On the Orlicz-Brunn-Minkowski theory

C. J. Zhao

Abstract. Recently, Gardner, Hug and Weil developed an Orlicz-Brunn-Minkowski theory. Following this, in the paper we further consider the Orlicz-Brunn-Minkowski theory. The fundamental notions of mixed quermassintegrals, mixed *p*-quermassintegrals and inequalities are extended to an Orlicz setting. Inequalities of Orlicz Minkowski and Brunn-Minkowski type for Orlicz mixed quermassintegrals are obtained. One of these has connections with the conjectured log-Brunn-Minkowski inequality and we prove a new log-Minkowski-type inequality. A new version of Orlicz Minkowski's inequality is proved. Finally, we show Simon's characterization of relative spheres for the Orlicz mixed quermassintegrals.

¹¹ **M.S.C. 2010**: 52A20, 52A30.

¹² Key words: L_p addition; Orlicz addition; Orlicz mixed volume; mixed quermassinte-¹³ grals; mixed *p*-quermassintegrals, Orlicz mixed quermassintegrals; Orlicz-Minkowski ¹⁴ inequality; Orlicz-Brunn-Minkowski inequality.

15 1 Introduction

One of the most important operations in geometry is vector addition. As an operation between sets K and L, defined by

$$K + L = \{ x + y \mid x \in K, y \in L \},\$$

¹⁶ it is usually called Minkowski addition and combine volume play an important role ¹⁷ in the Brunn-Minkowski theory. During the last few decades, the theory has been ¹⁸ extended to L_p -Brunn-Minkowski theory. The first, a set called as L_p addition, in-¹⁹ troduced by Firey in [6] and [7]. Denoted by $+_p$, for $1 \le p \le \infty$, defined by

(1.1)
$$h(K +_p L, x)^p = h(K, x)^p + h(L, x)^p,$$

for all $x \in \mathbb{R}^n$ and compact convex sets K and L in \mathbb{R}^n containing the origin. When $p = \infty$, (1.1) is interpreted as $h(K +_{\infty} L, x) = \max\{h(K, x), h(L, x)\}$, as is customary. Here the functions are the support functions. If K is a nonempty closed (not necessarily bounded) convex set in \mathbb{R}^n , then

$$h(K, x) = \max\{x \cdot y \mid y \in K\},\$$

Bałkan Journal of Geometry and Its Applications, Vol.22, No.1, 2017, pp. 98-121.

[©] Balkan Society of Geometers, Geometry Balkan Press 2017.

for $x \in \mathbb{R}^n$, defines the support function h(K, x) of K. A nonempty closed convex 20 set is uniquely determined by its support function. L_p addition and inequalities are 21 the fundamental and core content in the L_p Brunn-Minkowski theory. For recent 22 23 important results and more information from this theory, we refer to [12], [13], [14], [15], [20], [22], [23], [24], [25], [26], [27], [30], [31], [35], [36], [37] and the references 24 therein. In recent years, a new extension of L_p -Brunn-Minkowski theory is to Orlicz-25 Brunn-Minkowski theory, initiated by Lutwak, Yang, and Zhang [28] and [29]. In 26 these papers the notions of L_p -centroid body and L_p -projection body were extended 27 to an Orlicz setting. The Orlicz centroid inequality for star bodies was introduced in 28 [39] which is an extension from convex to star bodies. The other articles advance the 29 theory can be found in literatures [11], [17], [18] and [32]. Very recently, Gardner, 30 Hug and Weil ([9]) constructed a general framework for the Orlicz-Brunn-Minkowski 31 theory, and made clear for the first time the relation to Orlicz spaces and norms. 32 They introduced the Orlicz addition $K +_{\varphi} L$ of compact convex sets K and L in \mathbb{R}^n 33 containing the origin, implicitly, by 34

(1.2)
$$\varphi\left(\frac{h(K,x)}{h(K+_{\varphi}L,x)},\frac{h(L,x)}{h(K+_{\varphi}L,x)}\right) = 1,$$

for $x \in \mathbb{R}^n$, if h(K, x) + h(L, x) > 0, and by $h(K + \varphi L, x) = 0$, if h(K, x) = h(L, x) = 0. Here $\varphi \in \Phi_2$, the set of convex functions $\varphi : [0, \infty)^2 \to [0, \infty)$ that are increasing in each variable and satisfy $\varphi(0, 0) = 0$ and $\varphi(1, 0) = \varphi(0, 1) = 1$.

³⁸ Unlike the L_p case, an Orlicz scalar multiplication cannot generally be consid-³⁹ ered separately. The particular instance of interest corresponds to using (1.2) with ⁴⁰ $\varphi(x_1, x_2) = \varphi_1(x_1) + \varepsilon \varphi_2(x_2)$ for $\varepsilon > 0$ and some $\varphi_1, \varphi_2 \in \Phi$, in which case we write ⁴¹ $K +_{\varphi,\varepsilon} L$ instead of $K +_{\varphi} L$, where the sets of convex function $\varphi_i : [0, \infty) \to (0, \infty)$ ⁴² that are increasing and satisfy $\varphi_i(1) = 1$ and $\varphi_i(0) = 0$, where i = 1, 2. Orlicz addi-⁴³ tion reduces to L_p addition, $1 \le p < \infty$, when $\varphi(x_1, x_2) = x_1^p + x_2^p$, or L_∞ addition, ⁴⁴ when $\varphi(x_1, x_2) = \max\{x_1, x_2\}$. Moreover, Gardner, Hug and Weil ([9]) introduced ⁴⁵ the Orlicz mixed volume, obtaining the equation

(1.3)
$$\frac{(\varphi_1)_l'(1)}{n} \lim_{\varepsilon \to 0^+} \frac{V(K + \varphi, \varepsilon L) - V(K)}{\varepsilon} = \frac{1}{n} \int_{S^{n-1}} \varphi_2\left(\frac{h(L, u)}{h(K, u)}\right) h(K, u) dS(K, u),$$

where S(K, u) is the mixed surface area measure of K and $\varphi \in \Phi_2, \varphi_1, \varphi_2 \in \Phi$. Here K is a convex body containing the origin in its interior and L is a compact convex set containing the origin, assumptions we shall retain for the remainder of this introduction.

⁵⁰ Denoting by $V_{\varphi}(K, L)$, for any $\varphi \in \Phi$, the integral on the right side of (1.3) with ⁵¹ φ_2 replaced by φ , we see that either side of the equation (1.3) is equal to $V_{\varphi_2}(K, L)$ ⁵² and therefore this new Orlicz mixed volume plays the same role as $V_p(K, L)$ in the ⁵³ L_p -Brunn-Minkowski theory. In [9], Gardner, Hug and Weil obtained the Orlicz-⁵⁴ Minkowski inequality.

(1.4)
$$V_{\varphi}(K,L) \ge V(K) \cdot \varphi\left(\left(\frac{V(L)}{V(K)}\right)^{1/n}\right)$$

for $\varphi \in \Phi$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. In Section 3, we compute the Orlicz first variation of quermassintegrals, call as
 Orlicz mixed quermassintegrals, obtaining the equation

$$\frac{(1.5)}{(\varphi_1)_l'(1)}\lim_{\varepsilon \to 0^+} \frac{W_i(K+_{\varphi,\varepsilon}L) - W_i(K)}{\varepsilon} = \frac{1}{n} \int_{S^{n-1}} \varphi_2\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u).$$

for $\varphi \in \Phi_2$, $\varphi_1, \varphi_2 \in \Phi$ and $1 \leq i \leq n$, and W_i denotes the usual quermassintegrals, and $S_i(K, u)$ is the *i*-th mixed surface area measure of K. Denoting by $W_{\varphi,i}(K, L)$, for any $\varphi \in \Phi$, the integral on the right side of (1.5) with φ_2 replaced by φ , we see that either side of the equation (1.5) is equal to $W_{\varphi_2,i}(K, L)$ and therefore this new Orlicz mixed volume (Orlicz mixed quermassintegrals) plays the same role as $W_{p,i}(K, L)$ in the L_p -Brunn-Minkowski theory. Note that when i = 0, (1.5) becomes (1.3). Hence we have the following definition of Orlicz mixed quermassintegrals.

(1.6)
$$W_{\varphi,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u).$$

In Section 4, we establish Orlicz-Minkowksi inequality for the Orlicz mixed quermassintegrals.

(1.7)
$$W_{\varphi,i}(K,L) \ge W_i(K) \cdot \varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right),$$

for $\varphi \in \Phi$ and $0 \le i < n$. If φ is strictly convex, equality holds if and only if K and Lare dilates or $L = \{o\}$. Note that when i = 0, (1.7) becomes to (1.4). In particularly, putting $\varphi(t) = t^p$, $1 \le p < \infty$ in (1.7), (1.7) reduces to the following L_p -Minkowski inequality for mixed p-quermassintegrals established by Lutwak [21].

