dimensional almost Hermitian manifolds established by A. Gray and H. M. Hervella [4].
Being inspired by the Golden ratio, the notion of Golden manifold M was defined in [2] by a tensor field Φ on M satisfying $\Phi^{2}=\Phi+I$. The authors studied some properties of this manifold and they showed that Φ is an automorphism of the tangent bundle $T M$ and its eigenvalues are $\phi=\frac{1+\sqrt{5}}{2}$ and $1-\phi$. There are also several recent works in this direction. And in the same article [2], they introduced the notion of complex Golden structure as a tensor Φ_{c} of type $(1,1)$ satisfies $\Phi_{c}^{2}=\Phi_{c}-\frac{3}{2} I$ and its eigenvalues are $\phi_{c}=\frac{1+i \sqrt{5}}{2}$ and $1-\phi_{c}$.

In this work, rely on the relationship between the almost complex structure J and the almost complex Golden structure Φ_{c} given in [2], we extract the geometric tools for the almost Hermitian Golden structure and we use them to define certain new classes.

Aiming at our purpose, we organize this paper as follows:
Section 2 is devoted to the background of the almost complex Golden structure and
we give some new and important properties such as Riemannian metric which is compatible with the structure, the fundamental 2-form and others.
In Section 3 we establish an important proposition that allows us to state our main theorem concerning the classes of almost Hermitian Golden structures. The last section is devoted to building a concrete example.

2 Almost complex Golden manifold

The complex Golden ratio section ϕ_{c} is the root of the polynomial equation $x^{2}-x+\frac{3}{2}=0$, i.e, $\phi_{c}=\frac{1+i \sqrt{5}}{2}$ where $i^{2}=-1$ and the secod root denoted by ϕ_{c}^{*}, satisfies $\phi_{c}^{*}=\frac{1-i \sqrt{5}}{2}=1-\phi_{c}$ is his conjugate.

Definition 2.1. [2, 3]. Let M be a C^{∞} differentiable manifold of an even dimension and let I be the identity $(1,1)$ tensor field. A tensor field F of type $(1,1)$ on M is said to define a polynomial structure if F satisfies the algebraic equation

$$
Q(X)=X^{n}+a_{n} X^{n-1}+\ldots+a_{2} X+a_{1} I=0
$$

where $F^{n-1}(p), F^{n-2}(p), \ldots, F(p)$ and I are linearly independent for every $p \in M$. The polynomial $Q(X)$ is called the structure polynomial.

Definition 2.2. [2]. A non-null tensor field Φ_{c} of type $(1,1)$ and of class C^{∞} satisfying the equation

$$
\begin{equation*}
\Phi_{c}^{2}=\Phi_{c}-\frac{3}{2} I, \tag{2.1}
\end{equation*}
$$

is called an almost complex Golden structure on M of even dimensional.
A straightforward computation yields:
Proposition 2.1. - The eigenvalues of an almost complex Golden structure Φ_{c} are the complex Golden ratio ϕ_{c} and $\phi_{c}^{*}=1-\phi_{c}$.

- An almost complex Golden structure Φ_{c} is an isomorphism on the tangent space of the manifold, $T_{p} M$, for every $p \in M$.
- It follows that Φ_{c} is invertible and its inverse Φ_{c}^{-1} given by

$$
\Phi_{c}^{-1}=\frac{-2}{3}\left(\Phi_{c}-I\right)
$$

Remark 2.3. If Φ_{c} is an almost complex Golden structure then $\tilde{\Phi}_{c}=I-\Phi_{c}$ is also an almost complex Golden structure, where I is the identity transformation.

For an almost complex Golden structure Φ_{c}, is said to be integrable if its Nijenhuis tensor $N_{\Phi_{c}}$ vanishes, ([2]). That is,

$$
\begin{equation*}
N_{\Phi_{c}}(X, Y)=\Phi_{c}^{2}[X, Y]+\left[\Phi_{c} X, \Phi_{c} Y\right]-\Phi_{c}\left[\Phi_{c} X, Y\right]-\Phi_{c}\left[X, \Phi_{c} Y\right]=0 \tag{2.2}
\end{equation*}
$$

where X, Y any two vectors fields on M.
For an integrable almost complex Golden structure we drop the adjective " almost " and then simply call it complex Golden structure.

