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Abstract. Recently, Gardner, Hug and Weil developed an Orlicz-Brunn-1

Minkowski theory. Following this, in the paper we further consider the2

Orlicz-Brunn-Minkowski theory. The fundamental notions of mixed quer-3

massintegrals, mixed p-quermassintegrals and inequalities are extended to4

an Orlicz setting. Inequalities of Orlicz Minkowski and Brunn-Minkowski5

type for Orlicz mixed quermassintegrals are obtained. One of these has6

connections with the conjectured log-Brunn-Minkowski inequality and we7

prove a new log-Minkowski-type inequality. A new version of Orlicz Minkowski’s8

inequality is proved. Finally, we show Simon’s characterization of relative9

spheres for the Orlicz mixed quermassintegrals.10
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1 Introduction15

One of the most important operations in geometry is vector addition. As an operation
between sets K and L, defined by

K + L = {x+ y | x ∈ K, y ∈ L},

it is usually called Minkowski addition and combine volume play an important role16

in the Brunn-Minkowski theory. During the last few decades, the theory has been17

extended to Lp-Brunn-Minkowski theory. The first, a set called as Lp addition, in-18

troduced by Firey in [6] and [7]. Denoted by +p, for 1 ≤ p ≤ ∞, defined by19

(1.1) h(K +p L, x)
p = h(K,x)p + h(L, x)p,

for all x ∈ Rn and compact convex sets K and L in Rn containing the origin. When
p = ∞, (1.1) is interpreted as h(K +∞ L, x) = max{h(K,x), h(L, x)}, as is custom-
ary. Here the functions are the support functions. If K is a nonempty closed (not
necessarily bounded) convex set in Rn, then

h(K,x) = max{x · y | y ∈ K},
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for x ∈ Rn, defines the support function h(K,x) of K. A nonempty closed convex20

set is uniquely determined by its support function. Lp addition and inequalities are21

the fundamental and core content in the Lp Brunn-Minkowski theory. For recent22

important results and more information from this theory, we refer to [12], [13], [14],23

[15], [20], [22], [23], [24], [25], [26], [27], [30], [31], [35], [36], [37] and the references24

therein. In recent years, a new extension of Lp-Brunn-Minkowski theory is to Orlicz-25

Brunn-Minkowski theory, initiated by Lutwak, Yang, and Zhang [28] and [29]. In26

these papers the notions of Lp-centroid body and Lp-projection body were extended27

to an Orlicz setting. The Orlicz centroid inequality for star bodies was introduced in28

[39] which is an extension from convex to star bodies. The other articles advance the29

theory can be found in literatures [11], [17], [18] and [32]. Very recently, Gardner,30

Hug and Weil ([9]) constructed a general framework for the Orlicz-Brunn-Minkowski31

theory, and made clear for the first time the relation to Orlicz spaces and norms.32

They introduced the Orlicz addition K +φ L of compact convex sets K and L in Rn
33

containing the origin, implicitly, by34

(1.2) φ

(
h(K,x)

h(K +φ L, x)
,

h(L, x)

h(K +φ L, x)

)
= 1,

for x ∈ Rn, if h(K,x)+h(L, x) > 0, and by h(K+φL, x) = 0, if h(K,x) = h(L, x) = 0.35

Here φ ∈ Φ2, the set of convex functions φ : [0,∞)2 → [0,∞) that are increasing in36

each variable and satisfy φ(0, 0) = 0 and φ(1, 0) = φ(0, 1) = 1.37

Unlike the Lp case, an Orlicz scalar multiplication cannot generally be consid-38

ered separately. The particular instance of interest corresponds to using (1.2) with39

φ(x1, x2) = φ1(x1) + εφ2(x2) for ε > 0 and some φ1, φ2 ∈ Φ, in which case we write40

K +φ,ε L instead of K +φ L, where the sets of convex function φi : [0,∞) → (0,∞)41

that are increasing and satisfy φi(1) = 1 and φi(0) = 0, where i = 1, 2. Orlicz addi-42

tion reduces to Lp addition, 1 ≤ p < ∞, when φ(x1, x2) = xp
1 + xp

2, or L∞ addition,43

when φ(x1, x2) = max{x1, x2}. Moreover, Gardner, Hug and Weil ([9]) introduced44

the Orlicz mixed volume, obtaining the equation45

(1.3)
(φ1)

′
l(1)

n
lim

ε→0+

V (K +φ,ε L)− V (K)

ε
=

1

n

∫
Sn−1

φ2

(
h(L, u)

h(K,u)

)
h(K,u)dS(K,u),

where S(K,u) is the mixed surface area measure of K and φ ∈ Φ2, φ1, φ2 ∈ Φ.46

Here K is a convex body containing the origin in its interior and L is a compact47

convex set containing the origin, assumptions we shall retain for the remainder of this48

introduction.49

Denoting by Vφ(K,L), for any φ ∈ Φ, the integral on the right side of (1.3) with50

φ2 replaced by φ, we see that either side of the equation (1.3) is equal to Vφ2(K,L)51

and therefore this new Orlicz mixed volume plays the same role as Vp(K,L) in the52

Lp-Brunn-Minkowski theory. In [9], Gardner, Hug and Weil obtained the Orlicz-53

Minkowksi inequality.54

(1.4) Vφ(K,L) ≥ V (K) · φ

((
V (L)

V (K)

)1/n
)
,

for φ ∈ Φ. If φ is strictly convex, equality holds if and only if K and L are dilates or55

L = {o}.56



100 C. J. Zhao

In Section 3, we compute the Orlicz first variation of quermassintegrals, call as57

Orlicz mixed quermassintegrals, obtaining the equation58

(1.5)
(φ1)

′
l(1)

n− i
lim

ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

1

n

∫
Sn−1

φ2

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u).

for φ ∈ Φ2, φ1, φ2 ∈ Φ and 1 ≤ i ≤ n, and Wi denotes the usual quermassintegrals,59

and Si(K,u) is the i-th mixed surface area measure of K. Denoting by Wφ,i(K,L),60

for any φ ∈ Φ, the integral on the right side of (1.5) with φ2 replaced by φ, we see that61

either side of the equation (1.5) is equal to Wφ2,i(K,L) and therefore this new Orlicz62

mixed volume (Orlicz mixed quermassintegrals) plays the same role as Wp,i(K,L) in63

the Lp-Brunn-Minkowski theory. Note that when i = 0, (1.5) becomes (1.3). Hence64

we have the following definition of Orlicz mixed quermassintegrals.65

(1.6) Wφ,i(K,L) =
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u).

