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Abstract. Let m = 2l be a positive natural number, l = 1, 2, . . . . A Fins-
lerian metric F is called an m-th root metric if its m-th power Fm is of
class Cm on the tangent manifold TM . Using some homogeneity proper-
ties, the local expression of Fm is a polynomial of degreem in the variables
y1, . . ., yn, where dimM = n. F is locally symmetric if each point has
a coordinate neighbourhood such that Fm is a symmetric polynomial of
degree m in the variables y1, . . ., yn of the induced coordinate system on
the tangent manifold. Using the fundamental theorem of symmetric poly-
nomials, the reduction of the number of the coefficients depending on the
position makes the computational processes more effective and simple. In
the paper we present some general observations about locally symmetric
m-th root metrics. Especially, we are interested in generalized Berwald
surfaces with locally symmetric fourth root metrics. The main result (The-
orem 3.2) is their intrinsic characterization in terms of the basic notions
of linear algebra. We present a one-parameter family of examples as well.
The last section contains some computations in 3D. They are supported
by the MAPLE mathematics software (LinearAlgebra).
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1 Introduction

Let M be a differentiable manifold with local coordinates u1, . . . , un. The induced
coordinate system of the tangent manifold TM consists of the functions x1, . . . , xn

and y1, . . . , yn. For any v ∈ TpM , xi(v) = ui ◦ π(v) and yi(v) = v(ui), where
π : TM → M is the canonical projection, i = 1, . . . , n. Introducing the so-called
Liouville vector field C := yi∂/∂yi, it can be easily seen that the integral curves of
C are of the form etv for any nonzero v ∈ TM . If the function f : TM → R is
differentiable on the complement of the zero section such that f(tv) = tkf(v) for any

∗Balkan Journal of Geometry and Its Applications, Vol.24, No.2, 2019, pp. 63-78.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2019.



64 Cs. Vincze, T. R. Khoshdani and M. Oláh

positive t ∈ R, then we have that

C(v)f =
d

dt

(
f(etv)

)
t=0

= kf(v)

and vice versa. This means that the function f is positively homogeneous of degree k
if and only if Cf = kf . It is the so-called Euler’s theorem on homogeneous functions.

A Finsler metric [3] is a continuous function F : TM → R satisfying the fol-
lowing conditions: F is smooth on the complement of the zero section (regularity),
F (tv) = tF (v) for all t > 0 (positive homogeneity) and the Hessian gij = ∂2E/∂yi∂yj ,
where E = 1

2F
2, is positive definite at all nonzero elements v ∈ TM (strong convex-

ity).
A linear connection∇ on the base manifoldM is called compatible to the Finslerian

metric if the parallel transports with respect to ∇ preserve the Finslerian length of
tangent vectors. Finsler manifolds admitting compatible linear connections are called
generalized Berwald manifolds. It can be easily seen [10] that a linear connection
∇ on the base manifold M is compatible to the Finslerian metric function if and
only if the induced horizontal distribution is conservative, i.e. the derivatives of the
fundamental function F vanish along the horizontal directions with respect to ∇:

(1.1)
∂F

∂xi
− yjΓk

ij(x)
∂F

∂yk
= 0 (i = 1, . . . , n),

where Γk
ij(x)’s are the connection parameters and the associated horizontal distribu-

tion belonging to ∇ is spanned by the vector fields of type ∂/∂xi − yjΓk
ij(x)∂/∂y

k.
Equation (1.1) is called the compatibility equation.

The concept of generalized Berwald manifolds goes back to V. Wagner [12]; the
adaptation of the starting results can be found in [11]. For a summary of the recent
trends and some general results in the theory of generalized Berwald manifolds see
[10]. To express the compatible linear connection in terms of the canonical data of
the Finsler manifold is the problem of the intrinsic characterization we are going to
solve in some special cases of locally symmetric m-th root metrics. Especially, we are
interested in generalized Berwald surfaces with locally symmetric fourth root metrics.
The main result (Theorem 3.2) is their intrinsic characterization in terms of the basic
notions of linear algebra. We present a one-parameter family of examples as well. The
last section contains some computations in 3D. They are supported by the MAPLE
mathematics software (LinearAlgebra).

2 Locally symmetric m-th root metrics

Definition 2.1. Let m = 2l be a positive natural number, l = 1, 2, . . . . A Finslerian
metric F is called an m-th root metric if its m-th power Fm is of class Cm on the
tangent manifold TM .