Proposition 2.2. If J is an almost complex structure on M, then

$$
\begin{equation*}
\Phi_{c}=\frac{1}{2}(I+\sqrt{5} J) \tag{2.3}
\end{equation*}
$$

is an almost complex Golden structure. Conversely, if Φ_{c} is an almost Golden structure on M then

$$
\begin{equation*}
J=\frac{1}{\sqrt{5}}\left(2 \Phi_{c}-I\right) \tag{2.4}
\end{equation*}
$$

is an almost complex structure on M.
Proof.

$$
\begin{aligned}
J^{2} X & =J\left(\frac{1}{\sqrt{5}}\left(2 \Phi_{c} X-X\right)\right) \\
& =\frac{1}{\sqrt{5}}\left(2 \Phi_{c}\left(\frac{1}{\sqrt{5}}\left(2 \Phi_{c} X-X\right)\right)-\frac{1}{\sqrt{5}}\left(2 \Phi_{c} X-X\right)\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{4}{\sqrt{5}} \Phi_{c}^{2} X-\frac{2}{\sqrt{5}} \Phi_{c} X-\frac{2}{\sqrt{5}} \Phi_{c} X+\frac{1}{\sqrt{5}} X\right) \\
& =\frac{1}{\sqrt{5}}\left(\frac{4}{\sqrt{5}}\left(\Phi_{c} X-\frac{3}{2} X\right)-\frac{4}{\sqrt{5}} \Phi_{c} X+\frac{1}{\sqrt{5}} X\right) \\
& =-X .
\end{aligned}
$$

Conversely, we have,

$$
\begin{aligned}
\Phi_{c}^{2} & =\left(\frac{1}{2}(I+\sqrt{5} J)\right)^{2}=\frac{1}{4}\left(I+5 J^{2}+2 \sqrt{5} J\right) \\
& =-I+\frac{\sqrt{5}}{2}\left(\frac{1}{\sqrt{5}}\left(2 \Phi_{c}-I\right)\right)=\Phi_{c}-\frac{3}{2} I
\end{aligned}
$$

Proposition 2.3. For a twin pair $\left\{\Phi_{c}, J\right\}$, on an even dimensional manifold M with any free linear connection $\tilde{\nabla}$, one has

$$
\begin{equation*}
4 N_{\Phi_{c}}=5 N_{J} \quad \text { and } \quad 2 \tilde{\nabla} \Phi_{c}=\sqrt{5} \tilde{\nabla} J \tag{2.5}
\end{equation*}
$$

Proof. Just using (2.2) and (2.3).
Note that,

- For every almost complex structure J on M, the corresponding Φ_{c} is an almost complex Golden structure on M.
- For every almost complex Golden structure Φ_{c} on M, the corresponding J is an almost complex structure on M.
- There is a one-to-one correspondence between the set of all almost complex structures and the set of all almost complex Golden structures on a manifold M.

Example 2.4. Let (x, y, z, t) be Cartesian coordinates in \mathbb{R}^{4}, and $\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right\}$ is a local basis. Then the structure Φ_{c} defined by

$$
\left\{\begin{array}{c}
\Phi_{c} \frac{\partial}{\partial x}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\sqrt{5}\left(\frac{\partial}{\partial y}+2 x \frac{\partial}{\partial z}\right)\right) \\
\Phi_{c} \frac{\partial}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial y}-\sqrt{5}\left(\frac{\partial}{\partial x}+2 x e^{-4 t} \frac{\partial}{\partial t}\right)\right) \\
\Phi_{c} \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial z}+\sqrt{5} e^{-4 t} \frac{\partial}{\partial t}\right) \\
\Phi_{c} \frac{\partial}{\partial t}=\frac{1}{2}\left(\frac{\partial}{\partial t}-\sqrt{5} e^{4 t} \frac{\partial}{\partial z}\right)
\end{array}\right.
$$

is an complex Golden structure on \mathbb{R}^{4}.