In Section 4, we establish Orlicz-Minkowksi inequality for the Orlicz mixed quermass-66

integrals.67

(1.7) Wφ,i(K,L) ≥ Wi(K) · φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
,

for φ ∈ Φ and 0 ≤ i < n. If φ is strictly convex, equality holds if and only if K and L68

are dilates or L = {o}. Note that when i = 0, (1.7) becomes to (1.4). In particularly,69

putting φ(t) = tp, 1 ≤ p < ∞ in (1.7), (1.7) reduces to the following Lp-Minkowski70

inequality for mixed p-quermassintegrals established by Lutwak [21].71

(1.8) Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p,

for p > 1 and 0 ≤ i ≤ n, with equality if and only if K and L are dilates or L = {o}.72

Putting i = 0, φ(t) = tp and 1 ≤ p < ∞ in (1.7), (1.7) reduces to the well-known73

Lp-Minkowski inequality established by Firey [7]. For p > 1,74

(1.9) Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n,

with equality if and only if K and L are dilates or L = {o}.75

In Section 5, we establish the following Orlicz-Brunn-Minkowksi inequality for76

quermassintegrals of Orlicz addition.77

(1.10) 1 ≥ φ

((
Wi(K)

Wi(K +φ L)

)1/(n−i)

,

(
Wi(L)

Wi(K +φ L)

)1/(n−i)
)
,

for φ ∈ Φ2 and 0 ≤ i < n. If φ is strictly convex, equality holds if and only if K and78

L are dilates or L = {o}. Note that when φ(x1, x2) = xp
1 + xp

2, 1 ≤ p < ∞ in (1.11),79

(1.11) reduces to the following Lp-Brunn-Minkowski inequality for quermassintegrals80

established by Lutwak [21]. If81

(1.11) Wi(K +p L)
p/(n−i) ≥ Wi(K)p/(n−i) +Wi(L)

p/(n−i),
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with equality if and only if K and L are dilates or L = {o}, and where p ≥ 1 and82

0 ≤ i < n. Putting i = 0, φ(x1, x2) = xp
1+xp

2 and 1 ≤ p < ∞ in (1.11), (1.11) reduces83

to the well-known Lp-Brunn-Minkowski inequality established by Firey [7].84

(1.12) V (K +p L)
p/n ≥ V (K)p/n + V (L)p/n,

with equality if and only if K and L are dilates or L = {o}, and where p > 1. A85

special case of (1.10) was recently established by Gardner, Hug and Weil [9].86

(1.13) 1 ≥ φ

((
V (K)

V (K +φ,ε L)

)1/n

,

(
V (L)

V (K +φ L)

)1/n
)
,

for φ ∈ Φ2. If φ is strictly convex, equality holds if and only if K and L are dilates87

or L = {o}. When i = 0, (1.10) becomes to (1.12). Moreover, We prove also the88

Orlicz Minkowski inequality (1.4) and the Orlicz Brunn-Minkowski inequality (1.12)89

are equivalent, and (1.7) and (1.10) also are equivalent.90

When we were about to submit our paper, we were informed that G. Xiong and91

D. Zou [38] had also obtained Orlicz Minowski and Brunn-Mingkowski inequalities92

for Orlicz mixed quermassintegrals. Please note that we use a completely different93

approach, although the two inequalities coincide with theirs.94

In 2012, Böröczky, Lutwak, Yang, and Zhang [2] conjecture a log-Minkowski in-95

equality for origin-symmetric convex bodies K and L in Rn.96

(1.14)

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
h(K,u)dS(K,u) ≥ V (K) log

(
V (L)

V (K)

)
.

In [2], (1.14) is proved by them only when n = 2. Very recently, Gardner, Hug and97

Weil [9] proved a new version of (1.14) for convex bodies, not origin-symmetric convex98

bodies.99

(1.15)

∫
Sn−1

log

(
1− h(L, u)

h(K,u)

)
h(K,u)dS(K,u) ≤ V (K) log

(
1− V (L)1/n

V (K)1/n

)n

,

with equality if and only ifK and L are dilates or L = {o}, and where L ⊂ intK. They100

also shown that combining (1.14) and (1.15) may get the classical Brunn-Minkowski101

inequality. In Section 6, we give a new log-Minkowski-type inequality102

(1.16)

∫
Sn−1

log

(
1− h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) ≤ Wi(K) log

(
1− Wi(L)

1/(n−i)

Wi(K)1/(n−i)

)n

,

with equality if and only if K and L are dilates or L = {o}. When i = 0, (1.16)103

becomes (1.15). We also point out a conjecture which is an extension of the log104

Minkowski inequality as follows.105

(1.17)
1

n

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) ≥ log

(
Wi(L)

Wi(K)

)1/(n−i)

.

When i = 0, (1.17) becomes the log-Minkowski inequality (1.14). Combining (1.16)
and (1.17) together split the following classical Brunn-Minkowski inequality for quer-
massintegrals (see Section 6).

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)
1/(n−i),
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with equality if and only if K and L are dilates or L = {o}.106

In 2010, the Orlicz projection body Πφ of K (K is a convex body containing the107

origin in its interior) defined by Lutwak, Yang and Zhang [28]108

(1.18) h(Πφ, u) = inf

{
λ > 0 | 1

nV (K)

∫
Sn−1

φ

(
|u · υ|

λh(K, υ)

)
h(K, υ)dS(K, υ) ≤ 1

}
,

for φ ∈ Φ and u ∈ Sn−1. A different Orlicz version of Minkowski’s inequality (1.8)109

is presented in Section 7. This results from replacing the left side of (1.8) by the110

quantity111

(1.19)

Ŵφ,i(K,L) = inf

{
λ > 0 | 1

nWi(K)

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
h(K,u)dSi(K,u) ≤ 1

}
,

for φ ∈ Φ and 0 ≤ i < n.We prove the following new Orlicz Minkowski type inequality.112

(1.20) Ŵφ,i(K,L) ≥
(
Wi(L)

Wi(K)

)1/(n−i)

,

where φ ∈ Φ and 1 ≤ i < n. If φ is strictly convex and Wi(L) > 0, equality holds if
and only if K and L are dilates. A special version of (1.20) was recently established
by Gardner, Hug and Weil [9].

V̂φ(K,L) ≥
(
V (L)

V (K)

)1/n

,

If φ is strictly convex and V (L) > 0, then equality holds if and only if K and L are
dilates and where

V̂φ(K,L) = inf

{
λ > 0 | 1

nV (K)

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
h(K,u)dS(K,u) ≤ 1

}
,

for φ ∈ Φ.113

Finally, in Section 8, we show Simon’s characterization of relative spheres for the114

Orlicz mixed quermassintegrals.115

2 Notations and preliminaries116

The setting for this paper is n-dimensional Euclidean space Rn. Let Kn be the class
of nonempty compact convex subsets of Rn, let Kn

o be the class of members of Kn

containing the origin, and let Kn
oo be those sets in Kn containing the origin in their

interiors. A set K ∈ Kn is called a convex body if its interior is nonempty. We reserve
the letter u ∈ Sn−1 for unit vectors, and the letter B for the unit ball centered at
the origin. The surface of B is Sn−1. For a compact set K, we write V (K) for the
(n-dimensional) Lebesgue measure of K and call this the volume of K. If K is a
nonempty closed (not necessarily bounded) convex set, then

h(K,x) = sup{x · y | y ∈ K},
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for x ∈ Rn, defines the support function of K, where x · y denotes the usual inner
product x and y in Rn. A nonempty closed convex set is uniquely determined by its
support function. Support function is homogeneous of degree 1, that is,

h(K, rx) = rh(K,x),

for all x ∈ Rn and r ≥ 0. Let d denote the Hausdorff metric on Kn, i.e., for K,L ∈ Kn,117

d(K,L) = |h(K,u) − h(L, u)|∞, where | · |∞ denotes the sup-norm on the space of118

continuous functions C(Sn−1).119

Throughout the paper, the standard orthonormal basis for Rn will be {e1, . . . , en}.120

