Almost Hermitian Golden manifolds

Habib Bouzir and Gherici Beldjilali

Abstract. In this paper, we discuss some geometric properties of almost complex Golden structure (i.e. a polynomial structure with the structure polynomial $Q(X) = X^2 - X + \frac{3}{2}I$) and we introduce such some new classes of almost Hermitian Golden structures. We give a concrete examples.

M.S.C. 2010: 53B35, 53C15, 53C55, 53D15, 53C25.

Key words: Golden manifold; almost complex Golden structure; almost Hermitian manifold.

1 Introduction

To equip a space with a structure leads to the production of a new mathematical object and consequently to contribute to the development of science. Manifolds equipped with certain differential-geometric structures are richer and more practical spaces, they have been studied widely in differential geometry. Indeed, D. Chinea and C. Gonzalez [1] obtained a classification of the (2n + 1)-dimensional almost contact metric manifold based on U(n) representation theory, which is an analogy of the classification of the 2*n*-dimensional almost Hermitian manifolds established by A. Gray and H. M. Hervella [4].

Being inspired by the Golden ratio, the notion of Golden manifold M was defined in [2] by a tensor field Φ on M satisfying $\Phi^2 = \Phi + I$. The authors studied some properties of this manifold and they showed that Φ is an automorphism of the tangent bundle TM and its eigenvalues are $\phi = \frac{1+\sqrt{5}}{2}$ and $1-\phi$. There are also several recent works in this direction. And in the same article [2], they introduced the notion of complex Golden structure as a tensor Φ_c of type (1, 1) satisfies $\Phi_c^2 = \Phi_c - \frac{3}{2}I$ and its eigenvalues are $\phi_c = \frac{1+i\sqrt{5}}{2}$ and $1-\phi_c$.

In this work, rely on the relationship between the almost complex structure J and the almost complex Golden structure Φ_c given in [2], we extract the geometric tools for the almost Hermitian Golden structure and we use them to define certain new classes.

Aiming at our purpose, we organize this paper as follows: Section 2 is devoted to the background of the almost complex Golden structure and

Balkan Journal of Geometry and Its Applications, Vol.26, No.2, 2021, pp. 23-32.

[©] Balkan Society of Geometers, Geometry Balkan Press 2021.

we give some new and important properties such as Riemannian metric which is compatible with the structure, the fundamental 2-form and others.

In Section 3 we establish an important proposition that allows us to state our main theorem concerning the classes of almost Hermitian Golden structures. The last section is devoted to building a concrete example.

2 Almost complex Golden manifold

The complex Golden ratio section ϕ_c is the root of the polynomial equation $x^2 - x + \frac{3}{2} = 0$, i.e., $\phi_c = \frac{1+i\sqrt{5}}{2}$ where $i^2 = -1$ and the second root denoted by ϕ_c^* , satisfies $\phi_c^* = \frac{1-i\sqrt{5}}{2} = 1 - \phi_c$ is his conjugate.

Definition 2.1. [2, 3]. Let M be a C^{∞} differentiable manifold of an even dimension and let I be the identity (1, 1) tensor field. A tensor field F of type (1, 1) on M is said to define a polynomial structure if F satisfies the algebraic equation

$$Q(X) = X^{n} + a_{n}X^{n-1} + \dots + a_{2}X + a_{1}I = 0,$$

where $F^{n-1}(p), F^{n-2}(p), ..., F(p)$ and I are linearly independent for every $p \in M$. The polynomial Q(X) is called the structure polynomial.

Definition 2.2. [2]. A non-null tensor field Φ_c of type (1, 1) and of class C^{∞} satisfying the equation

$$\Phi_c^2 = \Phi_c - \frac{3}{2}I,$$

is called an almost complex Golden structure on M of even dimensional.

A straightforward computation yields:

Proposition 2.1. • The eigenvalues of an almost complex Golden structure Φ_c are the complex Golden ratio ϕ_c and $\phi_c^* = 1 - \phi_c$.

• An almost complex Golden structure Φ_c is an isomorphism on the tangent space of the manifold, T_pM , for every $p \in M$.

