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Abstract. The main purpose of this article is to construct optimal in-
equalities on some submanifolds in a Bochner-Kähler manifold involving
Casorati curvatures.
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1 Introduction

The Bochner tensor was introduced by S. Bochner in Kähler manifolds analogue of the
Weyl conformal curvature tensor [1]. The Bochner tensor is equal to the fourth order
Chern-Moser curvature tensor of CR-manifolds by Webster [19]. Webster showed that
a Bochner-Kähler surface is nothing but a self-dual Kähler surface in Penrose’s tho-
ery. A Kähler manifold is said to be Bochner-Kähler if its Bochner curvature tensor
vanishes. Bochner-Kähler manifolds with constant scalar curvature are classified in
[15]. Moreover, Chen and Dillen investigated goemetric characterizations of Bochner-
Kähler and Einstein-Kähler spaces of complex space forms by using the δ-invariants
δ(n1, n2, · · · , nk) and δ̂(n1, n2, · · · , nk) in [4]. On the other hand, it is well known
that the Casorati curvature of a submanifold in a Riemannian manifold is an extrin-
sic invariant defined as the normalized square of the lengh of the second fundamental
form, introduced by F. Casorati in [2, 9]. Moreover, there are very interesting optimal
inequalities involving Casorati curvatures in [5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 20, 21]
for several submanifolds in some space forms with various connections. In our pa-
per, we establish optimal inequalities involving the generalized normalized δ-Casorati
curvaures for some submanifolds in a Bochner-Kähler manifold and also characterize
theose submanifolds for which the equalities hold.

2 Preliminaries

This section gives several basic definitions and notations for our framework based
mainly.
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Let Mn be an n-dimensional Riemannian submanifold of a Riemannian manifold
(M̄, ḡ) with the Riemannian metric ḡ. Let K(π) be the sectional curvature of M
associated with a plane section π ⊂ TpM, p ∈ M . Assume that {e1, ..., en} is an
orthonormal basis of the tangent space TpM and {en+1, ..., em} is an orthonormal
basis of the normal space T⊥p M . Then the scalar curvature τ at p is given by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n− 1)
.

We denote by H the mean curvature vector, that is

H(p) =
1

n

n∑
i=1

h(ei, ei)

and we also set

hαij = g(h(ei, ej), eα), i, j ∈ {1, ..., n}, α ∈ {n+ 1, ...,m}.

Then it is well-known that the squared mean curvature of the submanifold M in M̄
is defined by

‖H‖2 =
1

n2

m∑
α=n+1

(
n∑
i=1

hαii

)2

and the squared norm of h over dimension n is denoted by C, called the Casorati
curvature of the submanifold M . Therefore we have

C =
1

n

m∑
α=n+1

n∑
i,j=1

(
hαij
)2
.

The submanifold M is called invariantly quasi-umbilical if there exists m − n
mutually orthogonal unit normal vectors ξn+1, ..., ξm such that the shape operators
with respect to all directions ξα have an eigenvalue of multiplicity n− 1 and that for
each ξα the distinguished eigendirection is the same.

Suppose now that L is an s-dimensional subspace of TpM , s ≥ 2 and let {e1, ..., es}
be an orthonormal basis of L. Then the scalar curvature τ(L) of the s-plane section
L is given by

τ(L) =
∑

1≤α<β≤s

K(eα ∧ eβ).

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =
1

s

m∑
α=n+1

s∑
i,j=1

(
hαij
)2
.



18 C.W. Lee, J.W. Lee

The generalized normalized δ-Casorati curvatures δC(t;n− 1) and δ̂C(t;n− 1) of
the submanifold Mn are defined for any positive real number r 6= n(n− 1) as

[δC(t;n− 1)]p = tCp +
(n− 1)(n+ t)(n2 − n− t)

nt
inf{C(L)|L a hyperplane of TpM},

if 0 < t < n2 − n, and[
δ̂C(t;n− 1)

]
p

= tCp−
(n− 1)(n+ t)(t− n2 + n)

nt
sup{C(L)|L a hyperplane of TpM},

if t > n2 − n.
If ∇ is the Levi-Civita connection on M̄ and ∇ is the covariant differentiation

induced on M , then the Gauss and Weingarten formulas are given by:

∇XY = ∇XY + h(X,Y ),∀X,Y ∈ Γ(TM)

and
∇XN = −ANX +∇⊥XN, ∀X ∈ Γ(TM),∀N ∈ Γ(TM⊥)

where h is the second fundamental form of M , ∇⊥ is the connection on the normal
bundle and AN is the shape operator of M with respect to N . If we denote by R and
R the curvature tensor fields of ∇ and ∇, then we have the Gauss equation:

(2.1)
R(X,Y, Z,W ) = R(X,Y, Z,W ) + ḡ(h(X,W ), h(Y, Z))

− ḡ(h(X,Z), h(Y,W )),

for all X,Y, Z,W ∈ Γ(TM).
Assume now that (M̄m, ḡ, J) is an almost Hermitian with an almost complex

structure J and a Riemannian mmetric ḡ satisfying for

ḡ(J ·, J ·) = ḡ(·, ·) and J2 = −Id,

where Id denotes the identity tensor field of type (1, 1) on M̄ . Moreover, if the almost
complex structure J is parallel with respect to the Levi-Civita connection ∇ of ḡ, then
(M̄, ḡ, J) is said to be a Kähler manifold.

The Bochner curvature tensor on a Kähler manifold is defined by [18]

(2.2)

B(X,Y, Z,W ) = R(X,Y, Z,W )− L(Y,Z)ḡ(X,W )

+ L(X,Z)ḡ(Y,W )− L(X,W )ḡ(Y, Z)

+ L(Y,W )ḡ(X,Z)− L(JY, Z)ḡ(JX,W )

+ L(JX,Z)ḡ(JY,W )− L(JX,W )ḡ(JY, Z)

+ L(JY,W )ḡ(JX,Z) + 2L(JX, Y )ḡ(JZ,W )

+ 2L(JZ,W )ḡ(JX, Y ),

where

(2.3)
L(X,Y ) =

1

2n+ 4
Ric(X,Y )− τ

8(n+ 1)(n+ 2)
ḡ(X,Y )

L(X,Y ) = L(Y,X), L(JX, Y ) = −L(X, JY ),
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for all X,Y, Z,W ∈ Γ(TM̄).
Let (M̄, ḡ, J) be a Kähler manifold. If the Bochner tensor B on M̄ vanishes

identically, (M̄, ḡ, J) is called a Bochner-Kähler manifold. From (2.2), the curvature
tensor R of a Bochner-Kähler manifold is given by

(2.4)

R(X,Y, Z,W ) = L(Y, Z)ḡ(X,W )− L(X,Z)ḡ(Y,W )

+ L(X,W )ḡ(Y,Z)− L(Y,W )ḡ(X,Z)

+ L(JY, Z)ḡ(JX,W )− L(JX,Z)ḡ(JY,W )

+ L(JX,W )ḡ(JY, Z)− L(JY,W )ḡ(JX,Z)

− 2L(JX, Y )ḡ(JZ,W )− 2L(JZ,W )ḡ(JX, Y ).

As a generalization of CR-submanifolds, B.-Y. Chen introduced the notion of slant
submanifolds. We introduce the definition of slant submanifolds of Bochner-Kähler
manifolds as follows:

Definition 2.1. A submanifold M of a Bochner-Kähler manifold (M̄, ḡ, J) is said to
be slant if for any p ∈ M , the angle θ between JX and TpM is constant. In other
words, the angle does not depend on the choice of p ∈ M and X ∈ TpM . The angle
θ ∈ [0, π2 ] is called the slant angle of M in M̄ .
If θ = 0

(
θ = π

2

)
, M is called an invariant ( anti-invariant) submanifold of M̄ , respec-

tively. If 0 < θ < π
2 , M is called a proper slant submanifold of M̄ .

The following lemma plays a key role in the proof of our theorems.

Lemma 2.1. [16] Let

Γ = {(x1, x2, · · · , xn) ∈ Rn : x1 + x2 + · · ·+ xn = k}

be a hyperplane of Rn, and f : Rn −→ R a quadratic form given by

f(x1, x2, · · · , xn) = a

n−1∑
i=1

(xi)
2

+ b (xn)
2 − 2

∑
1≤i<j≤n

xixj , a > 0, b > 0.

Then, by the constrained extremum problem, f has the global extreme as follows:

x1 = x2 = · · · = xn−1 =
k

a+ 1
, xn =

k

b+ 1
=
k(n− 1)

(a+ 1)b
= (a− n+ 2)

k

a+ 1
,

provided that

b =
n− 1

a− n+ 2
.