Let Φn, n ∈ N, denote the set of convex functions φ : [0,∞)n → [0,∞) that are strictly121

increasing in each variable and satisfy φ(0) = 0 and φ(ej) = 1 > 0, j = 1, . . . , n.122

When n = 1, we shall write Φ instead of Φ1. The left derivative and right derivative123

of a real-valued function f are denoted by (f)′l and (f)′r, respectively.124

2.1 Mixed quermassintegrals125

If Ki ∈ Kn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real num-126

bers, then of fundamental importance is the fact that the volume of
∑r

i=1 λiKi is a127

homogeneous polynomial in λi given by (see e.g. [3])128

(2.1) V (λ1K1 + · · ·+ λnKn) =
∑

i1,...,in

λi1 . . . λinVi1...in ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding129

r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin and is uniquely130

determined by (2.1), it is called the mixed volume of Ki, . . . ,Kin , and is written as131

V (Ki1 , . . . ,Kin). Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L, then the132

mixed volume V (K1, . . . ,Kn) is written as V (K[n−i], L[i]). If K1 = · · · = Kn−i = K,133

Kn−i+1 = · · · = Kn = B The mixed volumes Vi(K[n−i], B[i]) is written asWi(K) and134

call as quermassintegrals (or i-th mixed quermassintegrals) of K. We write Wi(K,L)135

for the mixed volume V (K[n− i− 1], B[i], L[1]) and call as mixed quermassintegrals.136

Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and Schneider [33])137

have shown that for K ∈ Kn
oo, and i = 0, 1, . . . , n − 1, there exists a regular Borel138

measure Si(K, ·) on Sn−1, such that the mixed quermassintegrals Wi(K,L) has the139

following representation:140

(2.2) Wi(K,L) =
1

n− i
lim

ε→0+

Wi(K + εL)−Wi(K)

ε
=

1

n

∫
Sn−1

h(L, u)dSi(K,u).

Associated with K1, . . . ,Kn ∈ Kn is a Borel measure S(K1, . . . ,Kn−1, ·) on Sn−1,141

called the mixed surface area measure of K1, . . . ,Kn−1, which has the property that142

for each K ∈ Kn (see e.g. [8], p.353),143

(2.3) V (K1, . . . ,Kn−1,K) =
1

n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1, u).

In fact, the measure S(K1, . . . ,Kn−1, ·) can be defined by the propter that (2.3) holds144

for all K ∈ Kn. Let K1 = . . . = Kn−i−1 = K and Kn−i = . . . = Kn−1 = L, then145

the mixed surface area measure S(K1, . . . ,Kn−1, ·) is written as S(K[n − i], L[i], ·).146
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When L = B, S(K[n− i], L[i], ·) is written as Si(K, ·) and called as i-th mixed surface147

area measure. A fundamental inequality for mixed quermassintegrals stats that: For148

K,L ∈ Kn and 0 ≤ i < n− 1,149

(2.4) Wi(K,L)n−i ≥ Wi(K)n−i−1Wi(L),

with equality if and only if K and L are homothetic and L = {o}. Good general150

references for this material are [4] and [19].151

2.2 Mixed p-quermassintegrals152

Mixed quermassintegrals are, of course, the first variation of the ordinary quer-153

massintegrals, with respect to Minkowski addition. The mixed quermassintegrals154

Wp,0(K,L),Wp,1(K,L), . . . ,Wp,n−1(K,L), as the first variation of the ordinary quer-155

massintegrals, with respect to Firey addition: For K,L ∈ Kn
oo, and real p ≥ 1, defined156

by (see e.g. [21])157

(2.5) Wp,i(K,L) =
p

n− i
lim

ε→0+

Wi(K +p ε · L)−Wi(K)

ε
.

The mixed p-quermassintegrals Wp,i(K,L), for all K,L ∈ Kn
oo, has the following158

integral representation:159

(2.6) Wp,i(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp,i(K,u),

where Sp,i(K, ·) denotes the Boel measure on Sn−1. The measure Sp,i(K, ·) is abso-160

lutely continuous with respect to Si(K, ·), and has Radon-Nikodym derivative161

(2.7)
dSp,i(K, ·)
dSi(K, ·)

= h(K, ·)1−p,

where Si(K, ·) is a regular Boel measure on Sn−1. The measure Sn−1(K, ·) is inde-162

pendent of the body K, and is just ordinary Lebesgue measure, S, on Sn−1. Si(B, ·)163

denotes the i-th surface area measure of the unit ball in Rn. In fact, Si(B, ·) = S for all164

i. The surface area measure S0(K, ·) just is S(K, ·). When i = 0, Sp,i(K, ·) is written165

as Sp(K, ·) (see [25], [26]). A fundamental inequality for mixed p-quermassintegrals166

stats that: For K,L ∈ Kn
oo, p > 1 and 0 ≤ i < n− 1,167

(2.8) Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p,

with equality if and only if K and L are homothetic. Lp-Brunn-Minkowski inequality168

for quermassintegrals established by Lutwak [21]. If K ∈ Kn
oo, L ∈ Kn

o and p ≥ 1 and169

0 ≤ i ≤ n, then170

(2.9) Wi(K +p L)
p/(n−i) ≥ Wi(K)p/(n−i) +Wi(L)

p/(n−i),

with equality if and only if K and L are dilates or L = {o}. Obviously, putting i = 0171

in (2.6), the mixed p-quermassintegrals Wp,i(K,L) become the well-known Lp-mixed172

volume Vp(K,L), defined by (see e.g. [25])173

(2.10) Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u).
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2.3 The Orlicz mixed volume174

For φ ∈ Φ, K ∈ Kn
oo and L ∈ Kn

o , Gardner, Hug and Weil [9] defined the Orlicz175

mixed volumes, Vφ(K,L) by176

(2.11) Vφ(K,L) =
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dS(K,u).