• It follows that Φ_c is invertible and its inverse Φ_c^{-1} given by

$$\Phi_c^{-1} = \frac{-2}{3} \left(\Phi_c - I \right).$$

Remark 2.3. If Φ_c is an almost complex Golden structure then $\tilde{\Phi}_c = I - \Phi_c$ is also an almost complex Golden structure, where I is the identity transformation.

For an almost complex Golden structure Φ_c , is said to be integrable if its Nijenhuis tensor N_{Φ_c} vanishes, ([2]). That is,

(2.2)
$$N_{\Phi_c}(X,Y) = \Phi_c^2[X,Y] + [\Phi_c X, \Phi_c Y] - \Phi_c[\Phi_c X,Y] - \Phi_c[X, \Phi_c Y] = 0,$$

where X, Y any two vectors fields on M.

For an integrable almost complex Golden structure we drop the adjective " almost " and then simply call it complex Golden structure.

Proposition 2.2. If J is an almost complex structure on M, then

(2.3)
$$\Phi_c = \frac{1}{2} \left(I + \sqrt{5}J \right),$$

is an almost complex Golden structure. Conversely, if Φ_c is an almost Golden structure on M then

is an almost complex structure on M.

Proof.

$$J^{2}X = J\left(\frac{1}{\sqrt{5}}(2\Phi_{c}X - X)\right)$$

= $\frac{1}{\sqrt{5}}\left(2\Phi_{c}\left(\frac{1}{\sqrt{5}}(2\Phi_{c}X - X)\right) - \frac{1}{\sqrt{5}}(2\Phi_{c}X - X)\right)$
= $\frac{1}{\sqrt{5}}\left(\frac{4}{\sqrt{5}}\Phi_{c}^{2}X - \frac{2}{\sqrt{5}}\Phi_{c}X - \frac{2}{\sqrt{5}}\Phi_{c}X + \frac{1}{\sqrt{5}}X\right)$
= $\frac{1}{\sqrt{5}}\left(\frac{4}{\sqrt{5}}(\Phi_{c}X - \frac{3}{2}X) - \frac{4}{\sqrt{5}}\Phi_{c}X + \frac{1}{\sqrt{5}}X\right)$
= $-X.$

Conversely, we have,

$$\Phi_c^2 = \left(\frac{1}{2}(I+\sqrt{5}J)\right)^2 = \frac{1}{4}(I+5J^2+2\sqrt{5}J)$$
$$= -I + \frac{\sqrt{5}}{2}\left(\frac{1}{\sqrt{5}}(2\Phi_c-I)\right) = \Phi_c - \frac{3}{2}I$$

Proposition 2.3. For a twin pair $\{\Phi_c, J\}$, on an even dimensional manifold M with any free linear connection $\tilde{\nabla}$, one has

(2.5)
$$4N_{\Phi_c} = 5N_J$$
 and $2\tilde{\nabla}\Phi_c = \sqrt{5}\tilde{\nabla}J.$

Proof. Just using (2.2) and (2.3).

Note that,

- For every almost complex structure J on M, the corresponding Φ_c is an almost complex Golden structure on M.
- For every almost complex Golden structure Φ_c on M, the corresponding J is an almost complex structure on M.
- There is a one-to-one correspondence between the set of all almost complex structures and the set of all almost complex Golden structures on a manifold M.

Example 2.4. Let (x, y, z, t) be Cartesian coordinates in \mathbb{R}^4 , and $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\}$ is a local basis. Then the structure Φ_c defined by

$$\begin{split} \left\{ \begin{array}{l} \Phi_c \frac{\partial}{\partial x} &= \frac{1}{2} \left(\frac{\partial}{\partial x} + \sqrt{5} (\frac{\partial}{\partial y} + 2x \frac{\partial}{\partial z}) \right) \\ \Phi_c \frac{\partial}{\partial y} &= \frac{1}{2} \left(\frac{\partial}{\partial y} - \sqrt{5} (\frac{\partial}{\partial x} + 2x e^{-4t} \frac{\partial}{\partial t}) \right) \\ \Phi_c \frac{\partial}{\partial z} &= \frac{1}{2} \left(\frac{\partial}{\partial z} + \sqrt{5} e^{-4t} \frac{\partial}{\partial t} \right) \\ \Phi_c \frac{\partial}{\partial t} &= \frac{1}{2} \left(\frac{\partial}{\partial t} - \sqrt{5} e^{4t} \frac{\partial}{\partial z} \right) \end{split}$$

is an complex Golden structure on \mathbb{R}^4 .