Using that F is positively homogeneous of degree one, its m-th power is homoge-
neous of degree m. Since it is of class Cm on the tangent manifold TM (including
the zero section), its local form must be a polynomial of degree m in the variables y1,
. . ., yn as follows:

(2.1) Fm(x, y) =
∑

i1+...+in=m

ai1...in(x)(y
1)i1 · . . . · (yn)in .
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Finslerian metrics of the form (2.1) has been introduced by Shimada [6]. They are
generalizations of the so-called Berwald-Moór metrics. The geometry of the m-th root
metrics and some special cases have been investigated by several authors such as M.
Matsumoto, K. Okubo, V. Balan, N. Brinzei, L. Tamássy, A. Tayebi and B. Najafi
etc. in [1], [2], [4], [5], [7] and [8].

Remark 2.2. Riemannian metrics are 2nd root metrics, i.e. m = 2.

Definition 2.3. F is locally symmetric if each point has a coordinate neighbourhood
such that Fm is a symmetric polynomial of degree m in the variables y1, . . ., yn of
the induced coordinate system on the tangent manifold.

Suppose that formula (2.1) is a symmetric expression of F (x, y) in the variables
y1, . . ., yn. Using the fundamental theorem of symmetric polynomials, we can write
that

(2.2) Fm(x, y) = P (s1, . . . , sn),

where

s1 = y1 + . . .+ yn, s2 = y1y2 + . . .+ yn−1yn, . . . , sn = y1 · . . . · yn

are the so-called elementary symmetric polynomials. The polynomial P with coeffi-
cients depending on the position is called the local characteristic polynomial of the
locally symmetric m-th root metric. Using the homogeneity properties, the reduction
of the number of the coefficients depending on the position is

(2.3) Fm(x, y) =
∑

j1+2j2+...+njn=m

cj1...jn(x)(s
1)j1 · . . . · (sn)jn .

The following tables show the possible values of the powers j1, . . ., jn in case of
n = 2, 3, 4, 5 and m = 4 (fourth root metrics). The corresponding local characteristic
polynomials are of the form

P (s1, s2) = c40(x)(s
1)4 + c21(x)(s

1)2s2 + c02(x)(s
2)2,

P (s1, s2, s3) = c400(x)(s
1)4 + c210(x)(s

1)2s2 + c020(x)(s
2)2 + c101(x)s

1s3,

P (s1, s2, s3, s4) = c4000(x)(s
1)4 + c2100(x)(s

1)2s2 + c0200(x)(s
2)2 + c1010(x)s

1s3+

c0001(x)s
4.

n = 2
j1 + 2j2 = 4

j1 = 4 j2 = 0
j1 = 2 j2 = 1
j1 = 0 j2 = 2
– –
– –

n = 3
j1 + 2j2 + 3j3 = 4

j1 = 4 j2 = 0 j3 = 0
j1 = 2 j2 = 1 j3 = 0
j1 = 0 j2 = 2 j3 = 0
j1 = 1 j2 = 0 j3 = 1
– – –

n = 4
j1 + 2j2 + 3j3 + 4j4 = 4

j1 = 4 j2 = 0 j3 = 0 j4 = 0
j1 = 2 j2 = 1 j3 = 0 j4 = 0
j1 = 0 j2 = 2 j3 = 0 j4 = 0
j1 = 1 j2 = 0 j3 = 1 j4 = 0
j1 = 0 j2 = 0 j3 = 0 j4 = 1
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The case n = 4 also shows the special form of the local characteristic polynomial of
locally symmetric fourth root metrics for n ≥ 5 up to the formal zero powers for the
terms s5, . . ., sn. If n = 5 then we have that

P (s1, s2, s3, s4, s5) = c40000(x)(s
1)4+c21000(x)(s

1)2s2+c02000(x)(s
2)2+c10100(x)s

1s3+

c00010(x)s
4.

Corollary 2.1. A locally symmetric fourth root metric is locally determined by at
most five components of its local characteristic polynomial.

2.1 Regularity properties

Let us introduce the following notations

A := Fm(x, y) =
∑

i1+...+in=m

ai1...in(x)(y
1)i1 · . . . (yn)in ,

Ai :=
∂A

∂yi
and Aij :=

∂2A

∂yi∂yj
.

