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Abstract. The aim of this note is to give two new conceptual proofs of
Ionescu-Weitzenböck’s inequality. The first one, which is a vector proof,
provides us a geometric interpretation of the difference between the two
sides of this inequality and of two known corollary inequalities in differen-
tial geometry. Another vector proof of these inequalities, based on a less
simple argument, was already published in this Journal. Through a less
classical approach, our second proof makes use of the properties of the set
of triangles with a fixed “size”, seen as a half-disk.
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1 Introduction

Ionescu-Weitzenböck’s classical inequality compares the area of a triangle and the
sum of the squares of its sides:

Theorem 1.1. (Ionescu-Weitzenböck’s inequality.) If a, b, c are the sides of a trian-
gle and ∆ is its area, we have:

a2 + b2 + c2 ≥ 4
√
3∆,

with equality if a = b = c.

An equivalent vector inequality is proved in [2]:

Theorem 1.2. (Ionescu-Weitzenböck’s vector inequality.) Let u⃗, v⃗ be two elements
of a Euclidean vector space X. Let us denote by ⟨u⃗, v⃗⟩ their inner product and by
u⃗∧ v⃗ their determinant in the plane they generate, oriented from u⃗ to v⃗ (u⃗∧ v⃗ = 0 if
u⃗ and v⃗ are collinear). We have:

||u⃗||2 + ||v⃗||2 + ||u⃗+ v⃗||2 ≥ 2
√
3u⃗ ∧ v⃗ = 2

√
3
√
||u⃗||2||v⃗||2 − ⟨u⃗, v⃗⟩2,

with equality if ||u⃗|| = ||v⃗|| = ||u⃗+ v⃗||.
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These theorems are equivalent. However, reference [2] only mentions the implica-
tion 1.2⇒1.1. In order to obtain Theorem 1.1 from Theorem 1.2, denoting by A, B,

C the vertices of the triangle, we just have to apply it to u⃗ =
−−→
AB and v⃗ =

−−→
BC. In

order to obtain Theorem 1.2 from Theorem 1.1, we need to consider the vector plane
generated by u⃗ and v⃗ and the triangle ABC, where B = 0⃗, A = −u⃗, C = v⃗.

The main steps in the history of this inequality are described in [2]. The most
important proofs of this result and some of its generalizations can be found in this
reference and its bibliography. In each of the next two sections, we will give a new
conceptual proof. The first one is a vector proof, the second one is based on the
properties of the set of triangles with a fixed “size”, seen as a half-disk.

2 The vector proof

Using simpler arguments than in [2], we will prove the following generalization of
Ionescu-Weitzenböck’s vector inequality, which provides us a geometric interpretation
of the difference between the two sides of the inequality (it will turn out to be the
term 2||u⃗+R(v⃗)||2):

Theorem 2.1. Let u⃗, v⃗ be two elements of a Euclidean vector space X. Let us denote
by u⃗∧ v⃗ their determinant in the plane they generate, oriented from u⃗ to v⃗ (u⃗∧ v⃗ = 0
if u⃗ and v⃗ are collinear). Let R be the rotation of angle π/3 of this oriented plane
(of every plane which contains v⃗, with any orientation, if u⃗ and v⃗ are collinear). We
have:

||u⃗||2 + ||v⃗||2 + ||u⃗+ v⃗||2 = 2(
√
3u⃗ ∧ v⃗ + ||u⃗+R(v⃗)||2) ≥ 2

√
3u⃗ ∧ v⃗,

with equality if ||u⃗|| = ||v⃗|| = ||u⃗+ v⃗||.

Proof. Let us first notice that:

u⃗ ∧ v⃗ = ||u⃗||||v⃗|| sin(u⃗, v⃗) = −||u⃗||||v⃗|| cos
(
(u⃗, v⃗) +

π

2

)
= −||u⃗||||R′(v⃗)|| cos(u⃗, R′(v⃗)) = −⟨u⃗, R′(v⃗)⟩,

where R′ denotes the rotation of angle π/2. Thus:

||u⃗||2 + ||v⃗||2 + ||u⃗+ v⃗||2 − 2
√
3u⃗ ∧ v⃗ = 2(||u⃗||2 + ||v⃗||2 + ⟨u⃗, v⃗⟩ −

√
3u⃗ ∧ v⃗)

= 2

(
||u⃗||2 + ||v⃗||2 +

⟨
2u⃗,

1

2
v⃗ +

√
3

2
R′(v⃗)

⟩)
= 2(||u⃗||2 + ||R(v⃗)||2 + 2⟨u⃗, R(v⃗)⟩) = 2||u⃗+R(v⃗)||2·

The case of equality corresponds to: u⃗ = −R(v⃗). This is equivalent to having the
triangle (u⃗, v⃗,−(u⃗+ v⃗)) be equilateral (||u⃗|| = ||v⃗|| = ||u⃗+ v⃗||). �

