
Gauge theory on contact metric manifolds

A. Manea, C. Ida

Abstract. In this paper we develop the gauge theory on a contact man-
ifold. We consider a Lagrangian which is supposed to be invariant under
a global action of a Lie group and we obtain the equation of motion and
the conservation laws. In order to get a local gauge invariant Lagrangian,
we introduced some gauge fields and determine what form have to take
such an invariant Lagrangian.
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1 Introduction

This paper is about Lagrangians depending by r scalar fields on a contact metric
manifold. It answers at the question: ”What have to be the form of a Lagrangian to be
invariant at the local action of a Lie group, also called infinitesimal transformation?”.

The concept of a non-abelian gauge theory as a generalization of Maxwell’s theory
of electromagnetism, was introduced by Yang and Mills. A brief survey of interac-
tion between the work of physics community and the mathematicians about gauge
theory and differential manifolds could be found in [9]. In monographies [7], [8] were
given the basics facts and tehnics of gauge field theories. Some topological aspects
of gauge theory on contact 3-manifolds were studied in [10], [14], [15]. The topic
of gauge-invariant Lagrangians in complex geometry was discussed in [11], [12], [13].
The gauge-invariance of Lagrangians and the gauge fields for tangent bundle and for
foliated manifolds are the subjects of [1], [5], respectively.

Following the general case of foliated manifolds from [5], for a Lagrangian invari-
ant at coordinates transformation, in this paper we express the equation of motions
and the conservation laws for the scalar fields using some adapted connections on
a contact manifold. So, the first section of the paper is devoted to determine the
adapted connections. In the second section we consider a Lagrangian invariant at the
coordinate transformation and we study what form it has to take for being invariant
at global action of a Lie group, in subsection 2.1, then to be invariant at local action,
in subsection 2.2. Here we need to introduce some new fields, called gauge fields, to
ensure the local invariance. The last subsection is devoted to study the behaviour of
gauge fields at local action of the Lie group.
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2 Contact metric manifolds

2.1 An adapted frame field on a contact metric manifold

Let M be a (2n + 1)-dimensional manifold and (φ, ξ, η) an almost contact structure
on M . That is, φ is a tensor field of type (1, 1), ξ a vector field, called the Reeb vector
field on M , and η a 1-form on M , such that

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1.

Moreover, if the (2n+1)-form η∧(dη)n doesn’t vanishes everywhere on M then (M,η)
is a contact manifold.

A Riemannian metric compatible with the almost contact structure (φ, ξ, η) is a
Riemannian metric g on M such that

(2.2) g(φX,φY ) = g(X,Y )− η(X)η(Y ), ∀X,Y ∈ Γ(TM).

A manifoldM endowed with an almost contact structure and a Riemannian metric
compatible with it is called an almost contact metric manifold.

There are well-known the following properties which derive from the conditions
(2.1) and (2.2):
(2.3)
(a) φξ = 0 , (b) φ3 = −φ , (c) η◦φ = 0 , (d) η(X) = g(X, ξ) , (e) dη(ξ,X) = 0,

for every X ∈ Γ(TM). Also, if the almost contact metric manifold is contact, then
we have

(2.4) dη(X,Y ) = ϕ(X,Y ) , ∀X,Y ∈ Γ(TM),

where ϕ is the fundamental (or Sasaki) 2-form on M given by

(2.5) ϕ(X,Y ) = g(X,φY ) , ∀X,Y ∈ Γ(TM).

Moreover, the almost contact metric manifold is said to be: K–contact if it is contact
and ξ is Killing; normal if [φ,φ] + 2dη ⊗ ξ = 0; Sasakian if it is contact and normal.
If M is Sasakian manifold then it is K–contact [6].

Also, we consider the contact distribution D defined by the subspaces

Dx = {Xx ∈ TxM | ηx(Xx) = 0},

which is the transversal distribution to the characteristic foliation Fξ (1-dimensional
foliation determined by the Reeb vector field ξ). Then, the structural distribution of
characteristic foliation Fξ is TFξ := ⟨ξ⟩ = {fξ | f ∈ C∞(M)}.

According to the general theory of foliations, [17, 18, 19], we can choose a local
coordinate system (U, x = (x0, xi)), i ∈ {1, . . . , 2n}, adapted to foliation Fξ, that is
ξ = ∂/∂x0 on U .

Then, by η(ξ) = 1, we deduce that

(2.6) η = dx0 + ηidx
i , ηi = η

(
∂

∂xi

)
, ∀ i ∈ {1, . . . , 2n}.
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This allows us to consider on U the local basis
{
∂/∂x0, δ/δxi

}
, i = 1, . . . , 2n, called

adapted to Fξ, where

(2.7)
δ

δxi
=

∂

∂xi
− ηi

∂

∂x0
, ∀ i ∈ {1, . . . , 2n}.

Obviously, the set
{
δ/δxi

}
, i ∈ {1, . . . , 2n} is a local basis in Γ(D|U ), and the dual

basis of
{
∂/∂x0, δ/δxi

}
is

(2.8)
{
η, dx1, dx2, . . . , dx2n

}
.

In the following we shall evaluate the Lie brackets for the vector fields from the
adapted basis

{
∂/∂x0, δ/δxi

}
. By relation (2.3)(e) and

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η[X,Y ], ∀X,Y ∈ Γ(TM),

it follows η[ξ,X] = −ξ(η(X)). So, for any X ∈ Γ(D), we have [ξ,X] ∈ Γ(D). That
means [

∂

∂x0
,

δ

δxi

]
∈ Γ(D).