3 Inequalities involving Casorati curvatures

Let M be a submanifold of a Bochner-Kähler manifold (M̄, ḡ, J) . Let p ∈M and the
set {e1, ..., en} and {en+1, ..., em} be orthonormal bases of TpM and T⊥p M , respec-
tively. From (2.4), we have

(3.1)
R(ei, ej , ej , ei) = L(ej , ej)ḡ(ei, ei) + L(ei, ei)ḡ(ej , ej)

+ 6L(ei, Jej)ḡ(ei, Jej)− 2L(ei, Jej)ḡ(ei, ei).
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From (3.1), we have

(3.2)

n∑
i,j=1

R(ei, ej , ej , ei) = (2n− 2)

n∑
i=1

L(ei, ei) + 6

n∑
i,j=1

L(ei, Jej)ḡ(ei, Jej)

Combining (2.1) and (3.2), we obtain

(3.3)

2τ = n2||H||2 − ||h||2 + (2n− 2)

n∑
i=1

L(ei, ei) + 6

n∑
i,j=1

L(ei, Jej)ḡ(ei, Jej)

= n2||H||2 − nC + (2n− 2)

n∑
i=1

L(ei, ei) + 6

n∑
i,j=1

L(ei, Jej)ḡ(ei, Jej)

We now consider the following quadratic polynomial in the components of the second
fundamental form:

P = tC+(n− 1)(n+ t)(n2 − n− t)
nt

C(L)−2τ+(2n− 2)

n∑
i=1

L(ei, ei)+6

n∑
i,j=1

L(ei, Jej)ḡ(ei, Jej),

where L is a hyperplane of TpM . Without loss of generality we can assume that L is
spanned by e1, ..., en−1. Then we derive

(3.4)

P =

m∑
α=n+1

n−1∑
i=1

[
n2 + n(t− 1)− 2t

r
(hαii)

2
+

2(n+ t)

n
(hαin)

2

]

+

m∑
α=n+1

2(n+ t)(n− 1)

t

n−1∑
1=i<j

(
hαij
)2 − 2

n∑
i<j=1

hαiih
α
jj +

t

n
(hαnn)

2


≥

m∑
α=n+1

n−1∑
i=1

n2 + n(t− 1)− 2t

t
(hαii)

2 − 2

n∑
1=i<j

hαiih
α
jj +

t

n
(hαnn)

2

 .
For α = n+ 1, · · · ,m, let us consider the quadratic form fα : Rn −→ R defined by

(3.5) fα (hα11, · · · , hαnn) =
n2 + n(t− 1)− 2t

t

n−1∑
i=1

(hαii)
2 − 2

n∑
i<j=1

hαiih
α
jj +

t

n
(hαnn)

2
,

and the constrained extremum problem

min fα

subject to Fα : hα11 + · · ·+ hαnn = cα,

where cα is a real constant. Comparing (3.5) with the quadratic function in Lemma
2.1, we see that

a =
n2 + n(t− 1)− 2t

t
, b =

t

n
.

Therefore, we have the critical point (hα11, · · · , hαnn), given by

hα11 = hα22 = · · · = hαn−1 n−1 =
tcα

(n+ t)(n− 1)
, hαnn =

ncα

n+ t
,
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is a global minimum point by Lemma 2.1. Moreover, fα (hα11, · · · , hαnn) = 0. There-
fore, we have

(3.6) P ≥ 0,

which implies

2τ(p) ≤ tC +
(n− 1)(n+ t)(n2 − n− t)

nt
C(L)

+ (2n− 2)

n∑
i=1

L(ei, ei) + 6

n∑
i,j=1

L(ei, Jej)ḡ(ei, Jej)

= tC +
(n− 1)(n+ t)(n2 − n− t)

nt
C(L)

+
(2n− 2)(3n+ 4)− 6||P ||2

2(2n+ 2)(2n+ 4)
τ − 6

2n+ 4

n∑
i,j=1

Ric(ei, Jej)ḡ(ei, Jej),

where ||P ||2 =
∑n
i,j=1 g

2(Jei, ej) for JX = PX + QX,X ∈ Γ(TM) whose PX and
QX are the tangential and normal components of JX, respectively.

From (2.3), we derive

5n2 + 23n+ 20 + 3||P ||2

4(n+ 1)(n+ 2)
τ ≤ tC +

(n− 1)(n+ t)(n2 − n− t)
nt

C(L)

− 3

n+ 2

n∑
i,j=1

Ric(ei, Jej)ḡ(ei, Jej).

Therefore, we derive

ρ ≤ 8(n+ 1)(n+ 2)

n(n− 1) (5n2 + 23n+ 20 + 3||P ||2)

(
tC +

(n− 1)(n+ t)(n2 − n− t)
nt

C(L)

)
− 6(n+ 1)

n(n− 1) (5n2 + 23n+ 20 + 3||P ||2)

n∑
i,j=1

Ric(ei, Jej)ḡ(ei, Jej).