3 Almost Hermitian Golden manifold

Recall that an almost Hermitian structure is a pair (J, g) with g a fixed Riemannian metric on M and J an almost complex structure related by

$$
\begin{equation*}
g(J X, J Y)=g(X, Y) \tag{3.1}
\end{equation*}
$$

or equivalently, J is a g-anti-symmetric endomorphism

$$
\begin{equation*}
g(J X, Y)+g(X, J Y)=0 \tag{3.2}
\end{equation*}
$$

Definition 3.1. An almost Hermitian Golden structure is a pair $\left(\Phi_{c}, g\right)$ where Φ_{c} is an almost complex Golden structure and g is a Riemannian metric, with

$$
\begin{equation*}
g\left(\Phi_{c} X, \Phi_{c} Y\right)=\frac{3}{2} g(X, Y) \tag{3.3}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
g\left(\Phi_{c} X, Y\right)+g\left(X, \Phi_{c} Y\right)=g(X, Y) \tag{3.4}
\end{equation*}
$$

 almost Hermitian Golden manifold.

Proposition 3.1. The operator J is a g-anti-symmetric endomorphism but the associated almost complex Golden structure (2.3) is not.
Proof. Just using (3.2) and (3.4).
Definition 3.2. Let $\left(M, \Phi_{c}, g\right)$ be an almost Hermitian Golden manifold. Set

$$
\Omega(X, Y)=\frac{1}{\sqrt{5}}\left(2 g\left(X, \Phi_{c} Y\right)-g(X, Y)\right)
$$

for all X, Y vectors fields on $M . \Omega$ is a 2-form on M and it is called "fundamental 2-form".

Remark 3.3. If $\left(M, \Phi_{c}, g\right)$ be an almost Hermitian Golden manifold and Ω is a fundamental 2-form, we have

1. $\Omega(X, Y)=-\Omega(Y, X)$
2. $\Omega\left(\Phi_{c} X, \Phi_{c} Y\right)=\frac{3}{2} \Omega(X, Y)$
for all $X, Y \in \Gamma(T M)$.
Lemma 3.2. For an almost Hermitian Golden structure $\left(\Phi_{c}, g\right)$, we have:
3. $g\left(\left(\nabla_{X} \Phi_{c}\right) Y, Z\right)=-g\left(Y,\left(\nabla_{X} \Phi_{c}\right) Z\right)$,
4. $\left(\nabla_{X} \Phi_{c}\right) \Phi_{c} Y=\left(I-\Phi_{c}\right)\left(\nabla_{X} \Phi_{c}\right) Y$,
5. $g\left(\left(\nabla_{X} \Phi_{c}\right) \Phi_{c} Y, Z\right)=g\left(\left(\nabla_{X} \Phi_{c}\right) Y, \Phi_{c} Z\right)$,
for all vectors fields X, Y, Z on M where ∇ denotes the Levi-Civita connection.
Proof. 1. For all X, Y, Z vectors fields on M, using formula (3.4) we have:

$$
\begin{aligned}
g\left(\left(\nabla_{X} \Phi_{c}\right) Y, Z\right) & =g\left(\nabla_{X} \Phi_{c} Y, Z\right)-g\left(\Phi_{c} \nabla_{X} Y, Z\right) \\
& =X g\left(\Phi_{c} Y, Z\right)-g\left(\Phi_{c} Y, \nabla_{X} Z\right)-g\left(\nabla_{X} Y, Z\right)+g\left(\nabla_{X} Y, \Phi_{c} Z\right) \\
& =-g\left(Y,\left(\nabla_{X} \Phi_{c}\right) Z\right)
\end{aligned}
$$