(1.8)
$$W_{p,i}(K,L)^{n-i} \ge W_i(K)^{n-i-p} W_i(L)^p,$$

⁷² for p > 1 and $0 \le i \le n$, with equality if and only if K and L are dilates or $L = \{o\}$. ⁷³ Putting i = 0, $\varphi(t) = t^p$ and $1 \le p < \infty$ in (1.7), (1.7) reduces to the well-known ⁷⁴ L_p -Minkowski inequality established by Firev [7]. For p > 1.

$$L_p$$
-Minkowski inequality established by Firey [7]. For p ,

(1.9)
$$V_p(K,L) \ge V(K)^{(n-p)/n} V(L)^{p/n},$$

with equality if and only if K and L are dilates or $L = \{o\}$.

⁷⁶ In Section 5, we establish the following Orlicz-Brunn-Minkowksi inequality for ⁷⁷ quermassintegrals of Orlicz addition.

(1.10)
$$1 \ge \varphi \left(\left(\frac{W_i(K)}{W_i(K+_{\varphi} L)} \right)^{1/(n-i)}, \left(\frac{W_i(L)}{W_i(K+_{\varphi} L)} \right)^{1/(n-i)} \right),$$

⁷⁸ for $\varphi \in \Phi_2$ and $0 \le i < n$. If φ is strictly convex, equality holds if and only if K and ⁷⁹ L are dilates or $L = \{o\}$. Note that when $\varphi(x_1, x_2) = x_1^p + x_2^p$, $1 \le p < \infty$ in (1.11), ⁸⁰ (1.11) reduces to the following L_p -Brunn-Minkowski inequality for quermassintegrals ⁸¹ established by Lutwak [21]. If

(1.11)
$$W_i(K+_p L)^{p/(n-i)} \ge W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)},$$

with equality if and only if K and L are dilates or $L = \{o\}$, and where $p \ge 1$ and $0 \le i < n$. Putting i = 0, $\varphi(x_1, x_2) = x_1^p + x_2^p$ and $1 \le p < \infty$ in (1.11), (1.11) reduces to the well-known L_p -Brunn-Minkowski inequality established by Firey [7].

(1.12)
$$V(K +_p L)^{p/n} \ge V(K)^{p/n} + V(L)^{p/n}$$

with equality if and only if K and L are dilates or $L = \{o\}$, and where p > 1. A special case of (1.10) was recently established by Gardner, Hug and Weil [9].

(1.13)
$$1 \ge \varphi\left(\left(\frac{V(K)}{V(K+_{\varphi,\varepsilon}L)}\right)^{1/n}, \left(\frac{V(L)}{V(K+_{\varphi}L)}\right)^{1/n}\right),$$

for $\varphi \in \Phi_2$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. When i = 0, (1.10) becomes to (1.12). Moreover, We prove also the Orlicz Minkowski inequality (1.4) and the Orlicz Brunn-Minkowski inequality (1.12) are equivalent, and (1.7) and (1.10) also are equivalent.

When we were about to submit our paper, we were informed that G. Xiong and D. Zou [38] had also obtained Orlicz Minowski and Brunn-Mingkowski inequalities for Orlicz mixed quermassintegrals. Please note that we use a completely different approach, although the two inequalities coincide with theirs.

In 2012, Böröczky, Lutwak, Yang, and Zhang [2] conjecture a log-Minkowski inequality for origin-symmetric convex bodies K and L in \mathbb{R}^n .

(1.14)
$$\int_{S^{n-1}} \log\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS(K,u) \ge V(K) \log\left(\frac{V(L)}{V(K)}\right).$$

In [2], (1.14) is proved by them only when n = 2. Very recently, Gardner, Hug and Weil [9] proved a new version of (1.14) for convex bodies, not origin-symmetric convex bodies.

(1.15)
$$\int_{S^{n-1}} \log\left(1 - \frac{h(L, u)}{h(K, u)}\right) h(K, u) dS(K, u) \le V(K) \log\left(1 - \frac{V(L)^{1/n}}{V(K)^{1/n}}\right)^n,$$

with equality if and only if K and L are dilates or $L = \{o\}$, and where $L \subset \text{int}K$. They also shown that combining (1.14) and (1.15) may get the classical Brunn-Minkowski inequality. In Section 6, we give a new log-Minkowski-type inequality

(1.16)
$$\int_{S^{n-1}} \log\left(1 - \frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u) \le W_i(K) \log\left(1 - \frac{W_i(L)^{1/(n-i)}}{W_i(K)^{1/(n-i)}}\right)^n,$$

with equality if and only if K and L are dilates or $L = \{o\}$. When i = 0, (1.16) becomes (1.15). We also point out a conjecture which is an extension of the log Minkowski inequality as follows.

(1.17)
$$\frac{1}{n} \int_{S^{n-1}} \log\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u) \ge \log\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}$$

When i = 0, (1.17) becomes the log-Minkowski inequality (1.14). Combining (1.16) and (1.17) together split the following classical Brunn-Minkowski inequality for quermassintegrals (see Section 6).

$$W_i(K+L)^{1/(n-i)} \ge W_i(K)^{1/(n-i)} + W_i(L)^{1/(n-i)},$$

- with equality if and only if K and L are dilates or $L = \{o\}$.
- In 2010, the Orlicz projection body Π_{φ} of K (K is a convex body containing the origin in its interior) defined by Lutwak, Yang and Zhang [28]

(1.18)
$$h(\mathbf{\Pi}_{\varphi}, u) = \inf \left\{ \lambda > 0 \mid \frac{1}{nV(K)} \int_{S^{n-1}} \varphi\left(\frac{|u \cdot v|}{\lambda h(K, v)}\right) h(K, v) dS(K, v) \le 1 \right\},$$

for $\varphi \in \Phi$ and $u \in S^{n-1}$. A different Orlicz version of Minkowski's inequality (1.8) is presented in Section 7. This results from replacing the left side of (1.8) by the quantity

$$\widehat{W}_{\varphi,i}(K,L) = \inf\left\{\lambda > 0 \mid \frac{1}{nW_i(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{\lambda h(K,u)}\right) h(K,u) dS_i(K,u) \le 1\right\},$$

for $\varphi \in \Phi$ and $0 \le i < n$. We prove the following new Orlicz Minkowski type inequality.

(1.20)
$$\widehat{W}_{\varphi,i}(K,L) \ge \left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)},$$

where $\varphi \in \Phi$ and $1 \leq i < n$. If φ is strictly convex and $W_i(L) > 0$, equality holds if and only if K and L are dilates. A special version of (1.20) was recently established by Gardner, Hug and Weil [9].

$$\widehat{V}_{\varphi}(K,L) \ge \left(\frac{V(L)}{V(K)}\right)^{1/n},$$

If φ is strictly convex and V(L) > 0, then equality holds if and only if K and L are dilates and where

$$\widehat{V}_{\varphi}(K,L) = \inf \left\{ \lambda > 0 \mid \frac{1}{nV(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{\lambda h(K,u)}\right) h(K,u) dS(K,u) \leq 1 \right\},$$

113 for $\varphi \in \Phi$.

Finally, in Section 8, we show Simon's characterization of relative spheres for the Orlicz mixed quermassintegrals.

¹¹⁶ 2 Notations and preliminaries

The setting for this paper is *n*-dimensional Euclidean space \mathbb{R}^n . Let \mathcal{K}^n be the class of nonempty compact convex subsets of \mathbb{R}^n , let \mathcal{K}^n_o be the class of members of \mathcal{K}^n containing the origin, and let \mathcal{K}^n_{oo} be those sets in \mathcal{K}^n containing the origin in their interiors. A set $K \in \mathcal{K}^n$ is called a convex body if its interior is nonempty. We reserve the letter $u \in S^{n-1}$ for unit vectors, and the letter *B* for the unit ball centered at the origin. The surface of *B* is S^{n-1} . For a compact set *K*, we write V(K) for the (*n*-dimensional) Lebesgue measure of *K* and call this the volume of *K*. If *K* is a nonempty closed (not necessarily bounded) convex set, then

$$h(K, x) = \sup\{x \cdot y \mid y \in K\},\$$

for $x \in \mathbb{R}^n$, defines the support function of K, where $x \cdot y$ denotes the usual inner product x and y in \mathbb{R}^n . A nonempty closed convex set is uniquely determined by its support function. Support function is homogeneous of degree 1, that is,

$$h(K, rx) = rh(K, x),$$

for all $x \in \mathbb{R}^n$ and $r \ge 0$. Let d denote the Hausdorff metric on \mathcal{K}^n , i.e., for $K, L \in \mathcal{K}^n$, $d(K,L) = |h(K,u) - h(L,u)|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions $C(S^{n-1})$.