Therefore, we have the following theorem:

Theorem 3.1. Let Mn be an n-dimensional Riemannian submanifold of a Bochner-
Kähler manifold (M̄, ḡ, J). When 0 < t < n2 − n, the generalized normalized δ-
Casorati curvature δC(t, n− 1) on Mn satisfies

ρ ≤ 8(n+ 1)(n+ 2)

n(n− 1) (5n2 + 23n+ 20 + 3||P ||2)
δC(t, n− 1)

− 6(n+ 1)

n(n− 1) (5n2 + 23n+ 20 + 3||P ||2)

n∑
i,j=1

Ric(ei, Jej)ḡ(ei, Jej).

Moreover, the equality case holds if and only if Mn is an invariantly quasi-umbilical
submanifold with trivial normal connection in a Bochner-Kähler manifold (M̄, ḡ, J),
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such that with respect to suitable orthonormal tangent frame {ξ1, · · · , ξn} and normal
orthonormal frame {ξn+1, · · · , ξm}, the shape operators Ar ≡ Aξr , r ∈ {n+1, · · · ,m},
take the following forms:

An+1 =



a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
...

. . .
...

...
0 0 0 ... a 0

0 0 0 ... 0 n(n−1)
t a


, An+2 = · · · = Am = 0.

Corollary 3.2. Let Mn be an n-dimensional Einstein submanifold of a Bochner-
Kähler manifold (M̄m, ḡ, J). Then, for a Ricci curvature λ, we obtain

ρ ≤ 8(n+ 1)(n+ 2)

n(n− 1) (5n2 + 23n+ 20 + 3||P ||2)
δC(t, n− 1)

− 6(n+ 1)||P ||2

n(n− 1) (5n2 + 23n+ 20 + 3||P ||2)
λ.

Moreover, the equality case holds if and only if with respect to a suitable frames
{e1, ..., en} on M and {en+1, ..., em} on T⊥p M , p ∈M , the components of h satisfy

hα11 = hα22 = · · · = hαn−1 n−1 = t
n(n−1)h

α
nn, α ∈ {n+ 1, · · · ,m},

hαij = 0, i, j ∈ {1, 2, · · · , n}(i 6= j), α ∈ {n+ 1, · · · ,m}.

For a slant submanifold of a Bochner-Kähler manifold, we have following corollaries.

Corollary 3.3. Let Mn be an n-dimensional slant submanifold of a Bochner-Kähler
manifold (M̄m, ḡ, J). When 0 < t < n2 − n, we obtain

ρ ≤ 8(n+ 1)(n+ 2)

n(n− 1) (5n2 + 23n+ 20 + 3 cos2 θ)
δC(t, n− 1)

− 6(n+ 1)

n(n− 1) (5n2 + 23n+ 20 + 3 cos2 θ)

n∑
i,j=1

Ric(ei, Jej) cos2 θ,

where θ is a slant function. Moreover, the equality case holds if and only if with
respect to a suitable frames {e1, ..., en} on M and {en+1, ..., em} on T⊥p M , p ∈ M ,
the components of h satisfy

hα11 = hα22 = · · · = hαn−1 n−1 = t
n(n−1)h

α
nn, α ∈ {n+ 1, · · · ,m},

hαij = 0, i, j ∈ {1, 2, · · · , n}(i 6= j), α ∈ {n+ 1, · · · ,m}.

Corollary 3.4. Let Mn be an n-dimensional invariant submanifold of a Bochner-
Kähler manifold (M̄m, ḡ, J). When 0 < t < n2 − n, we obtain

ρ ≤ 8(n+ 1)(n+ 2)

n(n− 1) (5n2 + 23n+ 23)
δC(t, n− 1)

− 6(n+ 1)

n(n− 1) (5n2 + 23n+ 23)

n∑
i,j=1

Ric(ei, Jej),
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Moreover, the equality case holds if and only if with respect to a suitable frames
{e1, ..., en} on M and {en+1, ..., em} on T⊥p M , p ∈M , the components of h satisfy

hα11 = hα22 = · · · = hαn−1 n−1 = t
n(n−1)h

α
nn, α ∈ {n+ 1, · · · ,m},

hαij = 0, i, j ∈ {1, 2, · · · , n}(i 6= j), α ∈ {n+ 1, · · · ,m}.

Corollary 3.5. Let Mn be an n-dimensional anti-invariant submanifold of a Bochner-
Kähler manifold (M̄m, ḡ, J). When 0 < t < n2 − n, we obtain

ρ ≤ 8(n+ 1)(n+ 2)

n(n− 1) (5n2 + 23n+ 20)
δC(t, n− 1),

Moreover, the equality case holds if and only if M is an invariantly quasi-umbilical
subamnifold of Bochner-Kähler manifold.

Remark 3.1. In the case for t > n2−n, the methods of finding the above inequailities
is analogous. Thus, we leave the problems for readers.
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