Taking u⃗ = ṙ(t), v⃗ = −r̈(t) in this theorem, we obtain the following generalization
of a theorem of [2], which corresponds to the inequality:

2
√
3K(t) ≤ 1 + ||r̈(t)||2 + ||ṙ(t)− r̈(t)||2·
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Theorem 2.2. Let r(t) be a parametrized curve in R3, with constant velocity ||ṙ(t)|| =
1 and curvature:

K(t) =
||ṙ(t) ∧ r̈(t)||

||ṙ(t)||3
= ||ṙ(t) ∧ r̈(t)||,

where ∧ here denotes the vector cross product. We have:

2
√
3K(t) = 1+||r̈(t)||2+||ṙ(t)−r̈(t)||2−2||ṙ(t)−R(r̈(t))||2 ≤ 1+||r̈(t)||2+||ṙ(t)−r̈(t)||2,

with equality if ||r̈(t)|| = ||ṙ(t)− r̈(t)|| = 1, where R denotes the rotation of angle π/3
of the vector plane generated by ṙ(t) and r̈(t), oriented from r̈(t) to ṙ(t) (of every
plane which contains r̈(t), with any orientation, if ṙ(t) and r̈(t) are collinear).

Applying Theorem 2.1 to other vectors, as in [2], we can also obtain an identity
involving the curvature and the torsion of a curve, which generalizes another inequality
of [2].

3 The proof based on the half-disk of triangle shapes

Our second proof of Theorem 1.1 is based on a study of the properties of figures drawn
on an abstract plane with coordinates (a2 + b2 + c2,∆), instead of the plane of the
triangle of the theorem. In this plane, we will see the set of triangles with fixed a2+b2

as a half-disk, and Ionescu-Weitzenböck’s inequality as the inequation of a half-plane
whose boundary is the tangent line to this half-disk which passes through the origin.

Proof. We have:

a2b2 = (ab cos(γ))2 + (ab sin(γ))2 =

(
a2 + b2 − c2

2

)2

+ (2∆)2,

where γ is the angle opposite the side of length c,(
I

2
− (a2 + b2)

)2

+ (2∆)2 = a2b2, where I = a2 + b2 + c2·
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Fixing the value of a2 + b2 and a2b2, we can associate to each triangle a point with
coordinates (I/2 > 0, 2∆ > 0) of the figure, located on the half-circle with equation:

F

(
I

2
, 2∆

)
=

(
I

2
− (a2 + b2)

)2

+ (2∆)2 = a2b2·

By the inequality ab ≤ (a2 + b2)/2, fixing only the value of a2 + b2, we can associate
to each triangle a point of the half-disk D with inequation:

F

(
I

2
, 2∆

)
=

(
I

2
− (a2 + b2)

)2

+ (2∆)2 ≤
(
a2 + b2

2

)2

in the quadrant (I/2 > 0, 2∆ > 0). This half-disk has center Ω = (a2 + b2, 0) and
radius (a2 + b2)/2. Let T be its point of contact with the tangent line which passes
through the origin O. We have:

sin(ΩOT ) =
ΩT

ΩO
=

a2+b2

2

a2 + b2
=

1

2
·

Thus: ΩOT = π/6, and the slope of the tangent line OT is: tan(ΩOT ) = 1/
√
3. As

the half-disk D is below OT , we have:

2∆
I
2

≤ 1√
3
,

which gives us Ionescu-Weitzenböck’s inequality.
The case of equality corresponds to the point T , located on the limit half-circle C
with equation:

F

(
I

2
, 2∆

)
= a2b2 =

(
a2 + b2

2

)2

·

The equality between the two last expressions is equivalent to: a = b. In other words,
the limit half-circle C is the set of isosceles triangles with base the side of length c.
By symmetry, we have, for T : a = b = c. Thus, the case of equality corresponds to
the equilateral triangle. �

The equation of the circles of this proof arises from the following system:{
ab cos(γ) = a2+b2−c2

2
ab sin(γ) = 2∆

In fact, the use of the expressions ⟨u⃗, v⃗⟩ (instead of ab cos(γ)) and u⃗ ∧ v⃗ (instead of
ab sin(γ)) in our proof of Theorem 2.1 shows that it was implicitly based on equivalent
equations.

There are other descriptions of the set of triangles. This note is also an invitation
to read [1], where the set of triangles with fixed I = a2 + b2 + c2 is seen as a sphere,
in order to solve problems of mechanics.



5

References

[1] A. Chenciner, The “form” of a triangle, Rend. Mat. Appl. (7) 27 (2007), 1-16.
http://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/2007(1)/1-16.pdf

[2] E. Stoica, N. Minculete, C. Barbu, New aspects of Ionescu-Weitzenböck’s ine-
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