Throughout the paper, the standard orthonormal basis for \mathbb{R}^n will be $\{e_1, \ldots, e_n\}$. Let $\Phi_n, n \in \mathbb{N}$, denote the set of convex functions $\varphi : [0, \infty)^n \to [0, \infty)$ that are strictly increasing in each variable and satisfy $\varphi(0) = 0$ and $\varphi(e_j) = 1 > 0, j = 1, \ldots, n$. When n = 1, we shall write Φ instead of Φ_1 . The left derivative and right derivative of a real-valued function f are denoted by $(f)'_l$ and $(f)'_r$, respectively.

125 2.1 Mixed quermassintegrals

If $K_i \in \mathcal{K}^n$ (i = 1, 2, ..., r) and λ_i (i = 1, 2, ..., r) are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^r \lambda_i K_i$ is a homogeneous polynomial in λ_i given by (see e.g. [3])

(2.1)
$$V(\lambda_1 K_1 + \dots + \lambda_n K_n) = \sum_{i_1,\dots,i_n} \lambda_{i_1} \dots \lambda_{i_n} V_{i_1\dots i_n},$$

where the sum is taken over all *n*-tuples (i_1, \ldots, i_n) of positive integers not exceeding 129 r. The coefficient $V_{i_1...i_n}$ depends only on the bodies K_{i_1}, \ldots, K_{i_n} and is uniquely 130 determined by (2.1), it is called the mixed volume of K_i, \ldots, K_{i_n} , and is written as 131 $V(K_{i_1}, \ldots, K_{i_n})$. Let $K_1 = \ldots = K_{n-i} = K$ and $K_{n-i+1} = \ldots = K_n = L$, then the 132 mixed volume $V(K_1, \ldots, K_n)$ is written as V(K[n-i], L[i]). If $K_1 = \cdots = K_{n-i} = K$, 133 $K_{n-i+1} = \cdots = K_n = B$ The mixed volumes $V_i(K[n-i], B[i])$ is written as $W_i(K)$ and 134 call as quermassintegrals (or *i*-th mixed quermassintegrals) of K. We write $W_i(K, L)$ 135 for the mixed volume V(K[n-i-1], B[i], L[1]) and call as mixed quermassintegrals. 136 Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and Schneider [33]) 137 have shown that for $K \in \mathcal{K}_{oo}^n$, and $i = 0, 1, \ldots, n-1$, there exists a regular Borel 138 measure $S_i(K, \cdot)$ on S^{n-1} , such that the mixed quermassintegrals $W_i(K, L)$ has the 139 following representation: 140

(2.2)
$$W_i(K,L) = \frac{1}{n-i} \lim_{\varepsilon \to 0^+} \frac{W_i(K+\varepsilon L) - W_i(K)}{\varepsilon} = \frac{1}{n} \int_{S^{n-1}} h(L,u) dS_i(K,u).$$

Associated with $K_1, \ldots, K_n \in \mathcal{K}^n$ is a Borel measure $S(K_1, \ldots, K_{n-1}, \cdot)$ on S^{n-1} , called the mixed surface area measure of K_1, \ldots, K_{n-1} , which has the property that for each $K \in \mathcal{K}^n$ (see e.g. [8], p.353),

(2.3)
$$V(K_1, \dots, K_{n-1}, K) = \frac{1}{n} \int_{S^{n-1}} h(K, u) dS(K_1, \dots, K_{n-1}, u).$$

In fact, the measure $S(K_1, \ldots, K_{n-1}, \cdot)$ can be defined by the proper that (2.3) holds for all $K \in \mathcal{K}^n$. Let $K_1 = \ldots = K_{n-i-1} = K$ and $K_{n-i} = \ldots = K_{n-1} = L$, then the mixed surface area measure $S(K_1, \ldots, K_{n-1}, \cdot)$ is written as $S(K[n-i], L[i], \cdot)$. ¹⁴⁷ When L = B, $S(K[n-i], L[i], \cdot)$ is written as $S_i(K, \cdot)$ and called as *i*-th mixed surface ¹⁴⁸ area measure. A fundamental inequality for mixed quermassintegrals stats that: For ¹⁴⁹ $K, L \in \mathcal{K}^n$ and $0 \le i < n - 1$,

(2.4)
$$W_i(K,L)^{n-i} \ge W_i(K)^{n-i-1} W_i(L),$$

with equality if and only if K and L are homothetic and $L = \{o\}$. Good general references for this material are [4] and [19].

152 2.2 Mixed p-quermassintegrals

Mixed quermassintegrals are, of course, the first variation of the ordinary quermassintegrals, with respect to Minkowski addition. The mixed quermassintegrals $W_{p,0}(K,L), W_{p,1}(K,L), \ldots, W_{p,n-1}(K,L)$, as the first variation of the ordinary quermassintegrals, with respect to Firey addition: For $K, L \in \mathcal{K}_{oo}^n$, and real $p \geq 1$, defined by (see e.g. [21])

(2.5)
$$W_{p,i}(K,L) = \frac{p}{n-i} \lim_{\varepsilon \to_{0^+}} \frac{W_i(K+_p \varepsilon \cdot L) - W_i(K)}{\varepsilon}.$$

The mixed *p*-quermassintegrals $W_{p,i}(K,L)$, for all $K, L \in \mathcal{K}_{oo}^n$, has the following integral representation:

(2.6)
$$W_{p,i}(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p dS_{p,i}(K,u),$$

where $S_{p,i}(K, \cdot)$ denotes the Boel measure on S^{n-1} . The measure $S_{p,i}(K, \cdot)$ is absolutely continuous with respect to $S_i(K, \cdot)$, and has Radon-Nikodym derivative

(2.7)
$$\frac{dS_{p,i}(K,\cdot)}{dS_i(K,\cdot)} = h(K,\cdot)^{1-p},$$

where $S_i(K, \cdot)$ is a regular Boel measure on S^{n-1} . The measure $S^{n-1}(K, \cdot)$ is independent of the body K, and is just ordinary Lebesgue measure, S, on S^{n-1} . $S_i(B, \cdot)$ denotes the *i*-th surface area measure of the unit ball in \mathbb{R}^n . In fact, $S_i(B, \cdot) = S$ for all *i*. The surface area measure $S_0(K, \cdot)$ just is $S(K, \cdot)$. When i = 0, $S_{p,i}(K, \cdot)$ is written as $S_p(K, \cdot)$ (see [25], [26]). A fundamental inequality for mixed *p*-quermassintegrals stats that: For $K, L \in \mathcal{K}_{oo}^n, p > 1$ and $0 \le i < n - 1$,

(2.8)
$$W_{p,i}(K,L)^{n-i} \ge W_i(K)^{n-i-p} W_i(L)^p,$$

with equality if and only if K and L are homothetic. L_p -Brunn-Minkowski inequality for quermassintegrals established by Lutwak [21]. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $p \ge 1$ and $0 \le i \le n$, then

(2.9)
$$W_i(K+_p L)^{p/(n-i)} \ge W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)},$$

with equality if and only if K and L are dilates or $L = \{o\}$. Obviously, putting i = 0in (2.6), the mixed *p*-quermassintegrals $W_{p,i}(K,L)$ become the well-known L_p -mixed volume $V_p(K,L)$, defined by (see e.g. [25])

(2.10)
$$V_p(K,L) = \frac{1}{n} \int_{S^{n-1}} h(L,u)^p dS_p(K,u).$$

174 2.3 The Orlicz mixed volume

For $\varphi \in \Phi$, $K \in \mathcal{K}_{oo}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, Gardner, Hug and Weil [9] defined the Orlicz mixed volumes, $V_{\varphi}(K, L)$ by

(2.11)
$$V_{\varphi}(K,L) = \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS(K,u).$$

177 They obtained the Orlicz-Minkowksi inequality.

(2.12)
$$V_{\varphi}(K,L) \ge V(K) \cdot \varphi\left(\left(\frac{V(L)}{V(K)}\right)^{1/n}\right),$$

for all $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $\varphi \in \Phi$. If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$.

180 Orlicz mixed quermassintegrals is defined in Section 3, by

(2.13)
$$W_{\varphi,i}(K,L) =: \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u),$$

for all $K \in \mathcal{K}_{oo}^{n}$, $L \in \mathcal{K}_{o}^{n}$, $\varphi \in \Phi$ and $0 \leq i < n$. Obviously, when $\varphi(t) = t^{p}$ and $p \geq 1$, *Orlicz mixed quermassintegrals* reduces to the mixed *p*-quermassintegrals $W_{p,i}(K,L)$ defined in (2.6). When i = 0, (2.13) reduces to (2.11).