3 Almost Hermitian Golden manifold

Recall that an almost Hermitian structure is a pair (J, g) with g a fixed Riemannian metric on M and J an almost complex structure related by

$$(3.1) g(JX, JY) = g(X, Y),$$

or equivalently, J is a g-anti-symmetric endomorphism

(3.2)
$$g(JX,Y) + g(X,JY) = 0,$$

Definition 3.1. An almost Hermitian Golden structure is a pair (Φ_c, g) where Φ_c is an almost complex Golden structure and g is a Riemannian metric, with

(3.3)
$$g(\Phi_c X, \Phi_c Y) = \frac{3}{2}g(X, Y),$$

or equivalently,

(3.4)
$$g(\Phi_c X, Y) + g(X, \Phi_c Y) = g(X, Y)$$

The Riemannian metric (3.3) is called Φ_c -compatible and the triple (M, Φ_c, g) is an almost Hermitian Golden manifold.

Proposition 3.1. The operator J is a g-anti-symmetric endomorphism but the associated almost complex Golden structure (2.3) is not.

Proof. Just using (3.2) and (3.4).

Definition 3.2. Let (M, Φ_c, g) be an almost Hermitian Golden manifold. Set

$$\Omega(X,Y) = \frac{1}{\sqrt{5}} \left(2g(X,\Phi_c Y) - g(X,Y) \right),$$

for all X, Y vectors fields on M. Ω is a 2-form on M and it is called "fundamental 2-form".

Remark 3.3. If (M, Φ_c, g) be an almost Hermitian Golden manifold and Ω is a fundamental 2-form, we have

1. $\Omega(X,Y) = -\Omega(Y,X)$ 2. $\Omega(\Phi_c X, \Phi_c Y) = \frac{3}{2}\Omega(X,Y)$

for all $X, Y \in \Gamma(TM)$.

Lemma 3.2. For an almost Hermitian Golden structure (Φ_c, g) , we have:

1.
$$g((\nabla_X \Phi_c)Y, Z) = -g(Y, (\nabla_X \Phi_c)Z),$$

2. $(\nabla_X \Phi_c) \Phi_c Y = (I - \Phi_c) (\nabla_X \Phi_c)Y,$
3. $g((\nabla_X \Phi_c) \Phi_c Y, Z) = g((\nabla_X \Phi_c)Y, \Phi_c Z),$

for all vectors fields X, Y, Z on M where ∇ denotes the Levi-Civita connection.

Proof. 1. For all X, Y, Z vectors fields on M, using formula (3.4) we have:

$$g((\nabla_X \Phi_c)Y, Z) = g(\nabla_X \Phi_c Y, Z) - g(\Phi_c \nabla_X Y, Z)$$

= $Xg(\Phi_c Y, Z) - g(\Phi_c Y, \nabla_X Z) - g(\nabla_X Y, Z) + g(\nabla_X Y, \Phi_c Z)$
= $-g(Y, (\nabla_X \Phi_c)Z).$

2. Using formula (2.1) we get:

$$\begin{aligned} (\nabla_X \Phi_c) \Phi_c Y &= \nabla_X \Phi_c^2 Y - \Phi_c \nabla_X \Phi_c Y \\ &= \nabla_X \Phi_c Y - \frac{3}{2} \nabla_X Y - \Phi_c (\nabla_X \Phi_c) Y - \Phi_c^2 \nabla_X Y \\ &= (I - \Phi_c) (\nabla_X \Phi_c) Y. \end{aligned}$$

3. Using the equation 2 of this lemma and formula (3.4) we obtain:

$$g((\nabla_X \Phi_c) \Phi_c Y, Z) = g((I - \Phi_c)(\nabla_X \Phi_c) Y, Z)$$

= $g((\nabla_X \Phi_c) Y, \Phi_c Z).$

Proposition 3.3. For any almost Hermitian Golden structure (Φ_c, g) , we have:

$$2g\left((\nabla_X \Phi_c)Y, (3I - \Phi_c)Z\right) = 3\sqrt{5} \left(\mathrm{d}\Omega(X, \Phi_c Y, \Phi_c Z) - \frac{3}{2} \mathrm{d}\Omega(X, Y, Z) \right) + g\left(\Phi_c X, N_{\Phi_c}(Y, Z)\right),$$

for all vectors fields X, Y, Z on M where ∇ denotes the Levi-Civita connection, d the exterior derivative.