On the other hand, a direct computation give us[
δ

δxi
,

∂

∂x0

]
=

∂ηi
∂x0

∂

∂x0
.

We obtain that

(2.9)

[
∂

∂x0
,

δ

δxi

]
= 0, ηi = ηi(x

1, x2, ..., x2n).

Then, for δ/δxi from (2.7), we can compute[
δ

δxi
,

δ

δxj

]
=

(
∂ηi
∂xj

− ∂ηj
∂xi

)
∂

∂x0
.

Also, we have the relations (2.4), (2.5) and (2.6), which express locally that

(2.10) dη

(
δ

δxj
,

δ

δxi

)
=

1

2

(
∂ηi
∂xj

− ∂ηj
∂xi

)
= ϕji = gjkφ

k
i ,

where we put

(2.11) ϕij = ϕ

(
δ

δxi
,

δ

δxj

)
, φ

(
δ

δxi

)
= φj

i

δ

δxi
, gij = g

(
δ

δxi
,

δ

δxj

)
.

Obviously, ϕij = −ϕji and gij = gji, for all i, j ∈ {1, . . . , 2n}. Hence, we obtain

(2.12)

[
δ

δxi
,

δ

δxj

]
= 2ϕji

∂

∂x0
.

By second relation (2.9) and (2.10) we remark that function ϕij doesn’t depends by
x0, for every i, j ∈ {1, . . . , 2n}. In the end of this subsection, we notice that the
metric g can be expressed with respect to adapted cobasis {dxi, η}, i ∈ {1, . . . , 2n} in
the form

(2.13) g = gijdx
i ⊗ dxj + η ⊗ η.
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2.2 Adapted connections on a contact metric manifold

Let us consider a contact metric manifold (Mφ, ξ, η, g) as in the previous subsection
and the Reeb foliation Fξ on it, generated by ξ. According to the orthogonal decom-
position TM = D⊕ ⟨ξ⟩, we consider the projection morphisms v and h of Γ(TM) on
Γ(⟨ξ⟩) and Γ(D), respectively.

According to the general theory of adapted connections on semi-Riemannian fo-
liations, see [5], an adapted connection for the foliation Fξ (that means a linear
connection on M which induces linear connections on both distributions D, ⟨ξ⟩), is
given by

(2.14) ∇XY = h∇̃XhY + v∇̃XvY + h(Q(X,hY )) + v(Q(X, vY ),

for any X,Y ∈ Γ(TM), where ∇̃ is an arbitrary linear connection on M and Q is an
arbitrary tensor field of type (1, 2) on M .

In order to find some adapted connection on the contact metric manifold M , we
shall use relation (2.14) for ∇̃ the Levi-Civita connection of the metric g. Firstly, we

compute the local coefficients of ∇̃ with respect to adapted local frame
{
∂/∂x0, δ/δxi

}
,

using the well-known Koszul formula

2g(∇̃XY,Z) = X(g(Y,Z))+Y (g(Z,X))−Z(g(Y,X))+g([X,Y ], Z)−g([Y, Z], X)+g([Z,X], Y ),

and we obtain the following local expression of ∇̃:

(2.15)

∇̃ δ

δxj

δ
δxi = F k

ij
δ

δxk +
(
ϕij − 1

2
∂gij
∂x0

)
∂

∂x0 ,

∇̃ δ

δxj

∂
∂x0 = ∇̃ ∂

∂x0

δ
δxj =

(
1
2g

kl ∂glj
∂x0 − φk

j

)
δ

δxk ,

∇̃ ∂
∂x0

∂
∂x0 = 0,

where

(2.16) F k
ij =

1

2
gkh

(
δghi
δxj

+
δghj
δxi

− δgij
δxh

)
,

and
(
gij
)
2n×2n

is the inverse matrix of (gij)2n×2n given in (2.11).

For an adapted connection
α

∇, we denote its local coefficients by

(2.17)

α

∇ δ

δxj

δ
δxi =

α

F k
ij

δ
δxk ,

α

∇ ∂
∂x0

δ
δxi =

α

Dk
i

δ
δxk ,

α

∇ δ
δxi

∂
∂x0 =

α

Li
∂

∂x0 ,
α

∇ ∂
∂x0

∂
∂x0 =

α

C ∂
∂x0 .

Following some idea from [5], we consider four adapted connections on the contact
metric manifold as follows.

The first adapted connection on the contact metric manifold M is defined by

(2.18)
1

∇X Y = h∇̃XhY + v∇̃XvY, ∀X,Y ∈ Γ(TM).
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We notice that every vector field Y ∈ Γ(TM) admits a decomposition with respect
to the adapted basis

{
∂/∂x0, δ/δxi

}
in the form

(2.19) Y = Y i δ

δxi
+ Y 0 ∂

∂x0
,

where, from δ/δxi ∈ Γ(D) = Ker η, we have Y 0 = η(Y ), so the projections of Y on
Γ(⟨ξ⟩) and Γ(D) respectively, are given by

(2.20) vY = η(Y )
∂

∂x0
, hY = Y i δ

δxi
.

It results the following local form for (2.18):

(2.21)
1

∇X Y = X(η(Y ))
∂

∂x0
+ η(Y )v∇̃X

∂

∂x0
+X(Y i)

δ

δxi
+ Y ih∇̃X

δ

δxi
.

Using (2.21), by direct computation, we obtain the local coefficients of the first

adapted connection
1

∇ as

(2.22)
1

F k
ij= F k

ij ,
1

Dk
i =

1

2
gkl

∂gli
∂x0

− φk
i ,

1

Li=
1

C= 0.