Let $m \ge 2, \varphi \in \Phi_m, K_j \in \mathcal{K}_0^n$ and $j = 1, \ldots, m$, we define the Orlicz addition of K_1, \ldots, K_m , denoted by $+_{\varphi}(K_1, \ldots, K_m)$, is defined by

(2.14)
$$h(+_{\varphi}(K_1,\ldots,K_m),x) = \inf\left\{\lambda > 0 \mid \varphi\left(\frac{h(K_1,x)}{\lambda},\ldots,\frac{h(K_m,x)}{\lambda}\right) \le 1\right\},$$

for $x \in \mathbb{R}^n$. Equivalently, the Orlicz addition $+_{\varphi}(K_1, \ldots, K_m)$ can be defined implicitly (and uniquely) by

(2.15)
$$\varphi\left(\frac{h(K_1, x)}{h(+_{\varphi}(K_1, \dots, K_m), x)}, \dots, \frac{h(K_m, x)}{h(+_{\varphi}(K_1, \dots, K_m), x)}\right) = 1,$$

for all $x \in \mathbb{R}^n$. An important special case is obtained when

$$\varphi(x_1,\ldots,x_m)=\sum_{j=1}^m\varphi_j(x_j),$$

for some fixed $\varphi_j \in \Phi$ such that $\varphi_1(1) = \cdots = \varphi_m(1) = 1$. We then write $+_{\varphi}(K_1, \ldots, K_m) = K_1 +_{\varphi} \cdots +_{\varphi} K_m$. This means that $K_1 +_{\varphi} \cdots +_{\varphi} K_m$ is defined interval either by

(2.16)
$$h(K_1 +_{\varphi} \dots +_{\varphi} K_m, u) = \sup\left\{\lambda > 0 \mid \sum_{j=1}^m \varphi_j\left(\frac{h(K_j, x)}{\lambda}\right) \le 1\right\},$$

¹⁹² for all $x \in \mathbb{R}^n$, or by the corresponding special case of (2.15).

For real $p \ge 1$, $K, L \in \mathcal{K}_{oo}^n$ and $\alpha, \beta \ge 0$ (not both zero), the Firey linear combination $\alpha \cdot K +_p \beta \cdot L \in \mathcal{K}_o^n$ can be defined by (see [6] and [7])

$$h(\alpha \cdot K +_p \beta \cdot L, \cdot)^p = \alpha h(K, \cdot)^p + \beta h(L, \cdot)^p.$$

¹⁹³ Obviously, Firey and Minkowski scalar multiplications are related by $\alpha \cdot K = \alpha^{1/p} K$. ¹⁹⁴ In [9], Gardner, Hug and Weil define the Orlicz linear combination $+_{\varphi}(K, L, \alpha, \beta)$ for ¹⁹⁵ $K, L \in \mathcal{K}_{o}^{n}$ and $\alpha, \beta \geq 0$, defined by

$$(2.17) \qquad \qquad \alpha\varphi_1\left(\frac{h(K,x)}{h(+_{\varphi}(K,L,\alpha,\beta),x)}\right) + \beta\varphi_2\left(\frac{h(L,x)}{h(+_{\varphi}(K,L,\alpha,\beta),x)}\right) = 1,$$

¹⁹⁶ if $\alpha h(K, x) + \beta h(L, x) > 0$, and by $h(+_{\varphi}(K, L, \alpha, \beta), x) = 0$ if $\alpha h(K, x) + \beta h(L, x) = 0$, ¹⁹⁷ for all $x \in \mathbb{R}^n$. It is easy to verify that when $\varphi_1(t) = \varphi_2(t) = t^p, p \ge 1$, the Orlicz linear ¹⁹⁸ combination $+_{\varphi}(K, L, \alpha, \beta)$ equals the Firey combination $\alpha \cdot K +_p \beta \cdot L$. Henceforth ¹⁹⁹ we shall write $K +_{\varphi, \varepsilon} L$ instead of $+_{\varphi}(K, L, 1, \varepsilon)$, for $\varepsilon \ge 0$, and assume throughout ²⁰⁰ that this is defined by (2.17), where $\alpha = 1, \beta = \varepsilon$, and $\varphi_1, \varphi_2 \in \Phi$.

²⁰¹ 3 Orlicz mixed quermassintegrals

- In order to define a new concept: Orlicz mixed quermassintegrals, we need Lemmas
 3.1-3.4 and Theorem 3.5.
- Lemma 3.1. ([9]) If $\varphi \in \Phi_m$, then Orlicz addition $+_{\varphi} : (\mathcal{K}_0^n)^m \to \mathcal{K}_0^n$ is continuous, GL(n) covariant, monotonic, projection covariant and has the identity property.
- Lemma 3.2. ([9]) If $K, L \in \mathcal{K}_o^n$, then

- ²⁰⁷ in the Hausdorff metric as $\varepsilon \to 0^+$.
- **Lemma 3.3.** If $K, L \in \mathcal{K}_o^n$ and $0 \le i < n$, Then (3.2)

$$\lim_{\varepsilon \to 0^+} \frac{W_i(K +_{\varphi,\varepsilon} L) - W_i(K)}{\varepsilon} = \frac{n-i}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K +_{\varphi,\varepsilon} L, u) - h(K, u)}{\varepsilon} dS_i(K, u),$$

209 where, $\lim_{\varepsilon \to 0^+} \frac{h(K+_{\varphi,\varepsilon}L,u)-h(K,u)}{\varepsilon}$ uniformly for $u \in S^{n-1}$.

Proof. For brevity, we temporarily write $K_{\varepsilon} = K +_{\varphi,\varepsilon} L$. Starting with the decomposition

$$\frac{W_i(K_{\varepsilon}) - W_i(K)}{\varepsilon} = \sum_{j=0}^{n-i-1} \frac{W_i(K_{\varepsilon}[j+1], K[n-i-j-1]) - W_i(K_{\varepsilon}[j], K[n-i-j])}{\varepsilon}$$

210 Notice that

(3.3)
$$\frac{W_i(K_{\varepsilon}[j+1], K[n-i-j-1]) - W_i(K_{\varepsilon}[j], K[n-i-j])}{\varepsilon}$$

On the Orlicz-Brunn-Minkowski theory

$$\begin{split} &= \frac{1}{n} \int_{S^{n-1}} \frac{h(K_{\varepsilon}, u) - h(K, u)}{\varepsilon} dS_i(K_{\varepsilon}[j], K[n-i-j-1], u) \\ &= \frac{1}{n} \int_{S^{n-1}} \left(\frac{h(K_{\varepsilon}, u) - h(K, u)}{\varepsilon} - \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi, \varepsilon L, u) - h(K, u)}{\varepsilon} \right) \times \\ &\quad \times dS_i(K_{\varepsilon}[j], K[n-i-j-1], u) \\ &\quad + \frac{1}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K + \varphi, \varepsilon L, u) - h(K, u)}{\varepsilon} dS_i(K_{\varepsilon}[j], K[n-i-j-1], u). \end{split}$$

By assumption, the integrand in (3.3) converges uniformly to zero for $u \in S^{n-1}$. Since $K_{\varepsilon} \to K$ as $\varepsilon \to 0^+$, by Lemma 3.2, and the *i*-th mixed surface area measures $S_i(K_{\varepsilon}[j], K[n-i-j-1])$ are uniformly bounded for $\varepsilon \in (0, 1]$, the first integral in the previous sum converges to zero. Noting that $S_i(K_{\varepsilon}[j], K[n-i-j-1]) \to S_i(K, u)$ weakly as $\varepsilon \to 0^+$. Hence

$$\lim_{\varepsilon \to 0^+} \frac{W_i(K +_{\varphi,\varepsilon} L) - W_i(K)}{\varepsilon} = \lim_{\varepsilon \to 0^+} \sum_{j=0}^{n-i-1} \frac{1}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K +_{\varphi,\varepsilon} L, u) - h(K, u)}{\varepsilon} \times dS_i(K_{\varepsilon}[j], K[n-i-j-1], u)$$
$$= \frac{n-i}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K +_{\varphi,\varepsilon} L, u) - h(K, u)}{\varepsilon} dS_i(K, u).$$