Proof. Ω is a two differential form on M, then

$$3d\Omega(X,Y,Z) = X(\Omega(Y,Z)) + Y(\Omega(Z,X)) + Z(\Omega(X,Y)) - \Omega([X,Y],Z) - \Omega([Y,Z],X) - \Omega([Z,X],Y),$$

knowing that

$$\begin{split} X\big(\Omega(Y,Z)\big) &= \frac{1}{\sqrt{5}} X\big(2g(Y,\Phi_c Z) - g(Y,Z)\big) \\ &= \frac{2}{\sqrt{5}} g\big(Y,(\nabla_X \Phi_c) Z\big) + \Omega(\nabla_X Y,Z) + \Omega(Y,\nabla_X Z), \end{split}$$

and

$$\frac{1}{2}N_{\Phi_c}(Y,Z) = (\nabla_{\Phi_c Y}\Phi_c)Z - (\nabla_{\Phi_c Z}\Phi_c)Y + \Phi_c((\nabla_Z\Phi_c)Y - (\nabla_Y\Phi_c)Z).$$

Then,

(3.5)
$$\frac{3\sqrt{5}}{2}\mathrm{d}\Omega(X,Y,Z) = g\big(Y,(\nabla_X\Phi_c)Z\big) + g\big(Z,(\nabla_Y\Phi_c)X\big) + g\big(X,(\nabla_Z\Phi_c)Y\big).$$

On the other hand, using lemma (3.2) we can get

$$\begin{aligned} \frac{3\sqrt{5}}{2} \mathrm{d}\Omega(X, \Phi_c Y, \Phi_c Z) &= g\left(\Phi_c Y, (\nabla_X \Phi_c) \Phi_c Z\right) + g\left(\Phi_c Z, (\nabla_{\Phi_c Y} \Phi_c) X\right) \\ &+ g\left(X, (\nabla_{\Phi_c Z} \Phi_c) \Phi_c Y\right) \\ &= -g\left((\nabla_X \Phi_c) Y, \Phi_c^2 Z\right) - g\left(\Phi_c X, (\nabla_{\Phi_c Y} \Phi_c) Z - (\nabla_{\Phi_c Z} \Phi_c) Y\right) \\ &= -g\left((\nabla_X \Phi_c) Y, \Phi_c^2 Z\right) - \frac{1}{2}g\left(\Phi_c X, N_{\Phi_c}(Y, Z)\right) \\ &+ g\left(\Phi_c X, \Phi_c\left((\nabla_Z \Phi_c) Y - (\nabla_Y \Phi_c) Z\right)\right), \end{aligned}$$

now, using formulas (3.3), (3.5) and lemma (3.2) we obtain

$$2g\left((\nabla_X \Phi_c)Y, (3I - \Phi_c)Z\right) = 3\sqrt{5} \left(d\Omega(X, \Phi_c Y, \Phi_c Z) - \frac{3}{2} d\Omega(X, Y, Z) \right) + g\left(\Phi_c X, N_{\Phi_c}(Y, Z) \right).$$

Theorem 3.4. Let (M, Φ_c, g) be an almost Hermitian Golden manifold and ∇ denotes the Riemannian connection of g. The following conditions are equivalent:

- (a) $\nabla \Phi_c = 0$
- (b) $\nabla \Omega = 0$
- (c) $N_{\Phi_c} \equiv 0$ and $d\Omega = 0$

Proof. For all vectors fields X, Y, Z on $\Gamma(M)$, we have

$$\begin{aligned} (\nabla_X \Omega)(Y,Z) &= X\Omega(Y,Z) - \Omega(\nabla_X Y,Z) - \Omega(Y,\nabla_X Z) \\ &= \frac{2}{\sqrt{5}} \Big(Xg(Y,\Phi_c Z) - g(\nabla_X Y,\Phi_c Z) - g(Y,\Phi_c \nabla_X Z) \Big) \\ &= \frac{2}{\sqrt{5}} g(Y,(\nabla_X \Phi_c) Z). \end{aligned}$$

Thus $\nabla \Phi_c = 0$ if and only if $\nabla \Omega = 0$. Hence (**a**) is equivalent to (**b**). We suppose (**b**). Then $d\Omega = 0$ obviously. Moreover, by proposition (3.3) we have $N_{\Phi_c} \equiv 0$.