The second adapted connection is defined by

(2.23)
2

∇X Y = h∇̃XhY − h∇̃hY vX + v∇̃XvY − v∇̃vY hX, ∀X,Y ∈ Γ(TM),

and, by direct computation, its local coefficients are

(2.24)
2

F k
ij= F k

ij ,
2

Dk
i = 0,

2

Li=
2

C= 0.

The third adapted connection is defined by

(2.25)
3

∇X Y =
1

∇X Y + hQ(vX, hY ), ∀X,Y ∈ Γ(TM),

where the tensor field Q is defined by

g (hQ(vX, hY ), hZ) = g (v[hY, hZ], vX) .

Denoting by aki the local components of the projection on Γ(D) of the vector field
Q
(
∂/∂x0, δ/δxi

)
, the above condition give us aki = φk

i , so we obtain

hQ

(
∂

∂x0
,

δ

δxi

)
= φk

i

δ

δxk
.

By direct computation, the local coefficients of the third adapted connections are

(2.26)
3

F k
ij= F k

ij ,
3

Dk
i =

1

2
gkl

∂gli
∂x0

+ φk
i ,

3

Li=
3

C= 0.
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Finally, the fourth adapted connection on the contact metric manifold M , is defined

as the average connection between
1

∇ and
3

∇, that is

(2.27)
4

∇X Y =
1

2

(
1

∇X Y+
3

∇X Y

)
, ∀X,Y ∈ Γ(TM),

and it has the same local coefficients with
1

∇, excepting
4

Dk
i = gkl ∂gli∂x0 .

Remark 2.1. (i) The horizontal coefficients of all four adapted connections coin-

cides, that is
α

F k
ij= F k

ij , α ∈ {1, 2, 3, 4}.

(ii) The first adapted connection
1

∇ is just the Schouten-Van Kampen connection
associated to the Reeb foliation Fξ, see for instance [3], p.107.

(iii) The second adapted connection
2

∇ is just the D-connection on a contact metric
manifold (introduced in [2]). Also, it can be viewed as the Vrănceanu connection
or Vaisman connection associated to the Reeb foliation Fξ, see [3, 18].

(iv) If M is K-contact, then ∂gij/∂x
0 = 0, and then

2

∇=
4

∇.

In the next section the adapted connections
α

∇ will be used to express the Euler-
Lagrange equation for a Lagrangian on a contact manifold.

We finish this subsection with some considerations about basic connections (with
respect to Reeb foliation) on a contact manifold. Generally speaking, on the foliated
manifold (M,F) there is an adapted atlas whose coordinate system on the open set
U ⊂ M is

(
xi
)
= (xa, xu), where a ∈ {1, . . . , q}, u ∈ {q + 1, . . . ,m}, such that the

points in the same leaf L∩U have their first q coordinates equal, and are distinguished
by their last (m − q) coordinates. Locally, the structural bundle F is spanned by
{∂/∂xu}, u ∈ {q + 1, . . . ,m}.

Also, if we consider the canonical exact sequence associated to the foliation given
by the integrable subbundle F , namely

0 −→ F
iF−→ TM

πQF−→ QF −→ 0,

then we recall that a connection ∇ on the normal bundle QF is said to be basic if

(2.28) ∇XY = πQF [X, Ỹ ]

for any X ∈ Γ(F ), Ỹ ∈ Γ(TM) such that πQF (Ỹ ) = Y . Obviously, the right-hand

side of (2.28) does not depend by choice of vector field Ỹ , because the integrability
of F .

Now, returning to the contact metric manifoldM endoweed with the characteristic
foliation Fξ, and taking into account that QFξ

∼= D, a linear connection ∇ on M is
basic if and only if

(2.29) ∇ ∂
∂x0

Y = h

[
∂

∂x0
, Ỹ

]
,
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where Ỹ ∈ Γ(TM) such that h(Ỹ ) = Y . Locally, let Ỹ = Y 0∂/∂x0 + Y iδ/δxi. Then

h(Ỹ ) = Y iδ/δxi and relation (2.29) locally becomes

∂Y i

∂x0
+ Y kDi

k =
∂Y i

∂x0
,

where Di
k are transversal (horizontal) components of∇ ∂

∂x0

δ
δxi . But the above equality

means

Proposition 2.1. The connection ∇ is basic if and only if all horizontal components
of ∇ ∂

∂x0

δ
δxi vanish.

Concerning now to adapted connections
1

∇,
2

∇,
3

∇ and
4

∇, respectively, their locally
coefficients given in (2.22), (2.24) and (2.26) show that

Proposition 2.2. From the four defined above connections, only the second connec-

tion,
2

∇, is basic with respect to the characteristic foliation Fξ determined by the Reeb
vector field ξ.

3 Invariance of Lagrangians on a contact metric
manifold

In [5], the equation of motion for r scalar fields QA, A ∈ {1, . . . , r}, on a semi-
Riemannian foliated manifold (M,F , g), are expressed using covariant derivative with
respect to the Vrănceanu connection on that manifold. In this section we apply
that idea for the case of the contact metric manifold (Mφ, ξ, η, g), endowed with the
characteristic foliation Fξ.