2. Using formula (2.1) we get:

$$
\begin{aligned}
\left(\nabla_{X} \Phi_{c}\right) \Phi_{c} Y & =\nabla_{X} \Phi_{c}^{2} Y-\Phi_{c} \nabla_{X} \Phi_{c} Y \\
& =\nabla_{X} \Phi_{c} Y-\frac{3}{2} \nabla_{X} Y-\Phi_{c}\left(\nabla_{X} \Phi_{c}\right) Y-\Phi_{c}^{2} \nabla_{X} Y \\
& =\left(I-\Phi_{c}\right)\left(\nabla_{X} \Phi_{c}\right) Y
\end{aligned}
$$

3. Using the equation 2 of this lemma and formula (3.4) we obtain:

$$
\begin{aligned}
g\left(\left(\nabla_{X} \Phi_{c}\right) \Phi_{c} Y, Z\right) & =g\left(\left(I-\Phi_{c}\right)\left(\nabla_{X} \Phi_{c}\right) Y, Z\right) \\
& =g\left(\left(\nabla_{X} \Phi_{c}\right) Y, \Phi_{c} Z\right)
\end{aligned}
$$

Proposition 3.3. For any almost Hermitian Golden structure $\left(\Phi_{c}, g\right)$, we have:

$$
\begin{aligned}
2 g\left(\left(\nabla_{X} \Phi_{c}\right) Y,\left(3 I-\Phi_{c}\right) Z\right) & =3 \sqrt{5}\left(\mathrm{~d} \Omega\left(X, \Phi_{c} Y, \Phi_{c} Z\right)-\frac{3}{2} \mathrm{~d} \Omega(X, Y, Z)\right) \\
& +g\left(\Phi_{c} X, N_{\Phi_{c}}(Y, Z)\right)
\end{aligned}
$$

for all vectors fields X, Y, Z on M where ∇ denotes the Levi-Civita connection, d the exterior derivative.

Proof. Ω is a two differential form on M, then

$$
\begin{aligned}
3 \mathrm{~d} \Omega(X, Y, Z) & =X(\Omega(Y, Z))+Y(\Omega(Z, X))+Z(\Omega(X, Y)) \\
& -\Omega([X, Y], Z)-\Omega([Y, Z], X)-\Omega([Z, X], Y)
\end{aligned}
$$

knowing that

$$
\begin{aligned}
X(\Omega(Y, Z)) & =\frac{1}{\sqrt{5}} X\left(2 g\left(Y, \Phi_{c} Z\right)-g(Y, Z)\right) \\
& =\frac{2}{\sqrt{5}} g\left(Y,\left(\nabla_{X} \Phi_{c}\right) Z\right)+\Omega\left(\nabla_{X} Y, Z\right)+\Omega\left(Y, \nabla_{X} Z\right)
\end{aligned}
$$

and

$$
\frac{1}{2} N_{\Phi_{c}}(Y, Z)=\left(\nabla_{\Phi_{c} Y} \Phi_{c}\right) Z-\left(\nabla_{\Phi_{c} Z} \Phi_{c}\right) Y+\Phi_{c}\left(\left(\nabla_{Z} \Phi_{c}\right) Y-\left(\nabla_{Y} \Phi_{c}\right) Z\right)
$$

Then,

$$
\begin{equation*}
\frac{3 \sqrt{5}}{2} \mathrm{~d} \Omega(X, Y, Z)=g\left(Y,\left(\nabla_{X} \Phi_{c}\right) Z\right)+g\left(Z,\left(\nabla_{Y} \Phi_{c}\right) X\right)+g\left(X,\left(\nabla_{Z} \Phi_{c}\right) Y\right) \tag{3.5}
\end{equation*}
$$