Lemma 2.2. The function F = m
√
A is a Finsler metric if and only if Aij(v) is a

positive definite matrix for any nonzero v ∈ π−1(U).

Proof. Suppose that Aij(v) is a positive definite matrix for any nonzero v ∈ π−1(U).
Then, by the homogeneity properties,

0 < yiyjAij = m(m− 1)A,

i.e. we can introduce a positive valued one-homogeneous function F = m
√
A on the

complement of the zero section in π−1(U). Since A = (F 2)l,

Aij = 2llEl−1

(
gij +

l − 1

E

∂E

∂yi
∂E

∂yj

)
, where E =

1

2
F 2.

Taking linearly independent vertical vector fields V1, . . . , Vn−1 such that Vi(v)E = 0
at a given v ∈ π−1(U), it follows that V1, . . . , Vn−1, C is a basis of the vertical subspace
VvTM . We have

V i
k (v)V

j
k (v)gij(v) =

V i
k (v)V

j
k (v)Aij(v)

2llEl−1(v)
> 0 and CiCjgij = yiyjgij = 2E > 0

in the sense of Euler’s theorem on homogeneous functions. This means that gij(v) is
a positive definite matrix for any non-zero v. The converse of the statement is clear
because of

yiyjAij(v) = 2llEl−1(v)

(
yiyjgij(v) +

l − 1

E(v)

(
yi

∂E

∂yi
(v)

)2
)
,

i.e. if gij(v) is a positive definite matrix, then Aij(v) is also positive definite for any
non-zero v ∈ π−1(U). �
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3 Finsler surfaces with locally symmetric
fourth root metrics

Let M be a two-dimensional Finsler manifold (Finsler surface) with a locally sym-
metric fourth root metric F = 4

√
A. Its local characteristic polynomial must be of the

form

(3.1) P (s1, s2) = A(x, y) = a(x)(y1 + y2)4 + b(x)(y1 + y2)2y1y2 + c(x)(y1y2)2,

where a(x) = c40(x), b(x) = c21(x) and c(x) = c02(x). Differentiating (3.1)

A1 = 4a(x)(y1 + y2)3 + 2b(x)(y1 + y2)y1y2 + b(x)(y1 + y2)2y2 + 2c(x)y1(y2)2,

A2 = 4a(x)(y1 + y2)3 + 2b(x)(y1 + y2)y1y2 + b(x)(y1 + y2)2y1 + 2c(x)y2(y1)2.

By some further computations

(3.2) A11 = 12a(x)(y1)2 + (24a(x) + 6b(x))y1y2 + (12a(x) + 4b(x) + 2c(x))(y2)2,

(3.3) A12 = A21 = (12a(x) + 3b(x))(y1)2 + (24a(x) + 8b(x) + 4c(x))y1y2+

(12a(x) + 3b(x))(y2)2,

(3.4) A22 = (12a(x) + 4b(x) + 2c(x))(y1)2 + (24a(x) + 6b(x))y1y2 + 12a(x)(y2)2.

Introducing the functions

(3.5) l(x) := a(x), m(x) := 4a(x) + b(x), n(x) := 6a(x) + 2b(x) + c(x),

we have that

(3.6) A(x, y) = l(x)(y1)4+m(x)(y1)3y2+n(x)(y1)2(y2)2+m(x)y1(y2)3+ l(x)(y2)4,

A1 = 4l(x)(y1)3 + 3m(x)(y1)2y2 + 2n(x)y1(y2)2 +m(x)(y2)3,(3.7)

A2 = m(x)(y1)3 + 2n(x)(y1)2y2 + 3m(x)y1(y2)2 + 4l(x)(y2)3.(3.8)

Since  l
m
n

 =

1 0 0
4 1 0
6 2 1

ab
c

 .

is a regular linear transformation, the coefficients a(x), b(x), c(x) are uniquely deter-
mined by l(x), m(x), n(x) and vice versa. Using (3.2), (3.3) and (3.4)