We start with a Lagrangian depending by r scalar fields QA = QA(x), A ∈
{1, . . . , r}, on the contact metric manifold (Mφ, ξ, η, g), that is

(3.1) L(x) = L
(
QA(x),

δQA

δxi
(x),

∂QA

∂x0
(x)

)
,

which is invariant under the coordinate transformations on M .
Let us consider the function H, locally defined by H(x) =

√
| det(gij(x))|, i, j ∈

{1, . . . , 2n}. From direct computation, we have the following transformation law in

the intersection U ∩ Ũ ̸= f� of two domains of local chart of M

H̃ =

∣∣∣∣det( ∂xi

∂x̃j

)∣∣∣∣ ·H , i, j ∈ {1, . . . , 2n}.

Then

(3.2) L0(x) = H(x) · L(x),

is a Lagrangian density on M . Thus, the functional

(3.3) I(Ω) =

∫
Ω

L0(x)dx
1 ∧ . . . ∧ dx2n ∧ η,
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where Ω is a compact domain of M , does not depend of the coordinates on M .
As usual, we assume that the equations of motion for the fields QA(x) follow from

the variational principle δ(I(Ω)) = 0. Hence, the Euler-Lagrange equations for fields
QA are

(3.4)
∂L0

∂QA
− ∂

∂xi

 ∂L0

∂
(

∂QA

∂xi

)
− ∂

∂x0

 ∂L0

∂
(

∂QA

∂x0

)
 = 0.

Taking into account the relation (2.7), we obtain (from (3.1))

(3.5)
∂L0

∂
(

∂QA

∂x0

) =
∂L0

∂
(

∂QA

∂x0

) | δQA

δxi =ct.
− ηi

∂L0

∂
(

δQA

δxi

) .
Then, the equations (3.4) become

(3.6)
∂L0

∂QA
− δ

δxi

 ∂L0

∂
(

δQA

δxi

)
− ∂

∂x0

 ∂L0

∂
(

∂QA

∂x0

) | δQA

δxi =ct

 = 0,

and, from (3.2), we get

(3.7)

H ·
{

∂L
∂QA − δ

δxi

(
∂L

∂
(

δQA

δxi

))− ∂
∂x0

(
∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

)}
= δH

δxi · ∂L
∂
(

δQA

δxi

) + ∂H
∂x0 · ∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct
.

Now we denote

(3.8) Qi
A :=

∂L

∂
(

δQA

δxi

) , Q0
A :=

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct
, i ∈ {1, . . . , 2n}.

From the changing rules for horizontal vector fields, that is

δ

δxi
=

∂x̃j

∂xi

δ

δx̃j
,

it follows that Qi
A are components of r horizontal vector fields

hQA = Qi
A

δ

δxi
.

Taking into account relations (2.17), the covariant derivatives of Qi
A, Q

0
A with

respect to an adapted connection
α

∇, α = 1, 2, 3, 4, given locally in subsection 2.2 are

Qi
A|j =

δQi
A

δxj
+Qk

AF
i
kj , Qi

A|0 =
∂Qi

A

∂x0
+Qk

A

α

Di
k, Q0

A|0 =
∂Q0

A

∂x0
, Q0

A|i =
δQ0

A

δxi
.

Then, the equation (3.7) could be rewritten in the form

(3.9)
∂L
∂QA

−Qi
A|i −Q0

A|0 =

(
1

H

δH

δxi
− F j

ij

)
Qi

A +
1

H

∂H

∂x0
·Q0

A.
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But, by direct calculus, we have

1

H

δH

δxi
=

1

2
gjs

δgjs
δxi

,
1

H

∂H

∂x0
=

1

2
gjs

∂gjs
∂x0

.

On the other hand, taking into account the relations (2.16) it follows

F j
ij =

1

H

δH

δxi
.

Hence, we obtain that the equation of motion for the scalar fields QA have the form

(3.10)
∂L
∂QA

−Qi
A|i −Q0

A|0 =
1

2
gjs

∂gjs
∂x0

Q0
A,

where the covariant derivatives of Qi
A, Q

0
A are taken with respect to one of the adapted

connections introduced in subsection 2.2.

Remark 3.1. If M is K-contact then the equation of motion for the scalar fields QA

simplify in the nice form

(3.11)
∂L
∂QA

−Qi
A|i −Q0

A|0 = 0.

3.1 Globally gauge invariance

In this section we study the invariance of the Lagrangian (3.1) under the action of an
arbitrary m-dimensional Lie group G on the physical fields QA(x). We also consider
that G admits a r-dimensional representation ρ.

A Lie group G is essentially uniquely determnined by its Lie algebra, defined by
the basis {Xa} , a ∈ {1, . . . ,m}. The representation ρ assigns to every vector field Xa

a r × r-matrix ([Xa]
A
B)r×r, A,B ∈ {1, . . . , r}. There are well known relations

[Xa, Xb] = Cc
abXc, Cc

ab = −Cc
ba,

where the structure constants Cc
ab obey the Jacobi identity

Cd
abC

e
dc + Cd

bcC
e
da + Cd

caC
e
db = 0.

Moreover, the matrices generators are satisfying

(3.12) [Xa]
A
B [Xb]

B
C − [Xb]

A
B [Xa]

B
C = Cc

ab[Xc]
A
C .

Now, according to [3, 5], the group G being given, for any vector field X = εaXa on
G, a global gauge action of G on the scalar physical fields QA(x), A ∈ {1, . . . , r}, is
given by the infinitesimal transformations

(3.13) Q′A(x) = QA(x) + δ(QA(x)), δ(QA(x)) = εa[Xa]
A
BQ

B(x).