On the other hand, using lemma (3.2) we can get

$$
\begin{aligned}
\frac{3 \sqrt{5}}{2} \mathrm{~d} \Omega\left(X, \Phi_{c} Y, \Phi_{c} Z\right) & =g\left(\Phi_{c} Y,\left(\nabla_{X} \Phi_{c}\right) \Phi_{c} Z\right)+g\left(\Phi_{c} Z,\left(\nabla_{\Phi_{c} Y} \Phi_{c}\right) X\right) \\
& +g\left(X,\left(\nabla_{\Phi_{c} Z} \Phi_{c}\right) \Phi_{c} Y\right) \\
& =-g\left(\left(\nabla_{X} \Phi_{c}\right) Y, \Phi_{c}^{2} Z\right)-g\left(\Phi_{c} X,\left(\nabla_{\Phi_{c} Y} \Phi_{c}\right) Z-\left(\nabla_{\Phi_{c} Z} \Phi_{c}\right) Y\right) \\
& =-g\left(\left(\nabla_{X} \Phi_{c}\right) Y, \Phi_{c}^{2} Z\right)-\frac{1}{2} g\left(\Phi_{c} X, N_{\Phi_{c}}(Y, Z)\right) \\
& +g\left(\Phi_{c} X, \Phi_{c}\left(\left(\nabla_{Z} \Phi_{c}\right) Y-\left(\nabla_{Y} \Phi_{c}\right) Z\right)\right)
\end{aligned}
$$

now, using formulas (3.3), (3.5) and lemma (3.2) we obtain

$$
\begin{aligned}
2 g\left(\left(\nabla_{X} \Phi_{c}\right) Y,\left(3 I-\Phi_{c}\right) Z\right) & =3 \sqrt{5}\left(\mathrm{~d} \Omega\left(X, \Phi_{c} Y, \Phi_{c} Z\right)-\frac{3}{2} \mathrm{~d} \Omega(X, Y, Z)\right) \\
& +g\left(\Phi_{c} X, N_{\Phi_{c}}(Y, Z)\right)
\end{aligned}
$$

Theorem 3.4. Let $\left(M, \Phi_{c}, g\right)$ be an almost Hermitian Golden manifold and ∇ denotes the Riemannian connection of g. The following conditions are equivalent:
(a) $\nabla \Phi_{c}=0$
(b) $\nabla \Omega=0$
(c) $N_{\Phi_{c}} \equiv 0 \quad$ and $\quad d \Omega=0$

Proof. For all vectors fields X, Y, Z on $\Gamma(M)$, we have

$$
\begin{aligned}
\left(\nabla_{X} \Omega\right)(Y, Z) & =X \Omega(Y, Z)-\Omega\left(\nabla_{X} Y, Z\right)-\Omega\left(Y, \nabla_{X} Z\right) \\
& =\frac{2}{\sqrt{5}}\left(X g\left(Y, \Phi_{c} Z\right)-g\left(\nabla_{X} Y, \Phi_{c} Z\right)-g\left(Y, \Phi_{c} \nabla_{X} Z\right)\right) \\
& =\frac{2}{\sqrt{5}} g\left(Y,\left(\nabla_{X} \Phi_{c}\right) Z\right) .
\end{aligned}
$$

Thus $\nabla \Phi_{c}=0$ if and only if $\nabla \Omega=0$. Hence (a) is equivalent to (b).
We suppose (b). Then $\mathrm{d} \Omega=0$ obviously. Moreover, by proposition (3.3) we have $N_{\Phi_{c}} \equiv 0$.
Conversely, we suppose (c). Then proposition (3.3) implies $\nabla \Phi_{c}=0$ and hence $\nabla \Omega=0$. Hence (b) is equivalent to (c).