A11 =
[
y1 y2

] [12l 3m
3m 2n

] [
y1

y2

]
, A12 = A21 =

[
y1 y2

] [3m 2n
2n 3m

] [
y1

y2

]
,

A22 =
[
y1 y2

] [2n 3m
3m 12l

] [
y1

y2

]
.
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Therefore Aij =

[
A11 A12

A21 A22

]
is positive definite if and only if

[
12 l 3m

3m 2n

]
and

[
12 l 3m

3m 2n

][
2n 3m

3m 12 l

]
−

[
3m 2n

2n 3m

]2
are positive definite. Using some direct computations[

12 l 3m

3m 2n

][
2n 3m

3m 12 l

]
−

[
3m 2n

2n 3m

]2
=

[
24nl − 4n2 72ml − 12nm

0 24nl − 4n2

]
and, consequently,

12l > 0, 24ln− 9m2 > 0 and 24nl − 4n2 > 0.(3.9)

Especially (3.9) is equivalent to

(3.10) 6l > n > 0 and
8

3
nl > m2.

3.1 Generalized Berwald surfaces with locally symmetric
fourth root metrics

Let ∇ be a linear connection on the base manifold M equipped with a locally sym-
metric fourth root metric F = 4

√
A and suppose that the parallel transports preserve

the Finslerian length of tangent vectors. The compatibility condition (1.1) can be
written into the form

(3.11)
∂A

∂xi
− yjΓk

ij(x)
∂A

∂yk
= 0 (i = 1, 2).

Substituting (3.6), (3.7) and (3.8) into (3.11), we get the following system of linear
equations 

4l 0 m 0
3m 4l 2n m
2n 3m 3m 2n
m 2n 4l 3m
0 m 0 4l



Γ1
i1

Γ1
i2

Γ2
i1

Γ2
i2

 =


∂l/∂xi

∂m/∂xi

∂n/∂xi

∂m/∂xi

∂l/∂xi

(3.12)

because of

yjΓk
ij

∂A

∂yk
=
(
y1Γ1

i1 + y2Γ1
i2

) ∂A

∂y1
+
(
y1Γ2

i1(x) + y2Γ2
i2

) ∂A

∂y2
(3.7), (3.8)

=

(
4lΓ1

i1 +mΓ2
i1

)
(y1)4 +

(
mΓ2

i2 + 2nΓ2
i1 + 4lΓ1

i2 + 3mΓ1
i1

)
(y1)3y2+

(
2nΓ2

i2 + 3mΓ2
i1 + 3mΓ1

i2 + 2nΓ1
i1

)
(y1)2(y2)2+

(
3mΓ2

i2 + 4lΓ2
i1 + 2nΓ1

i2 +mΓ1
i1

)
y1(y2)3 +

(
mΓ1

i2 + 4lΓ2
i2

)
(y2)4.
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Lemma 3.1. If F = 4
√
A is a non-Riemannian connected generalized Berwald surface

with a locally symmetric fourth root metric, then

rank


4l 0 m 0
3m 4l 2n m
2n 3m 3m 2n
m 2n 4l 3m
0 m 0 4l

 = 4.(3.13)

Proof. Suppose, in contrary, that the rank is less than 4. In case of m(x) = 0

rank


4l(x) 0 0 0
0 4l(x) 2n(x) 0

2n(x) 0 0 2n(x)
0 2n(x) 4l(x) 0
0 0 0 4l(x)

 < 4.

Therefore n(x) = 2l(x) = 2a(x). Since m(x) = 0, it follows that b(x) = −4a(x),
c(x) = 4a(x) and, consequently, b2(x)− 4a(x)c(x) = 0. This means that

A(x, y) = a(x)(y1)4 + 2a(x)(y1)2(y2)2 + a(x)(y2)4 = a(x)
(
(y1)2 + (y2)2

)2
is a complete square of the quadratic form E(x, y) with respect to the variables y1 and
y2. Using that we have a compatible linear connection, the indicatrices are quadrics
at each point as the (linear) parallel translates of the indicatrix at the single point x.
It is a contradiction because the surface is non-Riemannian. In the second case we
suppose that m(x) ̸= 0 and consider the submatrix

4l(x) 0 m(x) 0
2n(x) 3m(x) 3m(x) 2n(x)
m(x) 2n(x) 4l(x) 3m(x)
0 m(x) 0 4l(x)

 .

If the rank is less than 4, then its determinant must be zero:

4m(x)(6l(x)− n(x))(8l2(x)− 4l(x)n(x) +m2(x)) = 0.