Applying the operators δ/δxi and ∂/∂x0 to (3.13), we obtain

(3.14)

δQ′A

δxi = δQA

δxi + δ
(

δQA

δxi

)
, δ

(
δQA

δxi

)
= εa[Xa]

A
B

δQB

δxi

∂Q′A

∂x0 = ∂QA

∂x0 + δ
(

∂QA

∂x0

)
, δ

(
∂QA

∂x0

)
= εa[Xa]

A
B

∂QB

∂x0 .
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Now, we suppose that the Lagrangian (3.1) is globally gauge G-invariant, that is,
L is invariant under the infinitesimal transformations (3.13) and (3.14) This means
that δL = 0, or equivalently, L does not depend by εa. It follows that

(3.15)

 ∂L
∂QA

QB +
∂L

∂
(

δQA

δxi

) δQB

δxi
+

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

∂QB

∂x0

 [Xa]
A
B = 0,

or, equivalently

(3.16)

[
∂L
∂QA

QB +Qi
A

δQB

δxi
+Q0

A

∂QB

∂x0

]
[Xa]

A
B = 0,

with the notations (3.8).
From relation (3.10) it follows

(3.17)
∂L
∂QA

[Xa]
A
BQ

B = Qi
A|i [Xa]

A
BQ

B +Q0
A|0 [Xa]

A
BQ

B +
1

2
gjs

∂gjs
∂x0

Q0
A[Xa]

A
BQ

B .

Then it is natural to consider the scalar fields

J i
a = −Qi

A[Xa]
A
BQ

B, J0
a = −Q0

A[Xa]
A
BQ

B ,

which are components of m horizontal vector fields hJa = J i
aδ/δx

i, and m colin-
ear vertical vector fields vJa = J0

aξ, called horizontal currents and vertical currents,
respectively.

Taking into account relations (2.17), the covariant derivatives of J i
a, J

0
a with re-

spect to an adapted connection
α

∇, α = 1, 2, 3, 4, given locally in subsection 2.2, are
given by

J i
a|j =

δJ i
a

δxj
+ Jk

aF
i
kj , J

0
a|0 =

∂J0
a

∂x0
.

But, we have
δJ i

a

δxj
= −δQi

A

δxj
[Xa]

A
BQ

B −Qi
A[Xa]

A
B

δQB

δxj
,

∂J0
a

∂x0
= −∂Q0

A

∂x0
[Xa]

A
BQ

B −Q0
A[Xa]

A
B

∂QB

∂x0
,

and replacing (3.17) in (3.16) and, using also the expressions of covariant derivatives

of fields Qi
A, Q

0
A with respect to the same connection

α

∇, we obtain the conservation
laws

(3.18) J i
a|i + J0

a|0 =
1

2
gjs

∂gjs
∂x0

Q0
A[Xa]

A
BQ

B .

According to the terminology from [3, 5], the vector fields hJa and vJa will be called
called the horizontal and the vertical currents on the contact metric manifold M ,
respectively.

Remark 3.2. If M is K-contact then the above conservation laws reduce in the
simple form

(3.19) J i
a|i + J0

a|0 = 0.
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3.2 Locally gauge invariance

A group of global transformations is characterized by the parameters ϵa being in-
dependent by the coordinates (x0, xi). In this subsection we suppose now that the
parameters of the group are coordinates dependent, that means that the action of G
on fields QA(x) is local. In this situation, the scalar fields QA(x) transform according
to

(3.20) Q′A(x) = QA(x)+
∗
δ (QA(x)) ,

∗
δ (QA(x)) = εa(x)[Xa]

A
BQ

B(x).

Then, from above relations, we have

(3.21)
δQ′A

δxi
=

δQA

δxi
+ εa(x)[Xa]

A
B

δQB

δxi
+

δεa

δxi
[Xa]

A
BQ

B ,

(3.22)
∂Q′A

∂x0
=

∂QA

∂x0
+ εa(x)[Xa]

A
B

∂QB

∂x0
+

∂εa

∂x0
[Xa]

A
BQ

B .

Now, we have to remark that a globally invariant Lagrangian may be not invariant
under the local transformations (3.20). The variation of the Lagrangian is

∗
δ (L) =

∂L
∂QA

∗
δ (QA) +

∂L

∂
(

δQA

δxi

) ∗
δ

(
δQA

δxi

)
+

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

∗
δ

(
∂QB

∂x0

)

= εa

 ∂L
∂QA

QB +
∂L

∂
(

δQA

δxi

) δQB

δxi
+

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

∂QB

∂x0

 [Xa]
A
B

+

 ∂L

∂
(

δQA

δxi

) δεa

δxi
+

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

∂εa

∂x0

QB [Xa]
A
B.

Taking into account that the Lagrangian satisfy relation (3.15) (the global invariance),
we obtain the variation of L by the form

∗
δ (L) =

[
Qi

A

δεa

δxi
+Q0

A

∂εa

∂x0

]
QB[Xa]

A
B .

Hence, we need to add some new fields, called gauge fields, see [7, 8], to obtain a
locally invariant Lagrangian.

More exactly, we consider the horizontal and vertical 1-forms

(3.23) Ha = Ha
i (x)dx

i , i ∈ {1, . . . , 2n} , a ∈ {1, . . . , r}

and

(3.24) ζa = σa(x)η , a ∈ {1, . . . , r},

respectively, where Ha
i , σ

a ∈ C∞(M).
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Since η is a global 1-form on M , the functions σa are globally defined on M , while
Ha

i are locally defined functions on M , and they have to transform as it follows (at
the local coordinate changing on M)

(3.25) Ha
i =

∂x̃j

∂xi
H̃a

j .

