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Abstract. In this paper, we discuss some geometric properties of almost
complex Golden structure (i.e. a polynomial structure with the structure
polynomial Q(X) = X2−X+ 3

2I) and we introduce such some new classes
of almost Hermitian Golden structures. We give a concrete examples.
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1 Introduction

To equip a space with a structure leads to the production of a new mathemati-
cal object and consequently to contribute to the development of science. Manifolds
equipped with certain differential-geometric structures are richer and more practical
spaces, they have been studied widely in differential geometry. Indeed, D. Chinea and
C. Gonzalez [1] obtained a classification of the (2n + 1)-dimensional almost contact
metric manifold based on U(n) representation theory, which is an analogy of the clas-
sification of the 2n-dimensional almost Hermitian manifolds established by A. Gray
and H. M. Hervella [4].
Being inspired by the Golden ratio, the notion of Golden manifold M was defined
in [2] by a tensor field Φ on M satisfying Φ2 = Φ + I. The authors studied some
properties of this manifold and they showed that Φ is an automorphism of the tangent

bundle TM and its eigenvalues are φ = 1+
√

5
2 and 1−φ. There are also several recent

works in this direction. And in the same article [2], they introduced the notion of
complex Golden structure as a tensor Φc of type (1, 1) satisfies Φ2

c = Φc − 3
2I and its

eigenvalues are φc = 1+i
√

5
2 and 1− φc.

In this work, rely on the relationship between the almost complex structure J and
the almost complex Golden structure Φc given in [2], we extract the geometric tools for
the almost Hermitian Golden structure and we use them to define certain new classes.

Aiming at our purpose, we organize this paper as follows:
Section 2 is devoted to the background of the almost complex Golden structure and
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we give some new and important properties such as Riemannian metric which is
compatible with the structure, the fundamental 2-form and others.
In Section 3 we establish an important proposition that allows us to state our main
theorem concerning the classes of almost Hermitian Golden structures. The last
section is devoted to building a concrete example.

2 Almost complex Golden manifold

The complex Golden ratio section φc is the root of the polynomial equation

x2 − x + 3
2 = 0, i.e, φc = 1+i

√
5

2 where i2 = −1 and the secod root denoted by φ∗c ,

satisfies φ∗c = 1−i
√

5
2 = 1− φc is his conjugate.

Definition 2.1. [2, 3]. Let M be a C∞ differentiable manifold of an even dimension
and let I be the identity (1, 1) tensor field. A tensor field F of type (1, 1) on M is
said to define a polynomial structure if F satisfies the algebraic equation

Q(X) = Xn + anX
n−1 + ...+ a2X + a1I = 0,

where Fn−1(p), Fn−2(p), ..., F (p) and I are linearly independent for every p ∈ M .
The polynomial Q(X) is called the structure polynomial.

Definition 2.2. [2]. A non-null tensor field Φc of type (1, 1) and of class C∞ satisfying
the equation

(2.1) Φ2
c = Φc −

3

2
I,

is called an almost complex Golden structure on M of even dimensional.

A straightforward computation yields:

Proposition 2.1. • The eigenvalues of an almost complex Golden structure Φc

are the complex Golden ratio φc and φ∗c = 1− φc.
• An almost complex Golden structure Φc is an isomorphism on the tangent space of
the manifold, TpM , for every p ∈M .
• It follows that Φc is invertible and its inverse Φ−1

c given by

Φ−1
c =

−2

3
(Φc − I) .

Remark 2.3. If Φc is an almost complex Golden structure then Φ̃c = I − Φc is also
an almost complex Golden structure, where I is the identity transformation.

For an almost complex Golden structure Φc, is said to be integrable if its Nijenhuis
tensor NΦc

vanishes, ([2]). That is,

(2.2) NΦc
(X,Y ) = Φ2

c [X,Y ] + [ΦcX,ΦcY ]− Φc[ΦcX,Y ]− Φc[X,ΦcY ] = 0,

where X,Y any two vectors fields on M .
For an integrable almost complex Golden structure we drop the adjective ” almost ”
and then simply call it complex Golden structure.
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Proposition 2.2. If J is an almost complex structure on M , then

(2.3) Φc =
1

2

(
I +
√

5J
)
,

is an almost complex Golden structure. Conversely, if Φc is an almost Golden struc-
ture on M then

(2.4) J =
1√
5

(2Φc − I) ,

is an almost complex structure on M .