According to the regularity properties (3.9), 6l(x) − n(x) > 0 and m(x) ̸= 0 imply
that

8l2(x)− 4l(x)n(x) +m2(x) = 0,

8a2(x)−4a(x) (6a(x) + 2b(x) + c(x))+(4a(x) + b(x))
2
= 0 ⇒ b2(x)−4a(x)c(x) = 0

and the proof can be finished as above. �

Theorem 3.2. Let M be a connected non-Riemannian Finsler surface with a locally
symmetric fourth root metric F = 4

√
A. It is a generalized Berwald surface if and only

if the coefficient matrix

B :=


4l 0 m 0
3m 4l 2n m
2n 3m 3m 2n
m 2n 4l 3m
0 m 0 4l





70 Cs. Vincze, T. R. Khoshdani and M. Oláh

is of constant rank 4 and

det


4l 0 m 0 ∂l/∂xi

3m 4l 2n m ∂m/∂xi

2n 3m 3m 2n ∂n/∂xi

m 2n 4l 3m ∂m/∂xi

0 m 0 4l ∂l/∂xi

 = 0 (i = 1, 2).(3.14)

The compatible linear connection is uniquely determined by the formula

(3.15)


Γ1
i1

Γ1
i2

Γ2
i1

Γ2
i2

 =
(
BTB

)−1
BT


∂l/∂xi

∂m/∂xi

∂n/∂xi

∂m/∂xi

∂l/∂xi

 (i = 1, 2).

Proof. According to Lemma 3.1, if a generalized Berwald metric is non-Riemannian,
then the coefficient matrix in (3.12) is of constant rank 4 and the existence of the
unique solution is equivalent to the vanishing of the determinant of the extended
matrix. To conclude the explicite expression of the coefficients of the compatible
linear connection note that BTB is the Gram matrix of the linearly independent
column vectors, i.e. the Gram determinant different from zero and BTB is invertible.
Conversely, if the rank is maximal and (3.14) holds, then the system of linear equations
(3.12) has a unique solution given by formula (3.15). �

3.2 Examples

In what follows we give explicit examples for non-constant functions satisfying (3.14).
To simplify the formulation of the problem we prove that the class of generalized
Berwald metrics is closed under the conformal deformation.

Definition 3.1. The Finsler metrics F1 and F2 are conformally related if F2(x, y) =
eα(x)F1(x, y).

Theorem 3.3. The class of generalized Berwald metrics is closed under the conformal
deformation.

Proof. If the compatibility equation (1.1) holds for the Finsler metric F1 then we have
that

∂F2

∂xi
− yjΓk

ij(x)
∂F2

∂yk
= eα(x)

(
∂F1

∂xi
− yjΓk

ij(x)
∂F1

∂yk

)
+ F2

∂α

∂xi
= F2

∂α

∂xi
.

This means that the compatibility equation

(3.16)
∂F2

∂xi
− yj

(
Γk
ij(x) +

∂α

∂xi
(x)δkj

)
∂F2

∂yk
= 0 (i = 1, . . . , n)

holds for the Finsler metric F2. �
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In the sense of the previous theorem we can suppose that 4l(x) = 1 (conformal
deformation of the metric). Therefore we should find solutions n(x) and m(x) of
equation

det


1 0 m 0 0
3m 1 2n m ∂m/∂xi

2n 3m 3m 2n ∂n/∂xi

m 2n 1 3m ∂m/∂xi

0 m 0 1 0

 = 0 (i = 1, 2).

We have

8∂m/∂xim3n− 8 ∂n/∂xim4 − 12∂m/∂xim3 − 8∂m/∂ximn2 + 12∂n/∂xim2n+

16∂m/∂ximn− 2∂n/∂xim2 − 4∂n/∂xin2 − 6m∂m/∂xi + ∂n/∂xi = 0,

(3.17)
(
2m2 − 2n+ 1

) (
2m (2n− 3) ∂m/∂xi +

(
−4m2 + 2n+ 1

)
∂n/∂xi

)
= 0.