Now, we ask that L = L
(
QA, δQA/δxi, ∂QA/∂x0, Ha

i , σ
a
)
is an invariant Lagrangian

to the local action of G. According to [7], the gauge fields have to transform as it
follows:

(3.26)
∗
δ (Ha

i ) = εbCa
bcH

c
i +

δεa

δxi
,

∗
δ (σa) = εbCa

bcσ
c +

∂εa

∂x0
,

and

∗
δ (L) =

∂L
∂QA

∗
δ (QA) +

∂L

∂
(

δQA

δxi

) ∗
δ

(
δQA

δxi

)
+

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

∗
δ

(
∂QA

∂x0

)

+
∂L
∂Ha

i

∗
δ (Ha

i ) +
∂L
∂σa

∗
δ (σa),

must vanishes. That is ∂L
∂QA

QB +
∂L

∂
(

δQA

δxi

) δQB

δxi
+

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct

∂QB

∂x0

 [Xa]
A
Bε

a

+

[
∂L
∂Ha

i

Ca
bcH

c
i +

∂L
∂σa

Ca
bcσ

c

]
εb +

 ∂L

∂
(

δQA

δxi

) [Xa]
A
BQ

B +
∂L
∂Ha

i

 δεa

δxi

+

 ∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct
[Xa]

A
BQ

B +
∂L
∂σa

 ∂εa

∂x0
= 0.

Taking into account that parameters functions εa(x) are arbitrary, we obtain the

following equivalent conditions for the vanishing of
∗
δ (L):

(3.27)
∂L
∂QA

[Xa]
A
BQ

B +Qi
A[Xa]

A
B

δQB

δxi
+Q0

A[Xa]
A
B

∂QB

∂x0
+

∂L
∂Hb

i

Cb
acH

c
i +

∂L
∂σb

Cb
acσ

c = 0,

(3.28) Qi
AQ

B [Xa]
A
B +

∂L
∂Ha

i

= 0, Q0
AQ

B [Xa]
A
B +

∂L
∂σa

= 0.

In order to obtain identities (3.27) and (3.28), it is enough to add some additional
fields enter into Lagrangian from some expressions like covariant derivatives, called
the horizontal and vertical gauge-covariant derivatives of physical fields:

(3.29) DiQ
A =

δQA

δxi
−Ha

i [Xa]
A
BQ

B , D0Q
A =

∂QA

∂x0
− σa[Xa]

A
BQ

B.
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Indeed, if we take the Lagrangian in the form

(3.30) L = L
(
QA, DiQ

A, D0Q
A
)
,

then we have

∂L

∂
(

δQA

δxi

) =
∂L

∂DiQA
,

∂L

∂
(

∂QA

∂x0

) | δQA

δxi =ct
=

∂L
∂D0QA

,

∂L
∂Ha

i

= − ∂L
∂DiQA

[Xa]
B
AQ

B ,
∂L
∂σa

= − ∂L
∂D0QA

[Xa]
B
AQ

B,

∂L
∂QA

=
∂L
∂QA

− ∂L
∂DiQB

Ha
i [Xa]

B
A − ∂L

∂D0QB
σa[Xa]

B
A .

By a direct computation it follows that conditions (3.28) are satisfied and condition
(3.27) is equivalent to[

∂L
∂QA

QB +
∂L

∂DiQA
DiQ

B +
∂L

∂D0QA
D0Q

B

]
[Xa]

B
A = 0,

which is true from the global invariance of the Lagrangian (3.30).

Remark 3.3. The local gauge invariance of a Lagrangian on a contact metric mani-
fold M endowed with the characteristic foliation Fξ is obtained from a global gauge
invariant Lagrangian just by replacing the usual derivatives δQA/δxi and ∂QA/∂x0

by the horizontal and vertical gauge-covariant derivatives DiQ
A and D0Q

A, respec-
tively. In this way we obtain the minimal replacement principle for contact metric
manifolds.

3.3 Lagrangians for gauge fields

The Lagrangian (3.30) is made up of the free Lagrangian for scalar fields QA and the
interaction of the scalar fields with the gauge fields Ha

i , σ
a. Now we shall find the

expression for the Lagrangian of the gauge fields which is invariant under the group
action.

This Lagrangian depends on the gauge fields as well as on their derivatives, so it
is given by

(3.31) L1 = L1

(
Ha

i , σ
a,

δHa
j

δxi
,
∂Ha

j

∂x0
,
δσa

δxi
,
∂σa

∂x0

)
.

The condition for invariance of L1 is

(3.32)

∗
δ (L1) =

∂L1

∂Ha
i

∗
δ (Ha

i ) +
∂L1

∂
(

δHa
i

δxj

) ∗
δ
(

δHa
i

δxj

)
+ ∂L1

∂
(

∂Ha
i

∂x0

) | δHa
i

δxj =ct

∗
δ
(

∂Ha
i

∂x0

)
+

+∂L1

∂σa

∗
δ (σa) + ∂L1

∂( δσa

δxj )

∗
δ
(
δσa

δxj

)
+ ∂L1

∂( ∂σa

∂x0 )
| δσa

δxj =ct

∗
δ
(
∂σa

∂x0

)
= 0,
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where the gauge fields transform according to (3.26), while their derivatives follow
the rules

(3.33)

∗
δ
(

δHa
i

δxj

)
= εbCa

bc
δHc

i

δxj + Ca
bc

δεb

δxj H
c
i +

δ2εa

δxjδxi ,

∗
δ
(
δσa

δxj

)
= εbCa

bc
δσc

δxj + Ca
bc

δεb

δxj σ
c + δ

δxj

(
∂εa

∂x0

)
,

∗
δ
(

∂Ha
i

∂x0

)
= εbCa

bc
∂Hc

i

∂x0 + Ca
bc

∂εb

∂x0H
c
i +

∂
∂x0

(
δεa

δxi

)
,

∗
δ
(
∂σa

∂x0

)
= εbCa

bc
∂σc

∂x0 + Ca
bc

∂εb

∂x0σ
c + ∂2εa

∂x0∂x0 .