Proof.

J2X = J
( 1√

5
(2ΦcX −X)

)
=

1√
5

(
2Φc

( 1√
5

(2ΦcX −X)
)
− 1√

5
(2ΦcX −X)

)
=

1√
5

( 4√
5

Φ2
cX −

2√
5

ΦcX −
2√
5

ΦcX +
1√
5
X
)

=
1√
5

( 4√
5

(ΦcX −
3

2
X)− 4√

5
ΦcX +

1√
5
X
)

= −X.

Conversely, we have,

Φ2
c =

(1

2
(I +

√
5J)
)2

=
1

4
(I + 5J2 + 2

√
5J)

= −I +

√
5

2

( 1√
5

(2Φc − I)
)

= Φc −
3

2
I

�

Proposition 2.3. For a twin pair {Φc, J}, on an even dimensional manifold M with
any free linear connection ∇̃, one has

(2.5) 4NΦc
= 5NJ and 2∇̃Φc =

√
5∇̃J.

Proof. Just using (2.2) and (2.3). �

Note that,

� For every almost complex structure J on M , the corresponding Φc is an almost
complex Golden structure on M .

� For every almost complex Golden structure Φc on M , the corresponding J is an
almost complex structure on M .

� There is a one-to-one correspondence between the set of all almost complex
structures and the set of all almost complex Golden structures on a manifold
M .
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Example 2.4. Let (x, y, z, t) be Cartesian coordinates in R4, and { ∂
∂x ,

∂
∂y ,

∂
∂z ,

∂
∂t} is

a local basis. Then the structure Φc defined by



Φc
∂
∂x =

1

2

( ∂
∂x

+
√

5(
∂

∂y
+ 2x

∂

∂z
)
)

Φc
∂
∂y =

1

2

( ∂
∂y
−
√

5(
∂

∂x
+ 2xe−4t ∂

∂t
)
)

Φc
∂
∂z =

1

2

( ∂
∂z

+
√

5e−4t ∂

∂t

)
Φc

∂
∂t =

1

2

( ∂
∂t
−
√

5e4t ∂

∂z

)
is an complex Golden structure on R4.

3 Almost Hermitian Golden manifold

Recall that an almost Hermitian structure is a pair (J, g) with g a fixed Riemannian
metric on M and J an almost complex structure related by

(3.1) g(JX, JY ) = g(X,Y ),

or equivalently, J is a g-anti-symmetric endomorphism

(3.2) g(JX, Y ) + g(X, JY ) = 0,

Definition 3.1. An almost Hermitian Golden structure is a pair (Φc, g) where Φc is
an almost complex Golden structure and g is a Riemannian metric,
with

(3.3) g(ΦcX,ΦcY ) =
3

2
g(X,Y ),

or equivalently,

(3.4) g(ΦcX,Y ) + g(X,ΦcY ) = g(X,Y ).

The Riemannian metric (3.3) is called Φc-compatible and the triple (M,Φc, g) is an
almost Hermitian Golden manifold.

Proposition 3.1. The operator J is a g-anti-symmetric endomorphism but the as-
sociated almost complex Golden structure (2.3) is not.

Proof. Just using (3.2) and (3.4). �

Definition 3.2. Let (M,Φc, g) be an almost Hermitian Golden manifold. Set

Ω(X,Y ) =
1√
5

(
2g(X,ΦcY )− g(X,Y )

)
,

for all X,Y vectors fields on M . Ω is a 2-form on M and it is called ”fundamental
2-form”.
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Remark 3.3. If (M,Φc, g) be an almost Hermitian Golden manifold and Ω is a
fundamental 2-form, we have

1. Ω(X,Y ) = −Ω(Y,X)

2. Ω(ΦcX,ΦcY ) =
3

2
Ω(X,Y )

for all X,Y ∈ Γ(TM).