Since l = 1/4, the case 2m2(x)− 2n(x) + 1 = 0 gives that m2(x) = n(x)− 1/2,

8l2(x)− 4l(x)n(x) +m2(x) = 0,

8a2(x)−4a(x) (6a(x) + 2b(x) + c(x))+(4a(x) + b(x))
2
= 0 ⇒ b2(x)−4a(x)c(x) = 0,

i.e. the surface is Riemannian1. Therefore we can suppose that 2m2(x)−2n(x)+1 ̸= 0
to present non-Riemannian generalized Berwald surfaces. We have

2m (2n− 3) ∂m/∂xi +
(
−4m2 + 2n+ 1

)
∂n/∂xi = 0,

2m∂m/∂xi = −−4m2 + 2n+ 1

2n− 3
∂n/∂xi.

Recall that the regularity conditions in (3.10) reduce to

(3.18)
3

2
> n > 0 and

2

3
>

m2

n

because of l = 1/4 and we can divide by the term 2n − 3. To present non-constant2

solutions m(x) and n(x) suppose that n is regular at the point x and, by taking
m2 = y(n), we have that

y′(n) = −−4y (n) + 2n+ 1

2n− 3
.

The general form of the solution is

yε (n) = n− 1/2 + ε (2n− 3)
2
.

1Recall that the quadratic indicatrix at a single point implies that the indicatrices are quadratic
at all points of the manifold because of the compatible (linear) parallel transports.

2The simplest examples are the constant functions satisfying (3.13). In this case (3.14) is auto-
matic.
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The integration constant ε = 1/18 provides that it is a positive-valued function on
the positive half line of the reals. On the other hand

m2
1/18

n
=

y1/18(n)

n
=

1

3
+

2

9
n <

2

3

on the interval (0, 3/2). Therefore the regularity conditions in (3.18) are satisfied and
the triplet

l(x) = r(x)/4, m1/18(x) := r(x)

√
n− 1/2 +

1

18
(2n− 3)

2
, r(x)n(x)

determines a non-Riemannian generalized Berwald surface for any positive-valued
function r(x); see Theorem 3.2 and Theorem 3.3. It is a one-parameter family of
examples depending on the integration constant ε satisfying the regularity conditions
in (3.18). For example for any 1/18 < ε < 1/6 it follows that

0 < n0 :=
18ε− 1

8ε
<

3

2

and
m2

ε(n0)

n0
=

yε(n0)

n0
= ε+

1

2
<

1

6
+

1

2
=

2

3
.

Using a continuity argument, if n is sufficiently close to n0, then the regularity con-
ditions in (3.18) are satisfied.

4 Computations in 3D

Suppose that the base manifold is of dimension 3, i.e. the locally symmetric fourth
root metric must be of the form

P (s1, s2, s3) = A(x, y) = a(x)(y1+y2+y3)4+b(x)(y1+y2+y3)2(y1y2+y1y3+y2y3)+

c(x)(y1y2 + y1y3 + y2y3)2 + d(x)(y1 + y2 + y3)y1y2y3,

where a(x) = c400(x), b(x) = c210(x), c(x) = c020(x) and d(x) = c101(x). Introducing
the functions

l(x) := a(x), m(x) := 4a(x) + b(x), n(x) := 6a(x) + 2b(x) + c(x),

q(x) := 12a(x) + 5b(x) + 2c(x) + d(x),

we have that
A = l

(
(y1)4 + (y2)4 + (y3)4

)
+

m
(
(y1)3y2 + (y1)3y3 + (y2)3y3 + (y3)3y2 + (y3)3y1 + (y2)3y1

)
+

n
(
(y1)2(y2)2 + (y1)2(y3)2 + (y2)2(y3)2

)
+ q

(
(y1)2y2y3 + y1(y2)2y3 + y1y2(y3)2

)
.

By some further computations

A1 = 4l(y1)3 +m
(
3(y1)2y2 + 3(y1)2y3 + (y2)3 + (y3)3

)
+ n

(
2y1(y2)2 + 2y1(y3)2

)
+
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q
(
2y1y2y3 + (y2)2y3 + y2(y3)2