Replacing (3.33) in (3.32) and using the randomness of parameters εa, we obtain the

equivalent conditions for the vanishing of
∗
δ (L1):

(3.34)
∂L1

∂
(
δσa

δxi

) + ∂L1

∂
(

∂Ha
i

∂x0

) | δHa
i

δxj =ct
= 0,

∂L1

∂
(
∂σa

∂x0

) | δσa

δxj =ct = 0,
∂L1

∂
(

δHa
i

δxj

) +
∂L1

∂
(

δHa
j

δxi

) = 0,

(3.35)
∂L1

∂σa
+

∂L1

∂
(

∂Hb
i

∂x0

) | δHb
i

δxj =ct
Cb

acH
c
i + ϕij

∂L1

∂
(

δHa
i

δxj

) = 0,

(3.36)
∂L1

∂Ha
i

+
∂L1

∂
(

δHb
j

δxi

)Cb
acH

c
j +

∂L1

∂
(

δσb

δxi

)Cb
acσ

c = 0,

(3.37)
∂L1

∂Ha
i

Ca
bcH

c
i+

∂L1

∂
(

δHa
i

δxj

)Ca
bc

δHc
i

δxj
+

∂L1

∂
(

∂Ha
i

∂x0

) | δHa
i

δxj =ct
Ca

bc

∂Hc
i

∂x0
+
∂L1

∂σa
Ca

bcσ
c+

∂L1

∂
(
δσa

δxi

)Ca
bc

δσc

δxi
= 0

where we have taken into account the relations (2.9) and (2.12).
Then, the additional gauge fields must enter into Lagrangian through some com-

binations such that the above conditions are ensured. Let us define the following
differentiable functions:

Ra
ij =

δHa
i

δxj
−

δHa
j

δxi
+

1

2
Ca

bc

(
Hb

iH
c
j −Hc

iH
b
j

)
+ ϕjiσ

a,

(3.38) P a
i =

∂Ha
i

∂x0
− δσa

δxi
− 1

2
Ca

bc

(
σbHc

i −Hb
i σ

c
)
,

which are the local components of so called strength fields.
Taking into account (3.25), these functions transform (at the local coordinate

changing on M) as it follows:

Ra
ij =

∂x̃l

∂xj

∂x̃k

∂xi
R̃a

kl, P a
i =

∂x̃j

∂xi
P̃ a
j ,
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hence they are components of some adapted tensor fields, while Sa are globally defined
functions on M . We obtain

∂L1

∂
(

δHa
i

δxj

) =
∂L1

∂Ra
ij

,
∂L1

∂
(

δHa
j

δxi

) = − ∂L1

∂Ra
ij

,
∂L1

∂
(

∂Ha
i

∂x0

) | δHa
i

δxj =ct
=

∂L1

∂P a
i

,
∂L1

∂
(
δσa

δxi

) = − ∂L1

∂P a
i

,

which make (3.34) true. Then, using also Cc
ab = −Cc

ba, we have

∂L1

∂σa
= ϕji

∂L1

∂Ra
ij

− ∂L1

∂P b
i

Cb
adH

d
i ,

∂L1

∂Ha
i

=
∂L1

∂Rb
ij

Cb
adH

d
j +

∂L1

∂P b
i

Cb
adσ

d.

The above relations make (3.35) and (3.36) also true. Hence, an invariant Lagrangian
L1 must be express through fields Ra

ij , P
a
i such that (3.37) is satisfied.

Inspired by the Yang-Mills Lagrangian, in [7] and [5] are given such Lagrangians.
According to these, we also could take the following Lagrangian, corresponding to
horizontal fields Ra

ij and P a
i :

(3.39) L1 = −1

4
Cd

acC
c
bd

(
gijgklRa

ikR
b
jl + 2gijP a

i P
b
j

)
,

which is locally gauge invariant at the local action of G.
The full Lagrangian of the system of the scalar fields QA and the gauge fields will

be given by the sum of Lagrangian L1 of the gauge fields and the Lagrangian from
(3.30), that is

(3.40) L(x) = L(x) + L1(x),

which contains the Lagrangian of scalar fields as well as the interaction between the
scalar and gauge fields.

3.4 Equations of motion and conservation laws for full La-
grangian and Bianchi identities for strength fields

According to the previous discussion the Lagrangian L from (3.40) is locally gauge
G-invariant, hence it can be proposed as full Lagrangian for the gauge theory on the
contact metric manifold M . Then, we consider the associated Lagrangian density
L0 = H ·L, and suppose the equations of motion follow from the variational principle
δ(I(Ω)) = 0.

Hence, we get the following three Euler-Lagrange equations for physical scalar
fields and gauge fields

(3.41)
∂L0

∂QA
− ∂

∂xi

 ∂L0

∂
(

∂QA

∂xi

)
− ∂

∂x0

 ∂L0

∂
(

∂QA

∂x0

)
 = 0,

(3.42)
∂L0

∂Ha
i

− ∂

∂xj

 ∂L0

∂
(

∂Ha
i

∂xj

)
− ∂

∂x0

 ∂L0

∂
(

∂Ha
i

∂x0

)
 = 0,
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(3.43)
∂L0

∂σa
− ∂

∂xi

(
∂L0

∂
(
∂σa

∂xi

))− ∂

∂x0

(
∂L0

∂
(
∂σa

∂x0

)) = 0.