Lemma 3.2. For an almost Hermitian Golden structure (Φc, g), we have:

1. g
(
(∇XΦc)Y,Z

)
= −g

(
Y, (∇XΦc)Z

)
,

2.
(
∇XΦc

)
ΦcY = (I − Φc)

(
∇XΦc

)
Y,

3. g
(
(∇XΦc)ΦcY, Z

)
= g
(
(∇XΦc)Y,ΦcZ

)
,

for all vectors fields X,Y, Z on M where ∇ denotes the Levi-Civita connection.

Proof. 1. For all X,Y, Z vectors fields on M , using formula (3.4) we have:

g
(
(∇XΦc)Y,Z

)
= g

(
∇XΦcY,Z

)
− g
(
Φc∇XY, Z

)
= Xg(ΦcY,Z)− g(ΦcY,∇XZ)− g(∇XY,Z) + g(∇XY,ΦcZ)

= −g
(
Y, (∇XΦc)Z

)
.

2. Using formula (2.1) we get:(
∇XΦc

)
ΦcY = ∇XΦ2

cY − Φc∇XΦcY

= ∇XΦcY −
3

2
∇XY − Φc(∇XΦc)Y − Φ2

c∇XY

= (I − Φc)
(
∇XΦc

)
Y.

3. Using the equation 2 of this lemma and formula (3.4) we obtain:

g
(
(∇XΦc)ΦcY, Z

)
= g

(
(I − Φc)(∇XΦc)Y, Z

)
= g

(
(∇XΦc)Y,ΦcZ

)
.

�

Proposition 3.3. For any almost Hermitian Golden structure (Φc, g), we have:

2g ((∇XΦc)Y, (3I − Φc)Z) = 3
√

5

(
dΩ(X,ΦcY,ΦcZ)− 3

2
dΩ(X,Y, Z)

)
+ g (ΦcX,NΦc

(Y, Z)) ,

for all vectors fields X,Y, Z on M where ∇ denotes the Levi-Civita connection, d the
exterior derivative.
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Proof. Ω is a two differential form on M , then

3dΩ(X,Y, Z) = X
(
Ω(Y,Z)

)
+ Y

(
Ω(Z,X)

)
+ Z

(
Ω(X,Y )

)
− Ω

(
[X,Y ], Z

)
− Ω

(
[Y, Z], X

)
− Ω

(
[Z,X], Y

)
,

knowing that

X
(
Ω(Y,Z)

)
=

1√
5
X
(
2g(Y,ΦcZ)− g(Y, Z)

)
=

2√
5
g
(
Y, (∇XΦc)Z

)
+ Ω(∇XY,Z) + Ω(Y,∇XZ),

and

1

2
NΦc(Y, Z) = (∇ΦcY Φc)Z − (∇ΦcZΦc)Y + Φc

(
(∇ZΦc)Y − (∇Y Φc)Z

)
.

Then,

(3.5)
3
√

5

2
dΩ(X,Y, Z) = g

(
Y, (∇XΦc)Z

)
+ g
(
Z, (∇Y Φc)X

)
+ g
(
X, (∇ZΦc)Y

)
.

On the other hand, using lemma (3.2) we can get

3
√

5

2
dΩ(X,ΦcY,ΦcZ) = g

(
ΦcY, (∇XΦc)ΦcZ

)
+ g
(
ΦcZ, (∇ΦcY Φc)X

)
+ g

(
X, (∇ΦcZΦc)ΦcY

)
= −g

(
(∇XΦc)Y,Φ

2
cZ
)
− g
(
ΦcX, (∇ΦcY Φc)Z − (∇ΦcZΦc)Y

)
= −g

(
(∇XΦc)Y,Φ

2
cZ
)
− 1

2
g
(
ΦcX,NΦc(Y,Z)

)
+ g

(
ΦcX,Φc

(
(∇ZΦc)Y − (∇Y Φc)Z

))
,

now, using formulas (3.3), (3.5) and lemma (3.2) we obtain

2g ((∇XΦc)Y, (3I − Φc)Z) = 3
√

5

(
dΩ(X,ΦcY,ΦcZ)− 3

2
dΩ(X,Y, Z)

)
+ g (ΦcX,NΦc

(Y, Z)) .