Definition 3.4. Let $\left(M, \Phi_{c}, g\right)$ be an almost Hermitian Golden manifold. (M, Φ_{c}, g) is said to be:

1. Hermitian Golden (HG) manifold if and only if $N_{\Phi_{c}}=0$
2. locally conformal Golden (l.c.G) manifold if there exists a closed one-form η such that:

$$
\mathrm{d} \Omega=\eta \wedge \Omega
$$

3. Kähler-Golden (KG) manifold if and only if $N_{\Phi_{c}}=0$ and $\mathrm{d} \Omega=0$ or equivalently,

$$
\nabla \Phi_{c}=0
$$

4. Nearly Golden (NG) manifold if and only if $\left(\nabla_{X} \Phi_{c}\right) X=0$.
5. Quasi Golden (QG) manifold if and only if

$$
\left(\nabla_{X} \Phi_{c}\right) Y+\left(\nabla_{\Phi_{c} X} \Phi_{c}\right) \Phi_{c} Y=0
$$

4 Construction of examples

Let (x, y, z, t) denote the Cartesian coordinates in \mathbb{R}^{4}. Let $\left(\theta^{i}\right)$ be the frame of differential 1 -forms on \mathbb{R}^{4} given by

$$
\theta^{1}=f d x, \quad \theta^{2}=f d y, \quad \theta^{3}=\frac{1}{f}(d z-2 x d y), \quad \theta^{4}=f^{3} d t
$$

where f is a non-zero function on \mathbb{R}^{4}, and let $\left(e_{i}\right)$ be the dual frame of vector fields,

$$
e_{1}=\frac{1}{f} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{f}\left(\frac{\partial}{\partial y}+2 x \frac{\partial}{\partial z}\right), \quad e_{3}=f \frac{\partial}{\partial z}, \quad e_{4}=\frac{1}{f^{3}} \frac{\partial}{\partial t}
$$

On \mathbb{R}^{4}, define an almost complex Golden structure Φ_{c} and a Riemannian metric g by $2 \Phi_{c}=\left(e_{1}+\sqrt{5} e_{2}\right) \otimes \theta^{1}+\left(e_{2}-\sqrt{5} e_{1}\right) \otimes \theta^{2}+\left(e_{3}+\sqrt{5} e_{4}\right) \otimes \theta^{3}+\left(e_{4}-\sqrt{5} e_{3}\right) \otimes \theta^{4}$,

$$
g=\sum_{i} \theta^{i} \otimes \theta^{i}
$$

The frame $\left(e_{i}\right)$ is orthonormal with respect g,

$$
\begin{array}{ll}
\Phi_{c} e_{1}=\frac{1}{2}\left(e_{1}+\sqrt{5} e_{2}\right), & \Phi_{c} e_{2}=\frac{1}{2}\left(e_{2}-\sqrt{5} e_{1}\right) \\
\Phi_{c} e_{3}=\frac{1}{2}\left(e_{3}+\sqrt{5} e_{4}\right), & \Phi_{c} e_{4}=\frac{1}{2}\left(e_{4}-\sqrt{5} e_{3}\right)
\end{array}
$$

and g is compatible with Φ_{c}. Let $N_{\Phi_{c}}$ be the Nijenhuis torsion tensor of Φ_{c}. [,] being the Lie bracket of vector fields. By direct calculations, one checks that

$$
\begin{gathered}
N_{\Phi_{c}}\left(e_{1}, e_{2}\right)=N_{\Phi_{c}}\left(e_{3}, e_{4}\right)=0 \\
N_{\Phi_{c}}\left(e_{1}, e_{3}\right)=-\frac{5}{f^{2}}\left(f_{1} e_{3}+\left(f_{2}+2 x f_{3}\right) e_{4}\right)=-N_{\Phi_{c}}\left(e_{2}, e_{4}\right), \\
N_{\Phi_{c}}\left(e_{1}, e_{4}\right)=-\frac{5}{f^{2}}\left(\left(f_{2}+2 x f_{3}\right) e_{3}-f_{1} e_{4}\right)=N_{\Phi_{c}}\left(e_{2}, e_{3}\right)
\end{gathered}
$$

where $f_{i}=\frac{\partial f}{\partial x_{i}}$, which implies that, $\left(\mathbb{R}^{4}, \Phi_{c}, g\right)$ is a Hermitian Golden manifold if and only if