Lemma 3.4. For $\varepsilon > 0$ and $u \in S^{n-1}$, let $h_{\varepsilon} = h(K +_{\varphi,\varepsilon} L, u)$. If $K \in \mathcal{K}_{oo}^{n}$ and L $\in \mathcal{K}_{o}^{n}$, then

$$(3.4) \quad \frac{dh_{\varepsilon}}{d\varepsilon} = \frac{h(K,u)\frac{d\varphi_1^{-1}(y)}{dy}\varphi_2\left(\frac{h(L,u)}{h_{\varepsilon}}\right)}{\left(\varphi_1^{-1}\left(1-\varepsilon\varphi_2\left(\frac{h(L,u)}{h_{\varepsilon}}\right)\right)\right)^2 + \varepsilon \cdot \frac{h(L,u)h(L_n,u)}{h_{\varepsilon}^2}\frac{d\varphi_1^{-1}(y)}{dy}\frac{d\varphi_2(z)}{dz}},$$

where

211

$$y = 1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_{\varepsilon}} \right),$$

and

$$z = \frac{h(L, u)}{h_{\varepsilon}}.$$

Proof. Suppose $\varepsilon > 0$, $L \in \mathcal{K}_o^n, K \in \mathcal{K}_{oo}^n$ and $u \in S^{n-1}$, and notice that

$$h_{\varepsilon} = h(K +_{\varphi,\varepsilon} L, u),$$

we have

$$\frac{h(K,u)}{h_{\varepsilon}} = \varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L,u)}{h_{\varepsilon}} \right) \right).$$

On the other hand

$$\frac{dh_{\varepsilon}}{d\varepsilon} = \frac{d}{d\varepsilon} \left(\frac{h(K, u)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_{\varepsilon}} \right) \right)} \right) \\
= \frac{h(K, u) \frac{d\varphi_1^{-1}(y)}{dy} \left[\varphi_2 \left(\frac{h(L, u)}{h_{\varepsilon}} \right) - \varepsilon \cdot \frac{d\varphi_2(z)}{dz} \frac{h(L, u)}{h_{\varepsilon}^2} \frac{dh_{\varepsilon}}{d\varepsilon} \right]}{\left(\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_{\varepsilon}} \right) \right) \right)^2}.$$

where

$$y = 1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h_{\varepsilon}} \right)$$

and

$$z = \frac{h(L, u)}{h_{\varepsilon}}.$$

 $_{214}$ By simplifying the equation above, it easy follows (3.4).

Theorem 3.5. Let $\varphi \in \Phi_2$, and $\varphi_1, \varphi_2 \in \Phi$. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $1 \leq i \leq n$, then

$$\frac{(3.5)}{(\varphi_1)'_l(1)}\lim_{\varepsilon\to 0^+}\frac{W_i(K+_{\varphi,\varepsilon}L)-W_i(K)}{\varepsilon} = \frac{1}{n}\int_{S^{n-1}}\varphi_2\left(\frac{h(L,u)}{h(K,u)}\right)h(K,u)dS_i(K,u).$$

Proof. From Lemma 3.3, we obtain

$$\lim_{\varepsilon \to 0^+} \frac{W_i(K +_{\varphi,\varepsilon} L) - W_i(K)}{\varepsilon} = \frac{n-i}{n} \int_{S^{n-1}} \lim_{\varepsilon \to 0^+} \frac{h(K +_{\varphi,\varepsilon} L, u) - h(K, u)}{\varepsilon} dS_i(K, u)$$
$$= \frac{n-i}{n} \lim_{\varepsilon \to 0^+} \int_{S^{n-1}} \frac{dh_\varepsilon}{d\varepsilon} dS_i(K; u).$$

From Lemmas 3.1-3.2 and Lemma 3.4, and noting that $y \to 1^-$ as $\varepsilon \to 0^+$, we have

$$\frac{d\varphi_1^{-1}(y)}{d\varepsilon} = \lim_{y \to 1^-} \frac{\varphi_1^{-1}(y) - \varphi_1^{-1}(1)}{y - 1} = \frac{1}{(\varphi_1)'_l(1)},$$

 $_{217}$ the equation (3.5) yields easy.

The theorem plays a central role in our deriving new concept of the Orlicz mixed quermassintegrals. Here, we give the another proof.

Proof. From the hypotheses, we have for $\varepsilon > 0$

$$h(K +_{\varphi,\varepsilon} L, u) = \frac{h(K, u)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K +_{\varphi,\varepsilon} L, u)} \right) \right)}.$$

220 Hence

(3.6)
$$\lim_{\varepsilon \to 0^+} \frac{h(K +_{\varphi,\varepsilon} L, u) - h(K, u)}{\varepsilon} \frac{h(K, u)}{\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K + \varepsilon \circ L, u)}\right)\right)} - h(K, u)$$

$$= \lim_{\varepsilon \to 0^+} \frac{\left(h(K + \varphi, \varepsilon L, u)\right)}{\varepsilon}$$
$$= \lim_{\varepsilon \to 0^+} \frac{h(K, u)\varphi_2\left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)}\right)}{\left(\varphi_1^{-1}\left(1 - \varepsilon\varphi_2\left(\frac{h(L, u)}{h(K + \varphi, \varepsilon L, u)}\right)\right)\right)^2} \lim_{y \to 1^-} \frac{\varphi_1^{-1}(y) - \varphi_1^{-1}(1)}{y - 1}$$

where

$$y = 1 - \varepsilon \varphi_2 \left(\frac{h(L, u)}{h(K +_{\varphi, \varepsilon} L, u)} \right),$$

and note that $y \to 1^-$ as $\varepsilon \to o^+$. Notice that

$$\lim_{y \to 1^{-}} \frac{\varphi_1^{-1}(y) - \varphi_1^{-1}(1)}{y - 1} = \frac{1}{(\varphi_1)_l'(1)}$$

and from (2.2), (3.6) and Lemmas 3.1-3.2, (3.5) easy follows.

Denoting by $W_{\varphi,i}(K,L)$, for any $\varphi \in \Phi$ and $1 \leq i < n$, the integral on the righthand side of (3.5) with φ_2 replaced by φ , we see that either side of the equation (3.5) is equal to $W_{\varphi_2,i}(K,L)$ and therefore this new Orlicz mixed volume $W_{\varphi,i}(K,L)$ (Orlicz mixed quermassintegrals) has been born.

Definition 3.1. (Orlicz mixed quermassintegrals) For $\varphi \in \Phi$, Orlicz mixed quermassintegrals, $W_{\varphi,i}(K,L)$, for $0 \le i < n$, defined by

(3.7)
$$W_{\varphi,i}(K,L) \coloneqq \frac{1}{n} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u),$$

for all $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$.

Remark 3.2. Let $\varphi_1(t) = \varphi_2(t) = t^p$, $p \ge 1$ in (3.5), the Orlicz sum $K +_{\varphi,\varepsilon} L$ reduces to the L_p addition $K +_p \varepsilon \cdot L$, and the Orlicz mixed quermassintegrals $W_{\varphi,i}(K,L)$ become the well-known mixed *p*-quermassintegrals $W_{p,i}(K,L)$. Obviously, when i = 0, $W_{\varphi,i}(K,L)$ reduces to Orlicz mixed volumes $V_{\varphi}(K,L)$ defined by Gardner, Hug and Weil [9].

²³⁴ **Theorem 3.6.** If $\varphi_1, \varphi_2 \in \Phi$, $\varphi \in \Phi_2$ and $K \in \mathcal{K}_o^n, L \in \mathcal{K}_{oo}^n$, and $0 \leq i < n$, then

(3.8)
$$W_{\varphi_2,i}(K,L) = \frac{(\varphi_1)'_l(1)}{n-i} \lim_{\varepsilon \to 0^+} \frac{W_i(K+_{\varphi,\varepsilon} L) - W_i(K)}{\varepsilon}.$$

²³⁵ *Proof.* This follows immediately from Theorem 3.5 and (3.7).

²³⁶ 4 Orlicz-Minkowski type inequality

In the Section, we need define a Borel measure in S^{n-1} , $\overline{W}_{n,i}(K, v)$, called as *i*-th normalized cone measure.

Definition 4.1. If $K \in \mathcal{K}_{oo}^n$, *i*-th normalized cone measure, $\bar{W}_{n,i}(K, v)$, defined by

(4.1)
$$d\overline{W}_{n,i}(K,v) = \frac{h(K,v)}{nW_i(K)} dS_i(K,v).$$

²⁴⁰ When i = 0, $\bar{W}_{n,i}(K, v)$ becomes to the well-known normalized cone measure $\bar{V}_n(K, v)$, ²⁴¹ by

(4.2)
$$d\bar{V}_n(K,v) = \frac{h(K,v)}{nV(K)} dS(K,v).$$

²⁴² This was defined in [2] and [9].

In the following, we start with two auxiliary results (Lemmas 4.1 and 4.2), which will be the base of our further study. The Orlicz-Minkowski inequality for Orlicz mixed quermassintegrals is established in Theorem 4.3.

Lemma 4.1. (Jensen's inequality) Suppose that μ is a probability measure on a space 247 X and $g: X \to I \subset \mathbb{R}$ is a μ -integrable function, where I is a possibly infinite interval. 248 If $\varphi: I \to \mathbb{R}$ is a convex function, then

(4.3)
$$\int_X \varphi(g(x)) d\mu(x) \ge \varphi\left(\int_X g(x) d\mu(x)\right).$$

If φ is strictly convex, equality holds if and only if g(x) is constant for μ -almost all $x \in X$ (see [16]).