�

Theorem 3.4. Let (M,Φc, g) be an almost Hermitian Golden manifold and ∇ denotes
the Riemannian connection of g. The following conditions are equivalent:

(a) ∇Φc = 0

(b) ∇Ω = 0

(c) NΦc
≡ 0 and dΩ = 0
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Proof. For all vectors fields X,Y, Z on Γ(M), we have

(∇XΩ)(Y,Z) = XΩ(Y,Z)− Ω(∇XY,Z)− Ω(Y,∇XZ)

=
2√
5

(
Xg(Y,ΦcZ)− g(∇XY,ΦcZ)− g(Y,Φc∇XZ)

)
=

2√
5
g(Y, (∇XΦc)Z).

Thus ∇Φc = 0 if and only if ∇Ω = 0. Hence (a) is equivalent to (b).
We suppose (b). Then dΩ = 0 obviously. Moreover, by proposition (3.3) we have
NΦc

≡ 0.
Conversely, we suppose (c). Then proposition (3.3) implies ∇Φc = 0 and hence
∇Ω = 0. Hence (b) is equivalent to (c). �

Definition 3.4. Let (M,Φc, g) be an almost Hermitian Golden manifold. (M,Φc, g)
is said to be:

1. Hermitian Golden (HG) manifold if and only if NΦc = 0

2. locally conformal Golden (l.c.G) manifold if there exists a closed one-form η
such that:

dΩ = η ∧ Ω.

3. Kähler-Golden (KG) manifold if and only if NΦc
= 0 and dΩ = 0 or equivalently,

∇Φc = 0.

4. Nearly Golden (NG) manifold if and only if (∇XΦc)X = 0.

5. Quasi Golden (QG) manifold if and only if

(∇XΦc)Y + (∇ΦcXΦc)ΦcY = 0.

4 Construction of examples

Let (x, y, z, t) denote the Cartesian coordinates in R4. Let (θi) be the frame of differ-
ential 1-forms on R4 given by

θ1 = fdx, θ2 = fdy, θ3 =
1

f
(dz − 2xdy) , θ4 = f3dt,

where f is a non-zero function on R4, and let (ei) be the dual frame of vector fields,

e1 =
1

f

∂

∂x
, e2 =

1

f

(
∂

∂y
+ 2x

∂

∂z

)
, e3 = f

∂

∂z
, e4 =

1

f3

∂

∂t
.

On R4, define an almost complex Golden structure Φc and a Riemannian metric g by

2Φc =
(
e1 +

√
5e2

)
⊗ θ1 +

(
e2 −

√
5e1

)
⊗ θ2 +

(
e3 +

√
5e4

)
⊗ θ3 +

(
e4 −

√
5e3

)
⊗ θ4,
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g =
∑
i

θi ⊗ θi.

The frame (ei) is orthonormal with respect g,

Φce1 =
1

2

(
e1 +

√
5e2

)
, Φce2 =

1

2

(
e2 −

√
5e1

)
,

Φce3 =
1

2

(
e3 +

√
5e4

)
, Φce4 =

1

2

(
e4 −

√
5e3

)
,

and g is compatible with Φc. Let NΦc be the Nijenhuis torsion tensor of Φc. [, ] being
the Lie bracket of vector fields. By direct calculations, one checks that

NΦc
(e1, e2) = NΦc

(e3, e4) = 0,

NΦc
(e1, e3) = − 5

f2

(
f1e3 + (f2 + 2xf3)e4

)
= −NΦc(e2, e4),

NΦc
(e1, e4) = − 5

f2

(
(f2 + 2xf3)e3 − f1e4

)
= NΦc

(e2, e3),

where fi = ∂f
∂xi

, which implies that, (R4,Φc, g) is a Hermitian Golden manifold if
and only if

f1 = f2 = f3 = 0.