They obtained the Orlicz-Minkowksi inequality.177

(2.12) Vφ(K,L) ≥ V (K) · φ

((
V (L)

V (K)

)1/n
)
,

for all K ∈ Kn
oo, L ∈ Kn

o and φ ∈ Φ. If φ is strictly convex, equality holds if and only178

if K and L are dilates or L = {o}.179

Orlicz mixed quermassintegrals is defined in Section 3, by180

(2.13) Wφ,i(K,L) =:
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u),

for all K ∈ Kn
oo, L ∈ Kn

o , φ ∈ Φ and 0 ≤ i < n. Obviously, when φ(t) = tp and p ≥ 1,181

Orlicz mixed quermassintegrals reduces to the mixed p-quermassintegrals Wp,i(K,L)182

defined in (2.6). When i = 0, (2.13) reduces to (2.11).183

2.4 Orlicz addition184

Let m ≥ 2, φ ∈ Φm, Kj ∈ Kn
0 and j = 1, . . . ,m, we define the Orlicz addition of185

K1, . . . ,Km, denoted by +φ(K1, . . . ,Km), is defined by186

(2.14) h(+φ(K1, . . . ,Km), x) = inf

{
λ > 0 | φ

(
h(K1, x)

λ
, . . . ,

h(Km, x)

λ

)
≤ 1

}
,

for x ∈ Rn. Equivalently, the Orlicz addition +φ(K1, . . . ,Km) can be defined implic-187

itly (and uniquely) by188

(2.15) φ

(
h(K1, x)

h(+φ(K1, . . . ,Km), x)
, . . . ,

h(Km, x)

h(+φ(K1, . . . ,Km), x)

)
= 1,

for all x ∈ Rn. An important special case is obtained when

φ(x1, . . . , xm) =

m∑
j=1

φj(xj),

for some fixed φj ∈ Φ such that φ1(1) = · · · = φm(1) = 1. We then write189

+φ(K1, . . . ,Km) = K1 +φ · · · +φ Km. This means that K1 +φ · · · +φ Km is defined190

either by191

(2.16) h(K1 +φ · · ·+φ Km, u) = sup

λ > 0 |
m∑
j=1

φj

(
h(Kj , x)

λ

)
≤ 1

 ,
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for all x ∈ Rn, or by the corresponding special case of (2.15).192

For real p ≥ 1, K,L ∈ Kn
oo and α, β ≥ 0 (not both zero), the Firey linear combi-

nation α ·K +p β · L ∈ Kn
o can be defined by (see [6] and [7])

h(α ·K +p β · L, ·)p = αh(K, ·)p + βh(L, ·)p.

Obviously, Firey and Minkowski scalar multiplications are related by α ·K = α1/pK.193

In [9], Gardner, Hug and Weil define the Orlicz linear combination +φ(K,L, α, β) for194

K,L ∈ Kn
o and α, β ≥ 0, defined by195

(2.17) αφ1

(
h(K,x)

h(+φ(K,L, α, β), x)

)
+ βφ2

(
h(L, x)

h(+φ(K,L, α, β), x)

)
= 1,

if αh(K,x)+βh(L, x) > 0, and by h(+φ(K,L, α, β), x) = 0 if αh(K,x)+βh(L, x) = 0,196

for all x ∈ Rn. It is easy to verify that when φ1(t) = φ2(t) = tp, p ≥ 1, the Orlicz linear197

combination +φ(K,L, α, β) equals the Firey combination α ·K +p β · L. Henceforth198

we shall write K +φ,ε L instead of +φ(K,L, 1, ε), for ε ≥ 0, and assume throughout199

that this is defined by (2.17), where α = 1, β = ε, and φ1, φ2 ∈ Φ.200

3 Orlicz mixed quermassintegrals201

In order to define a new concept: Orlicz mixed quermassintegrals, we need Lemmas202

3.1-3.4 and Theorem 3.5.203

Lemma 3.1. ([9]) If φ ∈ Φm, then Orlicz addition +φ : (Kn
0 )

m → Kn
0 is continuous,204

GL(n) covariant, monotonic, projection covariant and has the identity property.205

Lemma 3.2. ([9]) If K,L ∈ Kn
o , then206

(3.1) K +φ,ε L → K,

in the Hausdorff metric as ε → 0+.207

Lemma 3.3. If K,L ∈ Kn
o and 0 ≤ i < n, Then208

(3.2)

lim
ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

n− i

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(K,u),

where, limε→0+
h(K+φ,εL,u)−h(K,u)

ε uniformly for u ∈ Sn−1.209

Proof. For brevity, we temporarily write Kε = K +φ,ε L. Starting with the decom-
position

Wi(Kε)−Wi(K)

ε
=

n−i−1∑
j=0

Wi(Kε[j + 1],K[n− i− j − 1])−Wi(Kε[j],K[n− i− j])

ε
.

Notice that210

(3.3)
Wi(Kε[j + 1],K[n− i− j − 1])−Wi(Kε[j],K[n− i− j])

ε
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=
1

n

∫
Sn−1

h(Kε, u)− h(K,u)

ε
dSi(Kε[j],K[n− i− j − 1], u)

=
1

n

∫
Sn−1

(
h(Kε, u)− h(K,u)

ε
− lim

ε→0+

h(K +φ,ε L, u)− h(K,u)

ε

)
×

×dSi(Kε[j],K[n− i− j − 1], u)

+
1

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(Kε[j],K[n− i− j − 1], u).

By assumption, the integrand in (3.3) converges uniformly to zero for u ∈ Sn−1.
Since Kε → K as ε → 0+, by Lemma 3.2, and the i-th mixed surface area measures
Si(Kε[j],K[n− i−j−1]) are uniformly bounded for ε ∈ (0, 1], the first integral in the
previous sum converges to zero. Noting that Si(Kε[j],K[n − i − j − 1]) → Si(K,u)
weakly as ε → 0+. Hence

lim
ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
= lim

ε→0+

n−i−1∑
j=0

1

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
×

× dSi(Kε[j],K[n− i− j − 1], u)

=
n− i

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(K,u).

�211

Lemma 3.4. For ε > 0 and u ∈ Sn−1, let hε = h(K +φ,ε L, u). If K ∈ Kn
oo and212

L ∈ Kn
o , then213

(3.4)
dhε

dε
=

h(K,u)
dφ−1

1 (y)
dy

φ2

(
h(L, u)

hε

)
(
φ1

−1

(
1− εφ2

(
h(L, u)

hε

)))2

+ ε · h(L, u)h(Ln, u)

h2
ε

dφ−1
1 (y)

dy

dφ2(z)

dz

,

where

y = 1− εφ2

(
h(L, u)

hε

)
,

and

z =
h(L, u)

hε
.

Proof. Suppose ε > 0, L ∈ Kn
o ,K ∈ Kn

oo and u ∈ Sn−1, and notice that

hε = h(K +φ,ε L, u),

we have
h(K,u)

hε
= φ−1

1

(
1− εφ2

(
h(L, u)

hε

))
.
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On the other hand

dhε

dε
=

d

dε

 h(K,u)

φ1
−1

(
1− εφ2

(
h(L, u)

hε

))


=

h(K,u)
dφ−1

1 (y)
dy

[
φ2

(
h(L, u)

hε

)
− ε · dφ2(z)

dz
h(L, u)

h2
ε

dhε
dε

]
(
φ1

−1

(
1− εφ2

(
h(L, u)

hε

)))2 .

where

y = 1− εφ2

(
h(L, u)

hε

)
,

and

z =
h(L, u)

hε
.