Conversely, we suppose (c). Then proposition (3.3) implies $\nabla \Phi_c = 0$ and hence $\nabla \Omega = 0$. Hence (b) is equivalent to (c).

Definition 3.4. Let (M, Φ_c, g) be an almost Hermitian Golden manifold. (M, Φ_c, g) is said to be:

- 1. Hermitian Golden (HG) manifold if and only if $N_{\Phi_c} = 0$
- 2. locally conformal Golden (l.c.G) manifold if there exists a closed one-form η such that:

$$\mathrm{d}\Omega = \eta \wedge \Omega.$$

3. Kähler-Golden (KG) manifold if and only if $N_{\Phi_c} = 0$ and $d\Omega = 0$ or equivalently,

$$\nabla \Phi_c = 0.$$

- 4. Nearly Golden (NG) manifold if and only if $(\nabla_X \Phi_c) X = 0$.
- 5. Quasi Golden (QG) manifold if and only if

$$(\nabla_X \Phi_c) Y + (\nabla_{\Phi_c X} \Phi_c) \Phi_c Y = 0.$$

4 Construction of examples

Let (x, y, z, t) denote the Cartesian coordinates in \mathbb{R}^4 . Let (θ^i) be the frame of differential 1-forms on \mathbb{R}^4 given by

$$\theta^1 = f dx, \quad \theta^2 = f dy, \quad \theta^3 = \frac{1}{f} \left(dz - 2x dy \right), \quad \theta^4 = f^3 dt,$$

where f is a non-zero function on \mathbb{R}^4 , and let (e_i) be the dual frame of vector fields,

$$e_1 = \frac{1}{f} \frac{\partial}{\partial x}, \quad e_2 = \frac{1}{f} \left(\frac{\partial}{\partial y} + 2x \frac{\partial}{\partial z} \right), \quad e_3 = f \frac{\partial}{\partial z}, \quad e_4 = \frac{1}{f^3} \frac{\partial}{\partial t}.$$

On \mathbb{R}^4 , define an almost complex Golden structure Φ_c and a Riemannian metric g by

$$2\Phi_c = \left(e_1 + \sqrt{5}e_2\right) \otimes \theta^1 + \left(e_2 - \sqrt{5}e_1\right) \otimes \theta^2 + \left(e_3 + \sqrt{5}e_4\right) \otimes \theta^3 + \left(e_4 - \sqrt{5}e_3\right) \otimes \theta^4$$

Habib Bouzir and Gherici Beldjilali

$$g = \sum_i \theta^i \otimes \theta^i.$$

The frame (e_i) is orthonormal with respect g,

$$\Phi_c e_1 = \frac{1}{2} \left(e_1 + \sqrt{5}e_2 \right), \qquad \Phi_c e_2 = \frac{1}{2} \left(e_2 - \sqrt{5}e_1 \right),$$
$$\Phi_c e_3 = \frac{1}{2} \left(e_3 + \sqrt{5}e_4 \right), \qquad \Phi_c e_4 = \frac{1}{2} \left(e_4 - \sqrt{5}e_3 \right),$$

and g is compatible with Φ_c . Let N_{Φ_c} be the Nijenhuis torsion tensor of Φ_c . [,] being the Lie bracket of vector fields. By direct calculations, one checks that

$$N_{\Phi_c}(e_1, e_2) = N_{\Phi_c}(e_3, e_4) = 0,$$

$$N_{\Phi_c}(e_1, e_3) = -\frac{5}{f^2} (f_1 e_3 + (f_2 + 2xf_3)e_4) = -N_{\Phi_c}(e_2, e_4),$$