$$
f_{1}=f_{2}=f_{3}=0
$$

Moreover, in our example, the fundamental 2-form Ω has the shape

$$
\Omega=-2\left(\theta^{1} \wedge \theta^{2}+\theta^{3} \wedge \theta^{4}\right)=-2 f^{2}(d x \wedge d y-2 x d y \wedge d t+d z \wedge d t)
$$

so, we obtain

$$
\begin{aligned}
\mathrm{d} \Omega & =-4 f\left(f_{3} d x \wedge d y \wedge d z-\left(2 x f_{1}-f_{4}+f\right) d x \wedge d y \wedge d t\right. \\
& \left.+f_{1} d x \wedge d z \wedge d t+\left(f_{2}+2 x f_{3}\right) d y \wedge d z \wedge d t\right) \\
& =2(\mathrm{~d} \ln f-d t) \wedge \Omega
\end{aligned}
$$

for $\eta=2(\mathrm{~d} \ln f-d t),\left(\mathbb{R}^{4}, \Phi_{c}, g\right)$ is a locally conformal Golden manifold. Consequently, $\left(\mathbb{R}^{4}, \Phi_{c}, g\right)$ is a Kähler-Golden manifold if and only if $f=c e^{t}$ where $c \in \mathbb{R}$. For the last two classes, we calculate the components of the tensor $\nabla \Phi_{c}$. Using the Koszul formula for the Levi-Civita connection of a Riemannian metric

$$
2 g\left(\nabla_{e_{i}} e_{j}, e_{k}\right)=-g\left(e_{i},\left[e_{j}, e_{k}\right]\right)+g\left(e_{j},\left[e_{k}, e_{i}\right]\right)+g\left(e_{k},\left[e_{i}, e_{j}\right]\right)
$$

we get

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=\frac{-1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{2}-f_{3} e_{3}-\frac{f_{4}}{f^{4}} e_{4}, \quad \nabla_{e_{1}} e_{2}=\frac{1}{f^{3}} e_{3}+\frac{1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{1}, \\
\nabla_{e_{1}} e_{3}=f_{3} e_{1}-\frac{1}{f^{3}} e_{2}, \quad \nabla_{e_{1}} e_{4}=\frac{f_{4}}{f^{4}} e_{1}, \nabla_{e_{2}} e_{1}=\frac{f_{1}}{f^{2}} e_{2}-\frac{1}{f^{3}} e_{3}, \\
\nabla_{e_{2}} e_{2}=-\frac{f_{1}}{f^{2}} e_{1}-f_{3} e_{3}-\frac{f_{4}}{f^{4}} e_{4}, \quad \nabla_{e_{2}} e_{3}=\frac{1}{f^{3}} e_{1}+f_{3} e_{2}, \quad \nabla_{e_{2}} e_{4}=\frac{f_{4}}{f^{4}} e_{2}, \quad \nabla_{e_{3}} e_{1}=\frac{-1}{f^{3}} e_{2}-\frac{f_{1}}{f^{2}} e_{3},
\end{gathered}
$$

$$
\begin{gathered}
\nabla_{e_{3}} e_{2}=\frac{1}{f^{3}} e_{1}-\frac{1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{3}, \quad \nabla_{e_{3}} e_{3}=\frac{1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{2}+\frac{f_{4}}{f^{4}} e_{4}+\frac{f_{1}}{f^{2}} e_{1} \\
\nabla_{e_{3}} e_{4}=-\frac{f_{4}}{f^{4}} e_{3}, \quad \nabla_{e_{4}} e_{1}=\frac{3 f_{1}}{f^{2}} e_{4}, \quad \nabla_{e_{4}} e_{2}=\frac{3}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{4} \\
\nabla_{e_{4}} e_{3}=3 f_{3} e_{4}, \quad \nabla_{e_{4}} e_{4}=\frac{-3}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{2}-3 f_{3} e_{3}-\frac{3 f_{1}}{f^{2}} e_{1}
\end{gathered}
$$