Moreover, in our example, the fundamental 2-form Ω has the shape

Ω = −2(θ1 ∧ θ2 + θ3 ∧ θ4) = −2f2
(
dx ∧ dy − 2x dy ∧ dt+ dz ∧ dt

)
,

so, we obtain

dΩ = −4f
(
f3 dx ∧ dy ∧ dz − (2xf1 − f4 + f)dx ∧ dy ∧ dt

+ f1 dx ∧ dz ∧ dt+ (f2 + 2xf3)dy ∧ dz ∧ dt
)

= 2
(
d ln f − dt

)
∧ Ω,

for η = 2
(
d ln f − dt

)
, (R4,Φc, g) is a locally conformal Golden manifold. Conse-

quently, (R4,Φc, g) is a Kähler-Golden manifold if and only if f = cet where c ∈ R.
For the last two classes, we calculate the components of the tensor ∇Φc. Using the
Koszul formula for the Levi-Civita connection of a Riemannian metric

2g(∇eiej , ek) = −g(ei, [ej , ek]) + g(ej , [ek, ei]) + g(ek, [ei, ej ]),

we get

∇e1e1 =
−1

f2
(f2 + 2xf3)e2 − f3e3 −

f4

f4
e4, ∇e1e2 =

1

f3
e3 +

1

f2
(f2 + 2xf3)e1,

∇e1e3 = f3e1 −
1

f3
e2, ∇e1e4 =

f4

f4
e1,∇e2e1 =

f1

f2
e2 −

1

f3
e3,

∇e2e2 = − f1
f2

e1−f3e3−
f4
f4

e4, ∇e2e3 =
1

f3
e1+f3e2, ∇e2e4 =

f4
f4

e2, ∇e3e1 =
−1
f3

e2−
f1
f2

e3,
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∇e3e2 =
1

f3
e1 −

1

f2
(f2 + 2xf3)e3, ∇e3e3 =

1

f2
(f2 + 2xf3)e2 +

f4

f4
e4 +

f1

f2
e1,

∇e3e4 = − f4

f4
e3, ∇e4e1 =

3f1

f2
e4, ∇e4e2 =

3

f2
(f2 + 2xf3)e4,

∇e4e3 = 3f3e4, ∇e4e4 =
−3

f2
(f2 + 2xf3)e2 − 3f3e3 −

3f1

f2
e1.

Knowing that (∇eiΦc)ej = ∇eiΦcej − Φc∇eiej , then we obtain

2√
5

(∇e1Φc)e1 =
−1

f2
(f2 + 2xf3)e1 +

1

f4
(f − f4)e3 + f3e4,

2√
5

(∇e1Φc)e2 =
1

f2
(f2 + 2xf3)e2 + f3e3 −

1

f4
(f − f4)e4,

2√
5

(∇e1Φc)e3 =
2√
5

(∇e2Φc)e4 = − 1

f4
(f − f4)e1 − f3e2,

2√
5

(∇e1Φc)e4 =
2√
5

(∇e2Φc)e3 = −f3e1 +
1

f4
(f − f4)e2,

2√
5

(∇e2Φc)e1 = −f3e3 +
1

f4
(f − f4)e4,

2√
5

(∇e2Φc)e2 =
1

f4
(f − f4)e3 + f3e4,

2√
5

(∇e3Φc)e1 =
−1

f2
(f2 + 2xf3)e3

2√
5

(∇e3Φc)e2 =
1

f2
(f2 + 2xf3)e4

2√
5

(∇e3Φc)e3 =
1

f2
(f2 + 2xf3)e1

2√
5

(∇e3Φc)e4 =
−1

f2
(f2 + 2xf3)e2

2√
5

(∇e4Φc)e1 =
3f1

f2
e3 +

3

f2
(f2 + 2xf3)e4,

2√
5

(∇e4Φc)e2 =
3

f2
(f2 + 2xf3)e3 +

3f1

f2
e4,

2√
5

(∇e4Φc)e3 =
−3

f2
(f2 + 2xf3)e2,

2√
5

(∇e4Φc)e4 =
−3

f2
(f2 + 2xf3)e1,

Now we will make ∇Φc = 0 (i.e., Kähler-Golden case) we get the following equations:

f2 + 2xf3 = 0, f − f4 = 0, f1 = f3 = 0,
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and moreover that these equations are equivalent to the following OED

f − f4 = 0, with f = f(t).

Solving the differential equation we obtain f = cet with c ∈ R. Which confirms the
previous result.

For the Nearly Golden case
(
i.e. (∇XΦc)X = 0

)
, we get the following equations:

f2 + 2xf3 = 0, f − f4 = 0, f3 = 0,

which give
f = A(x)et.

Unfortunately, in this family of almost Hermitian Golden manifolds, there are no
manifolds properly Quasi Golden.
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