By simplifying the equation above, it easy follows (3.4). �214

Theorem 3.5. Let φ ∈ Φ2, and φ1, φ2 ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i ≤ n,215

then216

(3.5)
(φ1)

′
l(1)

n− i
lim

ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

1

n

∫
Sn−1

φ2

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u).

Proof. From Lemma 3.3, we obtain

lim
ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
=

n− i

n

∫
Sn−1

lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε
dSi(K,u)

=
n− i

n
lim

ε→0+

∫
Sn−1

dhε

dε
dSi(K;u).

From Lemmas 3.1-3.2 and Lemma 3.4, and noting that y → 1− as ε → 0+, we have

dφ−1
1 (y)

dε
= lim

y→1−

φ1
−1(y)− φ1

−1(1)

y − 1
=

1

(φ1)
′
l(1)

,

the equation (3.5) yields easy. �217

The theorem plays a central role in our deriving new concept of the Orlicz mixed218

quermassintegrals. Here, we give the another proof.219

Proof. From the hypotheses, we have for ε > 0

h(K +φ,ε L, u) =
h(K,u)

φ−1
1

(
1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)) .
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Hence220

(3.6) lim
ε→0+

h(K +φ,ε L, u)− h(K,u)

ε

= lim
ε→0+

h(K,u)

φ−1
1

(
1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)) − h(K,u)

ε

= lim
ε→0+

h(K,u)φ2

(
h(L, u)

h(K +φ,ε L, u)

)
(
φ−1
1

(
1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)))2 lim
y→1−

φ−1
1 (y)− φ−1

1 (1)

y − 1
,

where

y = 1− εφ2

(
h(L, u)

h(K +φ,ε L, u)

)
,

and note that y → 1− as ε → o+. Notice that

lim
y→1−

φ−1
1 (y)− φ−1

1 (1)

y − 1
=

1

(φ1)
′
l(1)

,

and from (2.2),(3.6) and Lemmas 3.1-3.2, (3.5) easy follows. �221

Denoting by Wφ,i(K,L), for any φ ∈ Φ and 1 ≤ i < n, the integral on the right-222

hand side of (3.5) with φ2 replaced by φ, we see that either side of the equation223

(3.5) is equal to Wφ2,i(K,L) and therefore this new Orlicz mixed volume Wφ,i(K,L)224

( Orlicz mixed quermassintegrals) has been born.225

Definition 3.1. (Orlicz mixed quermassintegrals) For φ ∈ Φ, Orlicz mixed quer-226

massintegrals, Wφ,i(K,L), for 0 ≤ i < n, defined by227

(3.7) Wφ,i(K,L) =:
1

n

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u),

for all K ∈ Kn
oo, L ∈ Kn

o .228

Remark 3.2. Let φ1(t) = φ2(t) = tp, p ≥ 1 in (3.5), the Orlicz sum K+φ,εL reduces229

to the Lp addition K +p ε · L, and the Orlicz mixed quermassintegrals Wφ,i(K,L)230

become the well-known mixed p-quermassintegralsWp,i(K,L). Obviously, when i = 0,231

Wφ,i(K,L) reduces to Orlicz mixed volumes Vφ(K,L) defined by Gardner, Hug and232

Weil [9].233

Theorem 3.6. If φ1, φ2 ∈ Φ, φ ∈ Φ2 and K ∈ Kn
o , L ∈ Kn

oo, and 0 ≤ i < n, then234

(3.8) Wφ2,i(K,L) =
(φ1)

′
l(1)

n− i
lim

ε→0+

Wi(K +φ,ε L)−Wi(K)

ε
.

Proof. This follows immediately from Theorem 3.5 and (3.7). �235
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4 Orlicz-Minkowski type inequality236

In the Section, we need define a Borel measure in Sn−1, W̄n,i(K, υ), called as i-th237

normalized cone measure.238

Definition 4.1. If K ∈ Kn
oo, i-th normalized cone measure, W̄n,i(K, υ), defined by239

(4.1) dW̄n,i(K, υ) =
h(K, υ)

nWi(K)
dSi(K, υ).

When i = 0, W̄n,i(K, υ) becomes to the well-known normalized cone measure V̄n(K, υ),240

by241

(4.2) dV̄n(K, υ) =
h(K, υ)

nV (K)
dS(K, υ).

This was defined in [2] and [9].242

In the following, we start with two auxiliary results (Lemmas 4.1 and 4.2), which243

will be the base of our further study. The Orlicz-Minkowski inequality for Orlicz244

mixed quermassintegrals is established in Theorem 4.3.245

Lemma 4.1. (Jensen’s inequality) Suppose that µ is a probability measure on a space246

X and g : X → I ⊂ R is a µ-integrable function, where I is a possibly infinite interval.247

If φ : I → R is a convex function, then248

(4.3)

∫
X

φ(g(x))dµ(x) ≥ φ

(∫
X

g(x)dµ(x)

)
.

If φ is strictly convex, equality holds if and only if g(x) is constant for µ-almost all249

x ∈ X (see [16]).250

Lemma 4.2. Let 0 < a ≤ ∞ be an extended real number, and let I = [0, a) be a251

possibly infinite interval. Suppose that φ : I → [0,∞) is convex with φ(0) = 0. If252

K ∈ Kn
oo and L ∈ Kn

o are such that L ⊂ int(aK), then253

(4.4)
1

nWi(K)

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) ≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.254

Proof. In view of L ⊂ int(aK), so 0 ≤ h(L,u)
h(K,u) < a for all u ∈ Sn−1. By (4.1) and

note that (2.2) with K = L, it follows the i-th normalized cone measure W̄n,i(K,u)
is a probability measure on Sn−1. Hence by using Jensen’s inequality (4.3), the
Minkowski’s inequality (2.4), and the fact that φ is increasing, to obtain

1

nWi(K)

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u) =

∫
Sn−1

φ

(
h(L, u)

h(K,u)

)
dW̄n,i(K,u)

≥ φ

(
Wi(K,L)

Wi(K)

)
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255

(4.5) ≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

In the following, we discuss the equal condition of (4.4). Suppose the equality holds in
(4.4) and φ is strictly convex, so that φ > 0 on (0, a). Moreover, notice the injectivity
of φ, we have equality in Minkowski inequality (2.4), so there are r ≥ 0 and x ∈ Rn

such that L = rK + x and hence

h(L, u) = rh(K,u) + x · u

for all u ∈ Sn−1. Since equality must hold in Jensen’s inequality (4.3) as well, when φ256

is strictly convex we can conclude from the equality condition for Jensen’s inequality257

that258

(4.6)
1

nWi(K)

∫
Sn−1

h(L, u)

h(K,u)
h(K,u)dSi(K,u) =

h(L, v)

h(K, v)
,

for Si(K, ·)-almost all v ∈ Sn−1. Hence

1

nWi(K)