Lemma 4.2. Let $0 < a \leq \infty$ be an extended real number, and let I = [0, a) be a possibly infinite interval. Suppose that $\varphi : I \to [0, \infty)$ is convex with $\varphi(0) = 0$. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_o^n$ are such that $L \subset int(aK)$, then

$$(4.4) \qquad \frac{1}{nW_i(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u) \ge \varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right).$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$.

Proof. In view of $L \subset int(aK)$, so $0 \leq \frac{h(L,u)}{h(K,u)} < a$ for all $u \in S^{n-1}$. By (4.1) and note that (2.2) with K = L, it follows the *i*-th normalized cone measure $\overline{W}_{n,i}(K,u)$ is a probability measure on S^{n-1} . Hence by using Jensen's inequality (4.3), the Minkowski's inequality (2.4), and the fact that φ is increasing, to obtain

$$\frac{1}{nW_i(K)} \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) h(K,u) dS_i(K,u) = \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{h(K,u)}\right) d\bar{W}_{n,i}(K,u)$$
$$\geq \varphi\left(\frac{W_i(K,L)}{W_i(K)}\right)$$

(4.5)
$$\geq \varphi \left(\left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)} \right).$$

In the following, we discuss the equal condition of (4.4). Suppose the equality holds in (4.4) and φ is strictly convex, so that $\varphi > 0$ on (0, a). Moreover, notice the injectivity of φ , we have equality in Minkowski inequality (2.4), so there are $r \geq 0$ and $x \in \mathbb{R}^n$ such that L = rK + x and hence

$$h(L, u) = rh(K, u) + x \cdot u$$

for all $u \in S^{n-1}$. Since equality must hold in Jensen's inequality (4.3) as well, when φ 256 is strictly convex we can conclude from the equality condition for Jensen's inequality 257 that 258

(4.6)
$$\frac{1}{nW_i(K)} \int_{S^{n-1}} \frac{h(L,u)}{h(K,u)} h(K,u) dS_i(K,u) = \frac{h(L,v)}{h(K,v)},$$

for $S_i(K, \cdot)$ -almost all $v \in S^{n-1}$. Hence

$$\frac{1}{nW_i(K)}\int_{S^{n-1}}\left(r+\frac{x\cdot u}{h(K,u)}\right)h(K,u)dS_i(K,u)=r+\frac{x\cdot v}{h(K,v)},$$

for $S_i(K, \cdot)$ -almost all $v \in S^{n-1}$. From this and the fact that the centroid of $S_i(K, \cdot)$ is at the origin, we get

$$0 = x \cdot \left(\frac{1}{nW_i(K)} \int_{S^{n-1}} u dS_i(K, u)\right) = \frac{1}{nW_i(K)} \int_{S^{n-1}} x \cdot u dS_i(K, u) = \frac{x \cdot v}{h(K, v)},$$

that is, $x \cdot v = 0$, for $S_i(K, \cdot)$ -almost all $v \in S^{n-1}$. Hence x = o, namely L = rK. \Box 259

Theorem 4.3. Let $\varphi \in \Phi$. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $0 \leq i < n$, then 260

(4.7)
$$W_{\varphi,i}(K,L) \ge W_i(K) \cdot \varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right).$$

- If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. 261
- *Proof.* This follows immediately from (3.7) and Lemma 4.2, with $a = \infty$. 262

Corollary 4.4. ([21]) If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_o^n$, and p > 1 and $0 \le i \le n$, then

$$W_{p,i}(K,L)^{n-i} \ge W_i(K)^{n-i-p}W_i(L)^p,$$

- with equality if and only if K and L are dilates or $L = \{o\}$. 263
- *Proof.* This follows immediately from (4.7) with $\varphi(t) = t^p$ and p > 1. 264

Remark 4.2. When $a = \infty$, putting $\varphi(t) = e^t - 1$ in (4.4), we obtain

(4.8)
$$\log \int_{S^{n-1}} \exp\left(\frac{h(L,u)}{h(K,u)}\right) d\bar{W}_{n,i}(K,u) \ge \left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}$$

²⁶⁶ Similarly, L_p -Minkowski inequality (1.8) can be written as

(4.9)
$$\left(\int_{S^{n-1}} \left(\frac{h(L,u)}{h(K,u)} \right)^p d\bar{W}_{n,i}(K,u) \right)^{1/p} \ge \left(\frac{W_i(L)}{W_i(K)} \right)^{1/(n-i)}$$

When p = 1, (4.9) becomes to a new form of the Minkowski inequality (2.4). The left side of (4.9) is just the *p*th mean of the function h(L, u)/h(K, u) with respect to $\bar{W}_{n,i}(K, \cdot)$. Notice that *p*th means increase with p > 1, so we find that the Minkowski inequality (2.4) implies L_p -Minkowski inequality (2.8).

²⁷¹ 5 Orlicz-Brunn-Minkowski type inequality

In this section, we establish the Orlicz Brunn-Minkowski inequality for Orlicz mixed
 quermassintegrals.

²⁷⁴ **Theorem 5.1.** Let $\varphi \in \Phi_2$. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $1 \leq i < n$, then

(5.1)
$$1 \ge \varphi \left(\frac{W_i(K)^{1/(n-i)}}{W_i(K+\varphi L)^{1/(n-i)}}, \frac{W_i(L)^{1/(n-i)}}{W_i(K+\varphi L)^{1/(n-i)}} \right).$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$.

Proof. From the hypotheses and Theorem 4.3, we obtain

$$(5.2) W_i(K+_{\varphi} L) = \frac{1}{n} \int_{S^{n-1}} \varphi \left(\frac{h(K,u)}{h(K+_{\varphi} L,u)}, \frac{h(L,u)}{h(K+_{\varphi} L,u)} \right) h(K+_{\varphi} L,u) dS_i(K+_{\varphi} L,u) = \frac{1}{n} \int_{S^{n-1}} \left(\varphi_1 \left(\frac{h(K,u)}{h(K+_{\varphi} L,u)} \right) + \varphi_2 \left(\frac{h(L,u)}{h(K+_{\varphi} L,u)} \right) \right) h(K+_{\varphi} L,u) dS_i(K+_{\varphi} L,u) = W_{\varphi_1,i}(K+_{\varphi} L,K) + W_{\varphi_2,i}(K+_{\varphi} L,L) \ge W_i(K+_{\varphi} L) \varphi \left(\frac{W_i(K)^{1/(n-i)}}{W_i(K+_{\varphi} L)^{1/(n-i)}}, \frac{W_i(L)^{1/(n-i)}}{W_i(K+_{\varphi} L)^{1/(n-i)}} \right).$$

This is just (5.1).

If equality holds in (5.2), then in (5.2), with K, L and φ replaced by $K +_{\varphi} L$, Kand φ_1 (and by $K +_{\varphi} L$, L and φ_2), respectively. So if φ is strictly convex, then φ_1 and φ_2 are also, so both K and L are multiples of $K +_{\varphi} L$, and hence are dilates of each other or $L = \{o\}$.

282 Corollary 5.2. ([21]) If p > 1, $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$, while $0 \le i < n$, then

(5.3)
$$W_i(K+_p L)^{p/(n-i)} \ge W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)},$$

with equality if and only if K and L are dilates or $L = \{o\}$.

- *Proof.* The result follows immediately from Theorem 5.1 with $\varphi(x_1, x_2) = x_1^p + x_2^p$ 284 and p > 1. 285
- Theorem 5.3. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassinte-286 grals implies Orlicz Minkowski inequality for Orlicz mixed quermassintegrals. 287

Proof. Since φ_1 is increasing, so φ_1^{-1} is also increasing and hence from (5.1), we obtain for $\varepsilon > 0$

$$W_i(K +_{\varphi,\varepsilon} L) \ge \frac{W_i(K)}{\left(\varphi_1^{-1} \left(1 - \varepsilon \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K +_{\varphi,\varepsilon} L)}\right)^{1/(n-i)}\right)\right)\right)^{n-i}}.$$