$$N_{\Phi_c}(e_1, e_4) = -\frac{5}{f^2} ((f_2 + 2xf_3)e_3 - f_1e_4) = N_{\Phi_c}(e_2, e_3),$$

where $f_i = \frac{\partial f}{\partial x_i}$, which implies that, $(\mathbb{R}^4, \Phi_c, g)$ is a Hermitian Golden manifold if and only if

$$f_1 = f_2 = f_3 = 0.$$

Moreover, in our example, the fundamental 2-form Ω has the shape

$$\Omega = -2(\theta^1 \wedge \theta^2 + \theta^3 \wedge \theta^4) = -2f^2 (dx \wedge dy - 2x \, dy \wedge dt + dz \wedge dt),$$

so, we obtain

$$d\Omega = -4f \left(f_3 \, dx \wedge dy \wedge dz - (2xf_1 - f_4 + f) dx \wedge dy \wedge dt \right)$$

+ $f_1 \, dx \wedge dz \wedge dt + (f_2 + 2xf_3) dy \wedge dz \wedge dt$
= $2 \left(d \ln f - dt \right) \wedge \Omega,$

for $\eta = 2(\dim f - dt)$, $(\mathbb{R}^4, \Phi_c, g)$ is a locally conformal Golden manifold. Consequently, $(\mathbb{R}^4, \Phi_c, g)$ is a Kähler-Golden manifold if and only if $f = ce^t$ where $c \in \mathbb{R}$. For the last two classes, we calculate the components of the tensor $\nabla \Phi_c$. Using the Koszul formula for the Levi-Civita connection of a Riemannian metric

$$2g(\nabla_{e_i}e_j, e_k) = -g(e_i, [e_j, e_k]) + g(e_j, [e_k, e_i]) + g(e_k, [e_i, e_j]),$$

we get

$$\nabla_{e_1}e_1 = \frac{-1}{f^2}(f_2 + 2xf_3)e_2 - f_3e_3 - \frac{f_4}{f^4}e_4, \quad \nabla_{e_1}e_2 = \frac{1}{f^3}e_3 + \frac{1}{f^2}(f_2 + 2xf_3)e_1,$$
$$\nabla_{e_1}e_3 = f_3e_1 - \frac{1}{f^3}e_2, \quad \nabla_{e_1}e_4 = \frac{f_4}{f^4}e_1, \\ \nabla_{e_2}e_1 = \frac{f_1}{f^2}e_2 - \frac{1}{f^3}e_3,$$
$$\nabla_{e_2}e_2 = -\frac{f_1}{f^2}e_1 - f_3e_3 - \frac{f_4}{f^4}e_4, \quad \nabla_{e_2}e_3 = \frac{1}{f^3}e_1 + f_3e_2, \quad \nabla_{e_2}e_4 = \frac{f_4}{f^4}e_2, \quad \nabla_{e_3}e_1 = \frac{-1}{f^3}e_2 - \frac{f_1}{f^2}e_3,$$

$$\begin{aligned} \nabla_{e_3} e_2 &= \frac{1}{f^3} e_1 - \frac{1}{f^2} (f_2 + 2xf_3) e_3, \quad \nabla_{e_3} e_3 = \frac{1}{f^2} (f_2 + 2xf_3) e_2 + \frac{f_4}{f^4} e_4 + \frac{f_1}{f^2} e_1, \\ \nabla_{e_3} e_4 &= -\frac{f_4}{f^4} e_3, \quad \nabla_{e_4} e_1 = \frac{3f_1}{f^2} e_4, \quad \nabla_{e_4} e_2 = \frac{3}{f^2} (f_2 + 2xf_3) e_4, \\ \nabla_{e_4} e_3 &= 3f_3 e_4, \quad \nabla_{e_4} e_4 = \frac{-3}{f^2} (f_2 + 2xf_3) e_2 - 3f_3 e_3 - \frac{3f_1}{f^2} e_1. \end{aligned}$$