)
,

A2 = 4l(y2)3 +m
(
(y1)3 + 3y1(y2)2 + 3(y2)2y3 + (y3)3

)
+ n

(
2(y1)2y2 + 2y2(y3)2

)
+

q
(
(y1)2y3 + 2y1y2y3 + y1(y3)2

)
,

A3 = 4l(y3)3 +m
(
(y1)3 + 3y1(y3)2 + (y2)3 + 3y2(y3)2

)
+ n

(
2(y1)2y3 + 2(y2)2y3

)
+

q
(
(y1)2y2 + y1(y2)2 + 2y1y2y3

)
,

A11 = 12l(y1)2 +m
(
6y1y2 + 6y1y3

)
+ n

(
2(y2)2 + 2(y3)2

)
+ 2qy2y3,

A22 = 12l(y2)2 +m
(
6y1y2 + 6y2y3

)
+ n

(
2(y1)2 + 2(y3)2

)
+ 2qy1y3,

A33 = 12l(y3)2 +m
(
6y1y3 + 6y2y3

)
+ n

(
2(y1)2 + 2(y2)2

)
+ 2qy1y2,

A12 = A21 = m
(
3(y1)2 + 3(y2)2

)
+ 4ny1y2 + q

(
2y1y3 + 2y2y3 + (y3)2

)
,

A13 = A31 = m
(
3(y1)2 + 3(y3)2

)
+ 4ny1y3 + q

(
2y1y2 + (y2)2 + 2y2y3

)
,

A23 = A32 = m
(
3(y2)2 + 3(y3)2

)
+ 4ny2y3 + q

(
(y1)2 + 2y1y2 + 2y1y3

)
.

The second order partial derivatives can be written into the form

A11 =
[
y1 y2 y3

] 12l 3m 3m
3m 2n q
3m q 2n

y1y2
y3

 ,

A22 =
[
y1 y2 y3

] 2n 3m q
3m 12l 3m
q 3m 2n

y1y2
y3

 ,

A33 =
[
y1 y2 y3

] 2n q 3m
q 2n 3m
3m 3m 12l

y1y2
y3

 ,

A12 = A21 =
[
y1 y2 y3

] 3m 2n q
2n 3m q
q q q

y1y2
y3

 ,

A13 = A31 =
[
y1 y2 y3

] 3m q 2n
q q q
2n q 3m

y1y2
y3

 ,

A23 = A32 =
[
y1 y2 y3

] q q q
q 3m 2n
q 2n 3m

y1y2
y3

 .

The positive definiteness of Aij :=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 can be expressed in terms of

the formal subdeterminants12l 3m 3m
3m 2n q
3m q 2n

 ,

12l 3m 3m
3m 2n q
3m q 2n

2n 3m q
3m 12l 3m
q 3m 2n

−

3m 2n q
2n 3m q
q q q

2

, . . .
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of the matrix (4.1) all of whose elements are matrices. Therefore the formal determi-
nants are also matrices and all of them must be positive definite.

(4.1)



12l 3m 3m
3m 2n q
3m q 2n

 3m 2n q
2n 3m q
q q q

 3m q 2n
q q q
2n q 3m


3m 2n q
2n 3m q
q q q

 2n 3m q
3m 12l 3m
q 3m 2n

 q q q
q 3m 2n
q 2n 3m


3m q 2n

q q q
2n q 3m

 q q q
q 3m 2n
q 2n 3m

 2n q 3m
q 2n 3m
3m 3m 12l




.

The compatibility equation (1.1) can be written into the form of the following system
of linear equations:

(4.2)
∂A

∂xi
− yjΓk

ij ◦ π
∂A

∂yk
= 0 (i = 1, 2),



4l 0 0 m 0 0 m 0 0
0 m 0 0 4l 0 0 m 0
0 0 m 0 0 m 0 0 4l
3m 4l 0 2n m 0 q m 0
3m 0 4l q 0 m 2n 0 m
0 q m 0 3m 4l 0 2n m
0 m q 0 m 2n 0 4l 3m
m 0 2n m 0 q 4l 0 3m
m 2n 0 4l 3m 0 m q 0
2q 3m 3m 2q q 2n 2q 2n q
q 2q 2n 3m 2q 3m 2n 2q q
q 2n 2q 2n q 2q 3m 3m 2q
0 q q 0 2n 3m 0 3m 2n
2n 0 3m q 0 q 3m 0 2n
2n 3m 0 3m 2n 0 q q 0





Γ1
i1

Γ1
i2

Γ1
i3

Γ2
i1

Γ2
i2

Γ2
i3

Γ3
i1

Γ3
i2

Γ3
i3


=



∂l/∂xi

∂l/∂xi

∂l/∂xi

∂m/∂xi

∂m/∂xi

∂m/∂xi

∂m/∂xi

∂m/∂xi

∂m/∂xi

∂q/∂xi

∂q/∂xi

∂q/∂xi

∂n/∂xi

∂n/∂xi

∂n/∂xi



.