∫
Sn−1

(
r +

x · u
h(K,u)

)
h(K,u)dSi(K,u) = r +

x · v
h(K, v)

,

for Si(K, ·)-almost all v ∈ Sn−1. From this and the fact that the centroid of Si(K, ·)
is at the origin, we get

0 = x ·
(

1

nWi(K)

∫
Sn−1

udSi(K,u)

)
=

1

nWi(K)

∫
Sn−1

x · udSi(K,u) =
x · v

h(K, v)
,

that is, x · v = 0, for Si(K, ·)-almost all v ∈ Sn−1. Hence x = o, namely L = rK. �259

Theorem 4.3. Let φ ∈ Φ. If K ∈ Kn
oo, L ∈ Kn

o and 0 ≤ i < n, then260

(4.7) Wφ,i(K,L) ≥ Wi(K) · φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.261

Proof. This follows immediately from (3.7) and Lemma 4.2, with a = ∞. �262

Corollary 4.4. ([21]) If K ∈ Kn
oo and L ∈ Kn

o , and p > 1 and 0 ≤ i ≤ n, then

Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p,

with equality if and only if K and L are dilates or L = {o}.263

Proof. This follows immediately from (4.7) with φ(t) = tp and p > 1. �264
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Remark 4.2. When a = ∞, putting φ(t) = et − 1 in (4.4), we obtain265

(4.8) log

∫
Sn−1

exp

(
h(L, u)

h(K,u)

)
dW̄n,i(K,u) ≥

(
Wi(L)

Wi(K)

)1/(n−i)

.

Similarly, Lp-Minkowski inequality (1.8) can be written as266

(4.9)

(∫
Sn−1

(
h(L, u)

h(K,u)

)p

dW̄n,i(K,u)

)1/p

≥
(
Wi(L)

Wi(K)

)1/(n−i)

.

When p = 1, (4.9) becomes to a new form of the Minkowski inequality (2.4). The267

left side of (4.9) is just the pth mean of the function h(L, u)/h(K,u) with respect to268

W̄n,i(K, ·). Notice that pth means increase with p > 1, so we find that the Minkowski269

inequality (2.4) implies Lp-Minkowski inequality (2.8).270

5 Orlicz-Brunn-Minkowski type inequality271

In this section, we establish the Orlicz Brunn-Minkowski inequality for Orlicz mixed272

quermassintegrals.273

Theorem 5.1. Let φ ∈ Φ2. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then274

(5.1) 1 ≥ φ

(
Wi(K)1/(n−i)

Wi(K +φ L)1/(n−i)
,

Wi(L)
1/(n−i)

Wi(K +φ L)1/(n−i)

)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.275

Proof. From the hypotheses and Theorem 4.3, we obtain276

(5.2) Wi(K +φ L)

=
1

n

∫
Sn−1

φ

(
h(K,u)

h(K +φ L, u)
,

h(L, u)

h(K +φ L, u)

)
h(K +φ L, u)dSi(K +φ L, u)

=
1

n

∫
Sn−1

(
φ1

(
h(K,u)

h(K +φ L, u)

)
+ φ2

(
h(L, u)

h(K +φ L, u)

))
h(K+φL, u)dSi(K+φL, u)

= Wφ1,i(K +φ L,K) +Wφ2,i(K +φ L,L)

≥ Wi(K +φ L)φ

(
Wi(K)1/(n−i)

Wi(K +φ L)1/(n−i)
,

Wi(L)
1/(n−i)

Wi(K +φ L)1/(n−i)

)
.

This is just (5.1).277

If equality holds in (5.2), then in (5.2), with K, L and φ replaced by K +φ L, K278

and φ1 (and by K +φ L, L and φ2), respectively. So if φ is strictly convex, then φ1279

and φ2 are also, so both K and L are multiples of K +φ L, and hence are dilates of280

each other or L = {o}. �281

Corollary 5.2. ([21]) If p > 1, K ∈ Kn
oo, L ∈ Kn

o , while 0 ≤ i < n, then282

(5.3) Wi(K +p L)
p/(n−i) ≥ Wi(K)p/(n−i) +Wi(L)

p/(n−i),

with equality if and only if K and L are dilates or L = {o}.283



On the Orlicz-Brunn-Minkowski theory 113

Proof. The result follows immediately from Theorem 5.1 with φ(x1, x2) = xp
1 + xp

2284

and p > 1. �285

Theorem 5.3. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassinte-286

grals implies Orlicz Minkowski inequality for Orlicz mixed quermassintegrals.287

Proof. Since φ1 is increasing, so φ−1
1 is also increasing and hence from (5.1), we obtain

for ε > 0

Wi(K +φ,ε L) ≥
Wi(K)(

φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))n−i

.

From Theorem 3.6, we obtain

Wφ2,i(K,L) ≥ (φ1)
′
l(1)

n− i

× lim
ε→0+

Wi(K)(
φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))n−i −Wi(K)

ε

= (φ1)
′
l(1) lim

ε→0+

Wi(K)(
φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))2(n−i)

×

(
φ−1
1

(
1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)))n−i−1

×φ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)

lim
z→1−

φ−1
1 (z)− φ−1

1 (1)

z − 1
,

where

z = 1− εφ2

((
Wi(L)

Wi(K +φ,ε L)

)1/(n−i)
)
,

and note that z → 1− as ε → o+. On the other hand, in view of

lim
z→0+

φ−1
1 (z)− φ−1

1 (1)

z − 1
=

1

(φ1)′l(1)
,

and from Lemma 3.2. Hence288

(5.4) Wφ2,i(K,L) ≥ Wi(K)φ2

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

Replace φ2 by φ, this yields the Orlicz Minkowski inequality in (4.7). The equality289

condition follows immediately from the equality of Orlicz Brunn-Minkowski inequality290

for Orlicz mixed quermassintegrals. �291
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From the proof of Theorem 5.1, we may see that Orlicz Minkowski inequality for292

Orlicz mixed quermassintegrals implies also Orlicz Brunn-Minkowski inequality for293

Orlicz mixed quermassintegrals, and this combines Theorem 5.3, we found that294

Theorem 5.4. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassinte-295

grals is equivalent to Orlicz Minkowski inequality for Orlicz mixed quermassintegrals.296

Namely: Let φ2 ∈ Φ and φ ∈ Φ2. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then297

(5.5) Wφ2,i(K,L) ≥ Wi(K)φ2

((
Wi(L)

Wi(K)

)1/(n−i)
)

⇔ 1 ≥ φ

(
Wi(K)1/(n−i)

Wi(K +φ L)1/(n−i)
,

Wi(L)
1/(n−i)

Wi(K +φ L)1/(n−i)

)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.298

Corollary 5.5. Orlicz dual Brunn-Minkowski inequality is equivalent to Orlicz dual299

Minkowski inequality. Namely: Let φ2 ∈ Φ and φ ∈ Φ2. If K ∈ Kn
oo and L ∈ Kn

o ,300

then301

(5.6)

Vφ2(K,L) ≥ V (K)φ2

((
V (L)

V (K)

)1/n
)

⇔ 1 ≥ φ

(
V (K)1/n

V (K +φ L)1/n
,

V (L)1/n

V (K +φ L)1/n

)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.302

Proof. The result follows immediately from Theorem 5.4 with i = 0. �303

6 The log-Minkowski type inequality304

Assume that K,L ∈ Kn
oo, then the log Minkowski combination, (1 − λ) ·K +o λ · L,

is defined by

(1− λ) ·K +o λ · L =
∩

u∈Sn−1

{x ∈ Rn | x · u ≤ h(K,u)1−λh(L, u)λ},

for all real λ ∈ [0, 1]. Böröczky, Lutwak, Yang, and Zhang [2] conjecture that for305

origin-symmetric convex bodies K and L in Rn and 0 ≤ λ ≤ 1,306

(6.1) V ((1− λ) ·K +o λ · L) ≥ V (K)1−λV (L)λ.