From Theorem 3.6, we obtain

$$W_{\varphi_{2},i}(K,L) \geq \frac{(\varphi_{1})_{l}^{\prime}(1)}{n-i}$$

$$\frac{W_{i}(K)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon\varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi,\varepsilon L)}\right)^{1/(n-i)}\right)\right)\right)^{n-i} - W_{i}(K)}{\varepsilon}$$

$$= (\varphi_{1})_{l}^{\prime}(1)\lim_{\varepsilon \to 0^{+}} \frac{W_{i}(K)}{\left(\varphi_{1}^{-1}\left(1-\varepsilon\varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi,\varepsilon L)}\right)^{1/(n-i)}\right)\right)\right)^{2(n-i)}}$$

$$\times \left(\varphi_{1}^{-1}\left(1-\varepsilon\varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi,\varepsilon L)}\right)^{1/(n-i)}\right)\right)\right)\right)^{n-i-1}$$

$$\times \varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K+\varphi,\varepsilon L)}\right)^{1/(n-i)}\right)\lim_{z \to 1^{-}} \frac{\varphi_{1}^{-1}(z)-\varphi_{1}^{-1}(1)}{z-1},$$
here

wh

$$z = 1 - \varepsilon \varphi_2 \left(\left(\frac{W_i(L)}{W_i(K +_{\varphi, \varepsilon} L)} \right)^{1/(n-i)} \right),$$

and note that $z \to 1^-$ as $\varepsilon \to o^+$. On the other hand, in view of

$$\lim_{z \to 0^+} \frac{\varphi_1^{-1}(z) - \varphi_1^{-1}(1)}{z - 1} = \frac{1}{(\varphi_1)'_l(1)},$$

and from Lemma 3.2. Hence 288

(5.4)
$$W_{\varphi_2,i}(K,L) \ge W_i(K)\varphi_2\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right).$$

Replace φ_2 by φ , this yields the Orlicz Minkowski inequality in (4.7). The equality 289 condition follows immediately from the equality of Orlicz Brunn-Minkowski inequality 290 for Orlicz mixed quermassintegrals. 291

From the proof of Theorem 5.1, we may see that Orlicz Minkowski inequality for Orlicz mixed quermassintegrals implies also Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals, and this combines Theorem 5.3, we found that

Theorem 5.4. Orlicz Brunn-Minkowski inequality for Orlicz mixed quermassintegrals is equivalent to Orlicz Minkowski inequality for Orlicz mixed quermassintegrals. Namely: Let $\varphi_2 \in \Phi$ and $\varphi \in \Phi_2$. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $1 \leq i < n$, then

(5.5)
$$W_{\varphi_{2},i}(K,L) \ge W_{i}(K)\varphi_{2}\left(\left(\frac{W_{i}(L)}{W_{i}(K)}\right)^{1/(n-i)}\right)$$
$$\Leftrightarrow 1 \ge \varphi\left(\frac{W_{i}(K)^{1/(n-i)}}{W_{i}(K+\varphi L)^{1/(n-i)}}, \frac{W_{i}(L)^{1/(n-i)}}{W_{i}(K+\varphi L)^{1/(n-i)}}\right)$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$.

- ²⁹⁹ Corollary 5.5. Orlicz dual Brunn-Minkowski inequality is equivalent to Orlicz dual
- Minkowski inequality. Namely: Let $\varphi_2 \in \Phi$ and $\varphi \in \Phi_2$. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_o^n$, then
 - (5.6)

$$V_{\varphi_2}(K,L) \ge V(K)\varphi_2\left(\left(\frac{V(L)}{V(K)}\right)^{1/n}\right) \Leftrightarrow 1 \ge \varphi\left(\frac{V(K)^{1/n}}{V(K+_{\varphi}L)^{1/n}}, \frac{V(L)^{1/n}}{V(K+_{\varphi}L)^{1/n}}\right).$$

³⁰² If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$.

Proof. The result follows immediately from Theorem 5.4 with i = 0.

³⁰⁴ 6 The log-Minkowski type inequality

Assume that $K, L \in \mathcal{K}_{oo}^n$, then the log Minkowski combination, $(1 - \lambda) \cdot K +_o \lambda \cdot L$, is defined by

$$(1-\lambda)\cdot K +_o \lambda \cdot L = \bigcap_{u \in S^{n-1}} \{ x \in \mathbb{R}^n \mid x \cdot u \le h(K, u)^{1-\lambda} h(L, u)^{\lambda} \},\$$

for all real $\lambda \in [0,1]$. Böröczky, Lutwak, Yang, and Zhang [2] conjecture that for origin-symmetric convex bodies K and L in \mathbb{R}^n and $0 \leq \lambda \leq 1$,

(6.1)
$$V((1-\lambda) \cdot K +_o \lambda \cdot L) \ge V(K)^{1-\lambda} V(L)^{\lambda}.$$

In [2], they proved (6.1) only when n = 2 and K, L are origin-symmetric convex bodies, and note that while it is not true for general convex bodies. Moreover, they also shown that (6.1), for all n, is equivalent to the following log-Minkowski inequality

(6.2)
$$\int_{S^{n-1}} \log\left(\frac{h(L,u)}{h(K,u)}\right) d\bar{V}_n(K,v) \ge \frac{1}{n} \log\left(\frac{V(L)}{V(K)}\right),$$

where $\bar{V}_n(K, \cdot)$ is the normalized cone measure for K. In fact, replacing K and L by K + L and K, respectively, (6.2) becomes to the following

(6.3)
$$\int_{S^{n-1}} \log\left(\frac{h(K,u)}{h(K+L,u)}\right) d\bar{V}_n(K+L,u) \ge \log\left(\left(\frac{V(K)}{V(K+L)}\right)\right)^{1/n}.$$

In [9], Gardner, Hug and Weil gave a new version of (6.3) for the nonempty compact convex subsets K and L, not origin-symmetric convex bodies, as follows. If $K \in \mathcal{K}_{oo}^{n}$ and $L \in \mathcal{K}_{o}^{n}$, then

(6.4)
$$\int_{S^{n-1}} \log\left(\frac{h(K,u)}{h(K+L,u)}\right) d\bar{V}_n(K+L,u) \le \log\left(\frac{V(K+L)^{1/n} - V(L)^{1/n}}{V(K+L)^{1/n}}\right),$$

with equality if and only if K and L are dilates or $L = \{o\}$. They also shown that combining (6.3) and (6.4), may get the classical Brunn-Minkowski inequality.

$$V(K+L)^{1/n} - V(L)^{1/n} \ge V(K)^{1/n},$$

whenever $K \in \mathcal{K}_{oo}^{n}$ and $L \in \mathcal{K}_{o}^{n}$ and (6.2) holds with K and L replaced by K + L and K, respectively. In particular, if (6.2) holds (as it does, for origin-symmetric convex bodies when n = 2), then (6.2) and (6.4) together split the classical Brunn-Minkowski inequality. In the following, we give a new version of (6.4).

Lemma 6.1. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_o^n$ are such that $L \subset \operatorname{int} K$ and $1 \leq i < n$, then (6.5)

$$\log\left(\frac{W_i(K)^{1/(n-i)} - W_i(L)^{1/(n-i)}}{W_i(K)^{1/(n-i)}}\right) \ge \int_{S^{n-1}} \log\left(\frac{h(K,u) - h(L,u)}{h(K,u)}\right) d\bar{W}_{n,i}(K,u),$$

with equality if and only if K and L are dilates or $L = \{o\}$.

Proof. Since $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_o^n$ are such that $L \subset \operatorname{int} K$. Let $\varphi(t) = -\log(1-t)$, and notice that $\varphi(0) = 0$ and φ is strictly increasing and strictly convex on [0, 1) with $\varphi(t) \to \infty$ as $t \to 1^-$. Hence the inequality (6.5) is a direct consequence of Lemma 4.3 with this choice of φ and a = 1.

Theorem 6.2. If $K \in \mathcal{K}_{oo}^{n}$, $L \in \mathcal{K}_{o}^{n}$ and $1 \le i < n$, then (6.6) $(W(K + L)^{1/(n-i)}) = W(L)^{1/(n-i)}) = f$

$$\log\left(\frac{W_i(K+L)^{1/(n-i)} - W_i(L)^{1/(n-i)}}{W_i(K+L)^{1/(n-i)}}\right) \ge \int_{S^{n-1}} \log\left(\frac{h(K,u)}{h(K+L,u)}\right) d\bar{W}_{n,i}(K+L,u)$$

with equality if and only if K and L are dilates or $L = \{o\}$.

Proof. If $K \in \mathcal{K}_{oo}^n$ and $L \in \mathcal{K}_o^n$, then $K + L \in \mathcal{K}_{oo}^n$. In view of $L \subset int(K + L)$ and from Lemma 6.1 with K replaced by K + L, (6.6) easy follows.