According to the previous computations, we remark that (3.41) are equivalent with

(3.44)
∂L
∂QA

−Qi
A|i −Q0

A|0 =
1

2
gjs

∂gjs
∂x0

Q0
A,

where the covariant derivatives of Qi
A, Q

0
A are taken with respect to one of the adapted

connections
α

∇, α = 1, 2, 3, 4, introduced in subsection 2.2.

Remark 3.4. Although, the equations (3.44) and (3.10) have the same form, we
notice that they do not coincide because of the contribution of the local gauge invariant
Lagrangian L(x) (from (3.30)) in (3.44).

On the other hand, by similar computations as in the general case of semi-
Riemannian foliated manifolds [5], or of vector bundles endowed with vertical foliation
[3], we get that (3.42) and (3.43) are equivalent with

(3.45)
∂L
∂Ha

i

−Hij
a |j −Hi

a|0 =
1

2
gjs

∂gjs
∂x0

Hi
a,

and

(3.46)
∂L
∂σa

− σi
a|i = 0,

respectively, where

Hij
a =

∂L

∂
(

δHa
i

δxj

) , Hij
a |j =

δHij
a

δxj
+Hik

a F j
kj , H

i
a =

∂L

∂
(

∂Ha
i

∂x0

) | δHa
i

δxj =ct
, Hi

a|0 =
∂Hi

a

∂x0

and

σi
a =

∂L
∂
(
δσa

δxi

) , σi
a|j =

δσi
a

δxj
+ σk

aF
i
kj .

In particular, if M is K-contact then we have the following simple form of equations
of motion for full Lagrangian L:

(3.47)
∂L
∂QA

−Qi
A|i −Q0

A|0 = 0 ,
∂L
∂Ha

i

−Hij
a |j −Hi

a|0 = 0 ,
∂L
∂σa

− σi
a|i = 0.

Moreover, for the horizontal and vertical currents hJa = J i
a(δ/δx

i), vJa = J0
aξ asso-

ciated to the full Lagrangian L, we have

J i
a = −Qi

A[Xa]
A
BQ

B −Hji
b Cb

acH
c
j − σi

bC
b
acσ

c , J0
a = −Q0

A[Xa]
A
BQ

B −Hi
bC

b
acH

c
i ,

and the conservation laws of the horizontal and vertical currents become

(3.48) J i
a|i + J0

a |0 =
1

2
gjs

∂gjs
∂x0

(
Q0

A[Xa]
A
BQ

B +Hi
a

)
.
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In particular, if M is K-contact, we obtain J i
a|i + J0

a |0 = 0.
In what follows, we are interested to obtain the Bianchi identities for the covariant

derivatives of strength fields Ra
ij and P a

i with respect to one of adapted connections
α

∇= (
α

F k
ij ,

α

Dk
i , 0, 0), α ∈ {1, 2, 3, 4} introduced in subsection 2.2. Firstly, we define the

following gauge covariant derivatives of strength fields

(3.49) Ra
ij |k =

δRa
ij

δxk
+ Ca

bcR
b
ijH

c
k −Ra

hj

α

Fh
ik −Ra

ih

α

Fh
jk,

(3.50) Ra
ij |0 =

∂Ra
ij

∂x0
+ Ca

bcR
b
ijσ

c −Ra
hj

α

Dh
i −Ra

ih

α

Dh
j ,

(3.51) P a
i |k =

δP a
i

δxk
+ Ca

bcP
b
i H

c
k − P a

h

α

Fh
ik , P

a
i |0 =

∂P a
i

∂x0
+ Ca

bcP
b
i σ

c − P a
h

α

Dh
i ,

which are the components of some adapted tensor fields for the the characteristic
foliation Fξ. For instance, R

a
ij |0 satisfies

Ra
ij |0 =

∂x̃k

∂xi

∂x̃l

∂xj
R̃a

kl|0,

and similar relations are satisfied by the other gauge covariant derivatives with respect
to local changes of coordinates on M .

Also, the local gauge action of G on the above gauge covariant derivatives is given
by the adjoint representation, that is we have

(3.52)
∗
δ (Ra

ij |0) = εbCa
bcR

c
ij |0,

and similar relations for the others.
Now, using (2.9) and (2.12) we get that the Jacobi identity

(3.53)
∑

(i,j,k)

{[[
δ

δxi
,

δ

δxj

]
,

δ

δxk

]}
= 0

is equivalent to

(3.54)
∑

(i,j,k)

∂ϕij

∂xk
= 0,

where we have used ∂ϕij/∂x
0 = 0. We also notice that (3.54) follows directly from

d(dη) = 0.
Next, taking into account the local expression of the non- vanishing torsion field

of an adapted connection
α

∇, that is

(3.55)
α

T

(
δ

δxj
,

δ

δxi

)
= 2ϕji

∂

∂x0
,

α

T

(
∂

∂x0
,

δ

δxi

)
=

α

Dk
i

δ

δxk
,
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if we use (3.38), (3.49)-(3.51) and (3.54), we get the following Bianchi identities for
the gauge covariant derivatives of strength fields:

(3.56)
∑

(i,j,k)

{
Ra

ij |k + 2P a
i ϕkj

}
= 0,

(3.57) P a
i |j − P a

j |i −Ra
ij |0 +Ra

jh

α

Dh
i −Ra

ih

α

Dh
j = 0.
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