Knowing that $(\nabla_{e_i} \Phi_c)e_j = \nabla_{e_i} \Phi_c e_j - \Phi_c \nabla_{e_i} e_j$, then we obtain

$$\begin{split} \frac{2}{\sqrt{5}}(\nabla_{e_1}\Phi_c)e_1 &= \frac{-1}{f^2}(f_2 + 2xf_3)e_1 + \frac{1}{f^4}(f - f_4)e_3 + f_3e_4, \\ \frac{2}{\sqrt{5}}(\nabla_{e_1}\Phi_c)e_2 &= \frac{1}{f^2}(f_2 + 2xf_3)e_2 + f_3e_3 - \frac{1}{f^4}(f - f_4)e_4, \\ \frac{2}{\sqrt{5}}(\nabla_{e_1}\Phi_c)e_3 &= \frac{2}{\sqrt{5}}(\nabla_{e_2}\Phi_c)e_4 = -\frac{1}{f^4}(f - f_4)e_1 - f_3e_2, \\ \frac{2}{\sqrt{5}}(\nabla_{e_1}\Phi_c)e_4 &= \frac{2}{\sqrt{5}}(\nabla_{e_2}\Phi_c)e_3 = -f_3e_1 + \frac{1}{f^4}(f - f_4)e_2, \\ \frac{2}{\sqrt{5}}(\nabla_{e_2}\Phi_c)e_1 &= -f_3e_3 + \frac{1}{f^4}(f - f_4)e_4, \\ \frac{2}{\sqrt{5}}(\nabla_{e_2}\Phi_c)e_2 &= \frac{1}{f^4}(f - f_4)e_3 + f_3e_4, \\ \frac{2}{\sqrt{5}}(\nabla_{e_3}\Phi_c)e_1 &= -\frac{1}{f^2}(f_2 + 2xf_3)e_3 \\ \frac{2}{\sqrt{5}}(\nabla_{e_3}\Phi_c)e_2 &= \frac{1}{f^2}(f_2 + 2xf_3)e_4 \\ \frac{2}{\sqrt{5}}(\nabla_{e_3}\Phi_c)e_3 &= \frac{1}{f^2}(f_2 + 2xf_3)e_1 \\ \frac{2}{\sqrt{5}}(\nabla_{e_4}\Phi_c)e_1 &= \frac{3f_1}{f^2}e_3 + \frac{3}{f^2}(f_2 + 2xf_3)e_4, \\ \frac{2}{\sqrt{5}}(\nabla_{e_4}\Phi_c)e_2 &= \frac{3}{f^2}(f_2 + 2xf_3)e_3 + \frac{3f_1}{f^2}e_4, \\ \frac{2}{\sqrt{5}}(\nabla_{e_4}\Phi_c)e_3 &= -\frac{3}{f^2}(f_2 + 2xf_3)e_2, \\ \frac{2}{\sqrt{5}}(\nabla_{e_4}\Phi_c)e_4 &= -\frac{3}{f^2}(f_2 + 2xf_3)e_1, \end{split}$$

Now we will make $\nabla \Phi_c = 0$ (i.e., Kähler-Golden case) we get the following equations:

$$f_2 + 2xf_3 = 0$$
, $f - f_4 = 0$, $f_1 = f_3 = 0$,

and moreover that these equations are equivalent to the following OED

$$f - f_4 = 0, \quad with \quad f = f(t).$$

Solving the differential equation we obtain $f = ce^t$ with $c \in \mathbb{R}$. Which confirms the previous result.

For the Nearly Golden case (i.e. $(\nabla_X \Phi_c) X = 0$), we get the following equations:

$$f_2 + 2xf_3 = 0, \quad f - f_4 = 0, \quad f_3 = 0,$$

which give

$$f = A(x)e^t$$
.

Unfortunately, in this family of almost Hermitian Golden manifolds, there are no manifolds properly Quasi Golden.

References

- D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
- M. Crasmareanu, C.E. Hretcanu, Golden differential geometry, Chaos, Solitons & Fractals 38, 5 (2008), 1124-1146. doi: 10.1016/j.chaos.2008.04.007.
- [3] S.I. Goldberg, K. Yano, *Polynomial structures on manifolds*, Kodai Math. Sem. Rep. 22 (1970), 199-218.
- [4] A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.

Authors' address:

Habib Bouzir, Gherici Beldjilali Laboratory of Quantum Physics and Mathematical Modeling (LPQ3M), University of Mascara, Algeria. E-mail: habib.bouzir@univ-mascara.dz , gherici.beldjilali@univ-mascara.dz