In [2], they proved (6.1) only when n = 2 and K,L are origin-symmetric convex307

bodies, and note that while it is not true for general convex bodies. Moreover, they308

also shown that (6.1), for all n, is equivalent to the following log-Minkowski inequality309

(6.2)

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
dV̄n(K, υ) ≥ 1

n
log

(
V (L)

V (K)

)
,

where V̄n(K, ·) is the normalized cone measure for K. In fact, replacing K and L by310

K + L and K, respectively, (6.2) becomes to the following311

(6.3)

∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dV̄n(K + L, u) ≥ log

((
V (K)

V (K + L)

))1/n

.
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In [9], Gardner, Hug and Weil gave a new version of (6.3) for the nonempty compact312

convex subsets K and L, not origin-symmetric convex bodies, as follows. If K ∈ Kn
oo313

and L ∈ Kn
o , then314

(6.4)

∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dV̄n(K + L, u) ≤ log

(
V (K + L)1/n − V (L)1/n

V (K + L)1/n

)
,

with equality if and only if K and L are dilates or L = {o}. They also shown that
combining (6.3) and (6.4), may get the classical Brunn-Minkowski inequality.

V (K + L)1/n − V (L)1/n ≥ V (K)1/n,

whenever K ∈ Kn
oo and L ∈ Kn

o and (6.2) holds with K and L replaced by K +L and315

K, respectively. In particular, if (6.2) holds (as it does, for origin-symmetric convex316

bodies when n = 2), then (6.2) and (6.4) together split the classical Brunn-Minkowski317

inequality. In the following, we give a new version of (6.4).318

Lemma 6.1. If K ∈ Kn
oo and L ∈ Kn

o are such that L ⊂ intK and 1 ≤ i < n, then319

(6.5)

log

(
Wi(K)1/(n−i) −Wi(L)

1/(n−i)

Wi(K)1/(n−i)

)
≥
∫
Sn−1

log

(
h(K,u)− h(L, u)

h(K,u)

)
dW̄n,i(K,u),

with equality if and only if K and L are dilates or L = {o}.320

Proof. Since K ∈ Kn
oo and L ∈ Kn

o are such that L ⊂ intK. Let φ(t) = − log(1− t),321

and notice that φ(0) = 0 and φ is strictly increasing and strictly convex on [0, 1) with322

φ(t) → ∞ as t → 1−. Hence the inequality (6.5) is a direct consequence of Lemma323

4.3 with this choice of φ and a = 1. �324

Theorem 6.2. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then325

(6.6)

log

(
Wi(K + L)1/(n−i) −Wi(L)

1/(n−i)

Wi(K + L)1/(n−i)

)
≥
∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dW̄n,i(K+L, u),

with equality if and only if K and L are dilates or L = {o}.326

Proof. If K ∈ Kn
oo and L ∈ Kn

o , then K + L ∈ Kn
oo. In view of L ⊂ int(K + L) and327

from Lemma 6.1 with K replaced by K + L, (6.6) easy follows. �328

Putting i = 0 in (6.6), (6.6) reduces to (6.4). Here, we point out a new conjecture329

which is an extension of the log Minkowski inequality (6.2): Conjecture If K ∈ Kn
oo,330

L ∈ Kn
o and 1 ≤ i < n, then331

(6.7)

∫
Sn−1

log

(
h(L, u)

h(K,u)

)
dW̄n,i(K,u) ≥ 1

n− i
log

(
Wi(L)

Wi(K)

)
.

Corollary 6.3. If K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then332

(6.8)

∫
Sn−1

log

(
h(K,u)

h(K + L, u)

)
dW̄n,i(K + L, u) ≥ 1

n− i
log

(
Wi(K)

Wi(K + L)

)
.
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Proof. The result follows immediately from (6.7) with replacing K and L by K + L333

and K, respectively. �334

It is easy that combine (6.6) and (6.8) together split the following classical Brunn-
Minkowski inequality for quermassintegrals. If K ∈ Kn

oo, L ∈ Kn
o and 0 ≤ i ≤ n,

then

Wi(K + L)1/(n−i) ≥ Wi(K)1/(n−i) +Wi(L)
1/(n−i),

with equality if and only if K and L are dilates or L = {o}.335

7 A new version of Orlicz Minkowski’s inequality336

In 2010, the Orlicz projection body Πφ of K defined by Lutwak, Yang and Zhang337

[28]338

(7.1) h(Πφ, u) = inf

{
λ > 0 |

∫
Sn−1

φ

(
|u · υ|

λh(K, υ)

)
dV̄n(K, υ) ≤ 1

}
,

for K ∈ Kn
oo, u ∈ Sn−1, where V̄n(K, ·) is the normalized cone measure for K. Here,339

we define the i-th Orlicz mixed projection body.340

Definition 7.1. Let K ∈ Kn
oo, L ∈ Kn

o , φ ∈ Φ and 0 ≤ i < n, the i-th Orlicz mixed341

projection body, Πφ,i, define by342

(7.2) h(Πφ,i, u) = inf

{
λ > 0 |

∫
Sn−1

φ

(
|u · υ|

λh(K, υ)

)
dW̄n,i(K, υ) ≤ 1

}
,

for u ∈ Sn−1, where W̄n,i(K, ·) is the i-th normalized cone measure for K defined in343

(4.1).344

Obviously, when i = 0, (7.2) becomes (7.1). In the Section, definition 7.1 of the345

i-th Orlicz projection body suggests defining, by analogy,346

(7.3) Ŵφ,i(K,L) = inf

{
λ > 0 |

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
dW̄n,i(K,u) ≤ 1

}
,

and call as Ŵφ,i(K,L) Orlicz type quermassintegrals.347

Theorem 7.1. If φ ∈ Φ and K ∈ Kn
oo, L ∈ Kn

o and 1 ≤ i < n, then348

(7.4) Ŵφ,i(K,L) ≥
(
Wi(L)

Wi(K)

)1/(n−i)

.