4.1 An example

Suppose3 that 4l(x) = 1, 3m(x) = 1 and n(x) = q(x). According to (4.1), the matrix
Aij is positive definite if and only if

(i)


3 1 1

1 2n n

1 n 2n

 is positive definite: 6n− 1 > 0 and 9n2 − 2n > 0,

3Symbolical Maple computations are also possible but we have extremely long formulas in general.
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(ii)


3 1 1

1 2n n

1 n 2n




2n 1 n

1 3 1

n 1 2n

−


1 2n n

2n 1 n

n n n


2

=


−5n2 + 7n −n2 − 4n+ 7 −3n2 + 4n+ 1

0 −5n2 + 7n −n2 + 2n

−n2 + 2n −3n2 + 4n+ 1 n2 + 2n


is positive definite: −5n2 + 7n > 0 and 6n3(9n3 − 27n2 + 23n− 4) > 0,

(iii) following the formal Sarrus rule,
3 1 1

1 2n n

1 n 2n




2n 1 n

1 3 1

n 1 2n




2n n 1

n 2n 1

1 1 3

+ ... =


−5n2 + 7n+ 1 −3n3 − 10n2 + 21n+ 1 −6n3 − 9n2 + 23n+ 11

6n3 − 8n2 − 4n− 1 −9n3 + 7n2 + n −3n3 − 10n2 + 21n+ 1

18n3 − 18n2 − 14n− 2 6n3 − 8n2 − 4n− 1 −5n2 + 7n+ 1


is positive definite: −5n2 + 7n+ 1 > 0,

18n6 + 81n5 − 316n4 + 154n3 + 96n2 + 26n+ 1 > 0,

−1026n9 + 1260n8 + 6015n7 − 12069n6 + 4524n5 + 2509n4 − 1582n3 − 42n2+

100n+ 11 > 0.

Items (i) and (ii) give that 4/3 > n >
5−

√
13

6
. Item (ii) obviously implies that

−5n2 + 7n+ 1 > 0 in item (iii). Figure 1 shows

18n6 + 81n5 − 316n4 + 154n3 + 96n2 + 26n+ 1,

−1026n9+1260n8+6015n7−12069n6+4524n5+2509n4−1582n3−42n2+100n+11

as the functions of the variable n on the interval

(
5−

√
13

6
, 4/3

)
:

with(plots);

F := plot(18*n^6+..., n = 5/6-(1/6)*sqrt(13) .. 4/3,

linestyle = dashdot):

G := plot(-1026*n^9+..., n = 5/6-(1/6)*sqrt(13) .. 4/3):

display({F, G});
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Figure 1: Regularity conditions.

Therefore the regularity condition for n is to be in

(
5−

√
13

6
, r1

)
, where r1 is the

first positive root of the polynomial −1026n9+1260n8+6015n7−12069n6+ . . . For

some numerical estimations note that r1 > 0.6458 and
5−

√
13

6
< 0.2325. To finish

the discussion of the problem consider the coefficient matrix B of the system (4.2).
It is of rank 9 if and only if detBTB ̸= 0. Since

detBTB =
1

387420489
(46656n4 − 5184n3 − 5589n2 + 2124n+ 1492)

(3n− 2)2(124659n6 − 51030n5 − 77517n4 − 51030n3 + 158931n2 − 92820n+ 17731)2

it follows that the regularity condition 0.2325 < n < 0.6458 provides the matrix BTB
to be invertible as Figure 2 shows:

with(plots);

K := plot(46656*n^4..., n = 5/6-(1/6)*sqrt(13) .. 1.2,

linestyle = dashdot);

L := plot(124659*n^6..., n = 5/6-(1/6)*sqrt(13) .. 1.2);

display({K, L});
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Figure 2: The maximality of the rank.

Therefore the necessary and sufficient condition for the metric F = 4
√
A (4l = 1, 3m =

1, n = q, 0.2325 < n < 0.6458 ) to be a non-Riemannian generalized Berwald metric
is the vanishing of the determinant of the extended matrix of the system (4.2). On
the other hand, the compatible linear connection is uniquely determined by the three-
dimensional analogue of formula (3.15). Having no any other information about the
linear connection, the uniqueness is not an automatic consequence in 3D; see [9].
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