Knowing that $\left(\nabla_{e_{i}} \Phi_{c}\right) e_{j}=\nabla_{e_{i}} \Phi_{c} e_{j}-\Phi_{c} \nabla_{e_{i}} e_{j}$, then we obtain

$$
\begin{gathered}
\frac{2}{\sqrt{5}}\left(\nabla_{e_{1}} \Phi_{c}\right) e_{1}=\frac{-1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{1}+\frac{1}{f^{4}}\left(f-f_{4}\right) e_{3}+f_{3} e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{1}} \Phi_{c}\right) e_{2}=\frac{1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{2}+f_{3} e_{3}-\frac{1}{f^{4}}\left(f-f_{4}\right) e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{1}} \Phi_{c}\right) e_{3}=\frac{2}{\sqrt{5}}\left(\nabla_{e_{2}} \Phi_{c}\right) e_{4}=-\frac{1}{f^{4}}\left(f-f_{4}\right) e_{1}-f_{3} e_{2} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{1}} \Phi_{c}\right) e_{4}=\frac{2}{\sqrt{5}}\left(\nabla_{e_{2}} \Phi_{c}\right) e_{3}=-f_{3} e_{1}+\frac{1}{f^{4}}\left(f-f_{4}\right) e_{2} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{2}} \Phi_{c}\right) e_{1}=-f_{3} e_{3}+\frac{1}{f^{4}}\left(f-f_{4}\right) e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{2}} \Phi_{c}\right) e_{2}=\frac{1}{f^{4}}\left(f-f_{4}\right) e_{3}+f_{3} e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{3}} \Phi_{c}\right) e_{1}=\frac{-1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{3} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{3}} \Phi_{c}\right) e_{2}=\frac{1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{3}} \Phi_{c}\right) e_{3}=\frac{1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{1} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{3}} \Phi_{c}\right) e_{4}=\frac{-1}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{2} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{4}} \Phi_{c}\right) e_{1}=\frac{3 f_{1}}{f^{2}} e_{3}+\frac{3}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{4}} \Phi_{c}\right) e_{2}=\frac{3}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{3}+\frac{3 f_{1}}{f^{2}} e_{4} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{4}} \Phi_{c}\right) e_{3}=\frac{-3}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{2} \\
\frac{2}{\sqrt{5}}\left(\nabla_{e_{4}} \Phi_{c}\right) e_{4}=\frac{-3}{f^{2}}\left(f_{2}+2 x f_{3}\right) e_{1} \\
t_{2}
\end{gathered}
$$

Now we will make $\nabla \Phi_{c}=0$ (i.e., Kähler-Golden case) we get the following equations:

$$
f_{2}+2 x f_{3}=0, \quad f-f_{4}=0, \quad f_{1}=f_{3}=0
$$

and moreover that these equations are equivalent to the following OED

$$
f-f_{4}=0, \quad \text { with } \quad f=f(t)
$$

Solving the differential equation we obtain $f=c e^{t}$ with $c \in \mathbb{R}$. Which confirms the previous result.

For the Nearly Golden case (i.e. $\left.\left(\nabla_{X} \Phi_{c}\right) X=0\right)$, we get the following equations:

$$
f_{2}+2 x f_{3}=0, \quad f-f_{4}=0, \quad f_{3}=0
$$

which give

$$
f=A(x) e^{t}
$$

Unfortunately, in this family of almost Hermitian Golden manifolds, there are no manifolds properly Quasi Golden.

References

[1] D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
[2] M. Crasmareanu, C.E. Hretcanu, Golden differential geometry, Chaos, Solitons \& Fractals 38, 5 (2008), 1124-1146. doi: 10.1016/j.chaos.2008.04.007.
[3] S.I. Goldberg, K. Yano, Polynomial structures on manifolds, Kodai Math. Sem. Rep. 22 (1970), 199-218.
[4] A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.

Authors' address:
Habib Bouzir, Gherici Beldjilali
Laboratory of Quantum Physics and Mathematical Modeling (LPQ3M), University of Mascara, Algeria.
E-mail: habib.bouzir@univ-mascara.dz, gherici.beldjilali@univ-mascara.dz