If φ is strictly convex and Wi(L) > 0, equality holds if and only if K and L are dilates.349

Proof. Replacing K by λK, λ > 0 in (4.4) with a = ∞, we have350

(7.5)

∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
dW̄n,i(K,u) ≥ φ

(
1

λ

(
Wi(L)

Wi(K)

)1/(n−i)
)
.



On the Orlicz-Brunn-Minkowski theory 117

Let ∫
Sn−1

φ

(
h(L, u)

λh(K,u)

)
dW̄n,i(K,u) ≤ 1.

Hence

φ

(
1

λ

(
Wi(L)

Wi(K)

)1/(n−i)
)

≤ 1.

In view of φ is strictly increasing, we obtain351

(7.6)

(
Wi(L)

Wi(K)

)1/(n−i)

≤ λ.

From (7.3) and (7.6), (7.4) easy follows.352

In the following, we discuss the equality condition of (7.4). Suppose that equality

holds, φ is strictly convex and Wi(L) > 0. From (7.3), the exist µ = Ŵφ,i(K,L) > 0
satisfies ∫

Sn−1

φ

(
h(L, u)

µh(K,u)

)
dW̄n,i(K, υ) = 1.

Hence

µ =

(
Wi(L)

Wi(K)

)1/(n−i)

;

namely:

φ

(
1

µ

(
Wi(L)

Wi(K)

)1/(n−i)
)

= 1.

Therefore the equality in (7.5) holds for λ = µ. From the equality condition of (4.4),353

it follows µK and L are dilates. �354

When φ(t) = tp and p ≥ 1 in (7.3), it easy follows that

Ŵφ,i(K,L) =

(
Wp,i(K,L)

Wi(K)

)1/p

.

Putting φ(t) = tp and p ≥ 1 in (7.4), (7.4) reduces to the classical Lp-Minkowski355

inequality (1.8) for mixed p-quermassintegrals.356

There is no direct relationship between the Orlicz-Minkowski inequalities (4.7)
and (7.4). Indeed, when φ > 0 on (0,∞), these can be written in the forms

Wφ,i(K,L)

Wi(K)
≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
, (7.7)

and357

(7.7) φ
(
Ŵφ,i(K,L)

)
≥ φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

respectively, and each of the two quantities on the left-hand sides can be larger than358

the other. This is very interesting.359
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8 Simon’s characterization of relative spheres360

Theorem 8.1. Suppose K ∈ Kn
oo, L ∈ Kn

o , and S ⊂ Kn
o is a class of bodies such that361

K,L ∈ S. If 0 ≤ i < n− 1 and φ ∈ Φ, and362

(8.1) Wφ,i(Q,K) = Wφ,i(Q,L), for all Q ∈ S,

then K = L.363

Proof. To see this take Q = K, and from (3.10) and Theorem 4.4, we have

Wi(K) = Wφ,i(K,K) = Wφ,i(K,L) ≥ Wi(K)φ

((
Wi(L)

Wi(K)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Hence

φ

((
Wi(L)

Wi(K)

)1/(n−i)
)

≤ 1.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Note that φ is increasing, we obtain

Wi(L) ≤ Wi(K).

Take Q = L, we have

Wi(L) = Wφ,i(L,L) = Wφ,i(L,K) ≥ Wi(L)φ

((
Wi(K)

Wi(L)

)1/(n−i)
)
.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Hence

φ

((
Wi(K)

Wi(L)

)1/(n−i)
)

≤ 1.

If φ is strictly convex, equality holds if and only if K and L are dilates or L = {o}.
Hence

Wi(K) ≤ Wi(L).

This yields Wi(K) = Wi(L). Hence K = L. �364

Corollary 8.2. Suppose K ∈ Kn
oo, L ∈ Kn

o , and S ⊂ Kn
o is a class of bodies such365

that K,L ∈ S. If φ ∈ Φ, and366

(8.2) Vφ(Q,K) = Vφ(Q,L), for all Q ∈ S,

then K = L.367

Proof. The result follows immediately from Theorem 8.1 with i = 0. �368

Putting φ(t) = tp and p > 1 in Theorem 8.1, we obtain the following result which369

was proved by Lutwak [21].370
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Corollary 8.3. Suppose K ∈ Kn
oo, L ∈ Kn

o , and S ⊂ Kn
o is a class of bodies such371

that K,L ∈ S. If p > 1, 0 ≤ i < n− 1, and372

(8.3) Wp,i(Q,K) = Wp,i(Q,L), for all Q ∈ S,

then K = L.373

Theorem 8.4. Suppose 0 ≤ i < n and φ ∈ Φ. For K ∈ Kn
oo, the following statements374

are equivalent:375

(i) The body K is centered,376

(ii) The measure W̄n,i(K, ·) is even.377

(iii) Wφ,i(K,Q) = Wφ,i(K,−Q), for all Q ∈ Kn
oo.378

(iv) Wφ,i(K,Q) = Wφ,i(K,−Q), for Q = K.379

Proof. To see that (i) implies (ii), recall that if K is centered, then h(K, ·) is an even380

function, and Si(K) is an even measure. The implication is now a consequence of the381

fact that dW̄n,i(K, ·) = 1
nWi(K)h(K, ·)dSi(K, ·).382

That (ii) yields (iii) is a consequence of the following integra representation

Wφ,i(K,Q) = Wi(K)

∫
Sn−1

φ

(
h(Q, u)

h(K,u)

)
dW̄n,i(K,u),

and the fact that, in general, h(−Q,u) = h(Q,−u), for all u ∈ Sn−1. Obviously, (iv)383

follows directly from (iii).384

To see that (iv) implies (i), notice that (iv), for Q = K, gives

Wi(K) = Wφ,i(K,−K).

The desired result follows from the fact that Wi(−K) = Wi(K) and the equality385

conditions of the Orlicz-Minkoski inequality (4.7). �386

Corollary 8.5. Suppose φ ∈ Φ. For K ∈ Kn
oo, the following statements are equiva-387

lent:388

(i) The body K is centered,389

(ii) The measure V̄n(K, ·) is even.390

(iii) Vφ(K,Q) = Vφ(K,−Q), for all Q ∈ Kn
oo.391

(iv) Vφ(K,Q) = Vφ,i(K,−Q), for Q = K.392

Proof. The results follow immediately from Theorem 8.5 with i = 0. �393

Corollary 8.6. Suppose 0 ≤ i < n and p > 1. For K ∈ Kn
oo, the following statements394

are equivalent:395

(i) The body K is centered,396

(ii) The measure Sp,i(K, ·) is even.397

(iii) Wp,i(K,Q) = Wp,i(K,−Q), for all Q ∈ Kn
oo.398

(iv) Wp,i(K,Q) = Wp,i(K,−Q), for Q = K.399

Proof. The results follow immediately from Theorem 8.5 with φ(t) = tp and p > 1.�400

This was proved by Lutwak [21]. That (iii) implies that K is centrally symmetric,401

for the case p = 1 and i = 0, was shown (using other methods) by Goodey [10].402
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