Putting i = 0 in (6.6), (6.6) reduces to (6.4). Here, we point out a new conjecture which is an extension of the log Minkowski inequality (6.2): Conjecture If $K \in \mathcal{K}_{oo}^{n}$, $L \in \mathcal{K}_{o}^{n}$ and $1 \leq i < n$, then

(6.7)
$$\int_{S^{n-1}} \log\left(\frac{h(L,u)}{h(K,u)}\right) d\bar{W}_{n,i}(K,u) \ge \frac{1}{n-i} \log\left(\frac{W_i(L)}{W_i(K)}\right).$$

³³² Corollary 6.3. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $1 \leq i < n$, then

(6.8)
$$\int_{S^{n-1}} \log\left(\frac{h(K,u)}{h(K+L,u)}\right) d\bar{W}_{n,i}(K+L,u) \ge \frac{1}{n-i} \log\left(\frac{W_i(K)}{W_i(K+L)}\right).$$

Proof. The result follows immediately from (6.7) with replacing K and L by K + Land K, respectively.

It is easy that combine (6.6) and (6.8) together split the following classical Brunn-Minkowski inequality for quermassintegrals. If $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $0 \leq i \leq n$, then

$$W_i(K+L)^{1/(n-i)} \ge W_i(K)^{1/(n-i)} + W_i(L)^{1/(n-i)},$$

with equality if and only if K and L are dilates or $L = \{o\}$.

³³⁶ 7 A new version of Orlicz Minkowski's inequality

 $_{^{337}}$ In 2010, the Orlicz projection body Π_{φ} of K defined by Lutwak, Yang and Zhang $_{^{338}}$ [28]

(7.1)
$$h(\mathbf{\Pi}_{\varphi}, u) = \inf \left\{ \lambda > 0 \mid \int_{S^{n-1}} \varphi\left(\frac{|u \cdot v|}{\lambda h(K, v)}\right) d\bar{V}_n(K, v) \le 1 \right\},$$

for $K \in \mathcal{K}_{oo}^{n}, u \in S^{n-1}$, where $\overline{V_{n}}(K, \cdot)$ is the normalized cone measure for K. Here, we define the *i*-th Orlicz mixed projection body.

Definition 7.1. Let $K \in \mathcal{K}_{oo}^n, L \in \mathcal{K}_o^n, \varphi \in \Phi$ and $0 \leq i < n$, the *i*-th Orlicz mixed projection body, $\Pi_{\varphi,i}$, define by

(7.2)
$$h(\mathbf{\Pi}_{\varphi,i}, u) = \inf\left\{\lambda > 0 \mid \int_{S^{n-1}} \varphi\left(\frac{|u \cdot v|}{\lambda h(K, v)}\right) d\bar{W}_{n,i}(K, v) \le 1\right\},$$

for $u \in S^{n-1}$, where $\overline{W}_{n,i}(K, \cdot)$ is the *i*-th normalized cone measure for K defined in (4.1).

Obviously, when i = 0, (7.2) becomes (7.1). In the Section, definition 7.1 of the *i*-th Orlicz projection body suggests defining, by analogy,

(7.3)
$$\widehat{W}_{\varphi,i}(K,L) = \inf\left\{\lambda > 0 \mid \int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{\lambda h(K,u)}\right) d\bar{W}_{n,i}(K,u) \le 1\right\},$$

and call as $\widehat{W}_{\varphi,i}(K,L)$ Orlicz type quermassintegrals.

Theorem 7.1. If $\varphi \in \Phi$ and $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$ and $1 \leq i < n$, then

(7.4)
$$\widehat{W}_{\varphi,i}(K,L) \ge \left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}$$

³⁴⁹ If φ is strictly convex and $W_i(L) > 0$, equality holds if and only if K and L are dilates.

Proof. Replacing K by λK , $\lambda > 0$ in (4.4) with $a = \infty$, we have

(7.5)
$$\int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{\lambda h(K,u)}\right) d\bar{W}_{n,i}(K,u) \ge \varphi\left(\frac{1}{\lambda} \left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right).$$

Let

$$\int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{\lambda h(K,u)}\right) d\bar{W}_{n,i}(K,u) \le 1$$

Hence

$$\varphi\left(\frac{1}{\lambda}\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right) \le 1.$$

³⁵¹ In view of φ is strictly increasing, we obtain

(7.6)
$$\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)} \le \lambda.$$

 $_{352}$ From (7.3) and (7.6), (7.4) easy follows.

In the following, we discuss the equality condition of (7.4). Suppose that equality holds, φ is strictly convex and $W_i(L) > 0$. From (7.3), the exist $\mu = \widehat{W}_{\varphi,i}(K,L) > 0$ satisfies

$$\int_{S^{n-1}} \varphi\left(\frac{h(L,u)}{\mu h(K,u)}\right) d\bar{W}_{n,i}(K,v) = 1$$

Hence

$$\mu = \left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)};$$

namely:

$$\varphi\left(\frac{1}{\mu}\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right) = 1.$$

Therefore the equality in (7.5) holds for $\lambda = \mu$. From the equality condition of (4.4), it follows μK and L are dilates.

When $\varphi(t) = t^p$ and $p \ge 1$ in (7.3), it easy follows that

$$\widehat{W}_{\varphi,i}(K,L) = \left(\frac{W_{p,i}(K,L)}{W_i(K)}\right)^{1/p}.$$

Putting $\varphi(t) = t^p$ and $p \ge 1$ in (7.4), (7.4) reduces to the classical L_p -Minkowski inequality (1.8) for mixed *p*-quermassintegrals.

There is no direct relationship between the Orlicz-Minkowski inequalities (4.7) and (7.4). Indeed, when $\varphi > 0$ on $(0, \infty)$, these can be written in the forms

$$\frac{W_{\varphi,i}(K,L)}{W_i(K)} \ge \varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right),\tag{7.7}$$

357 and

(7.7)
$$\varphi\left(\widehat{W}_{\varphi,i}(K,L)\right) \ge \varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right)$$

respectively, and each of the two quantities on the left-hand sides can be larger than the other. This is very interesting.

³⁶⁰ 8 Simon's characterization of relative spheres

Theorem 8.1. Suppose $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$, and $\mathcal{S} \subset \mathcal{K}_o^n$ is a class of bodies such that $K, L \in \mathcal{S}$. If $0 \le i < n-1$ and $\varphi \in \Phi$, and

(8.1)
$$W_{\varphi,i}(Q,K) = W_{\varphi,i}(Q,L), \text{ for all } Q \in \mathcal{S},$$

363 then K = L.

Proof. To see this take Q = K, and from (3.10) and Theorem 4.4, we have

$$W_i(K) = W_{\varphi,i}(K,K) = W_{\varphi,i}(K,L) \ge W_i(K)\varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right)$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Hence

$$\varphi\left(\left(\frac{W_i(L)}{W_i(K)}\right)^{1/(n-i)}\right) \le 1.$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Note that φ is increasing, we obtain

$$W_i(L) \le W_i(K).$$

Take Q = L, we have

$$W_i(L) = W_{\varphi,i}(L,L) = W_{\varphi,i}(L,K) \ge W_i(L)\varphi\left(\left(\frac{W_i(K)}{W_i(L)}\right)^{1/(n-i)}\right).$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Hence

$$\varphi\left(\left(\frac{W_i(K)}{W_i(L)}\right)^{1/(n-i)}\right) \le 1$$

If φ is strictly convex, equality holds if and only if K and L are dilates or $L = \{o\}$. Hence

$$W_i(K) \le W_i(L)$$

- ³⁶⁴ This yields $W_i(K) = W_i(L)$. Hence K = L.
- Corollary 8.2. Suppose $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$, and $\mathcal{S} \subset \mathcal{K}_o^n$ is a class of bodies such that $K, L \in \mathcal{S}$. If $\varphi \in \Phi$, and

(8.2)
$$V_{\varphi}(Q,K) = V_{\varphi}(Q,L), \text{ for all } Q \in \mathcal{S},$$

367 then K = L.

- Proof. The result follows immediately from Theorem 8.1 with i = 0.
- Putting $\varphi(t) = t^p$ and p > 1 in Theorem 8.1, we obtain the following result which was proved by Lutwak [21].

Corollary 8.3. Suppose $K \in \mathcal{K}_{oo}^n$, $L \in \mathcal{K}_o^n$, and $\mathcal{S} \subset \mathcal{K}_o^n$ is a class of bodies such 371 that $K, L \in S$. If $p > 1, 0 \le i < n - 1$, and 372

(8.3)
$$W_{p,i}(Q,K) = W_{p,i}(Q,L), \text{ for all } Q \in \mathcal{S},$$

then K = L. 373

Theorem 8.4. Suppose $0 \le i < n$ and $\varphi \in \Phi$. For $K \in \mathcal{K}_{oo}^n$, the following statements 374 are equivalent: 375

- (i) The body K is centered, 376
- (ii) The measure $\overline{W}_{n,i}(K,\cdot)$ is even. 377
- (*iii*) $W_{\varphi,i}(K,Q) = W_{\varphi,i}(K,-Q)$, for all $Q \in \mathcal{K}_{oo}^{n}$. (*iv*) $W_{\varphi,i}(K,Q) = W_{\varphi,i}(K,-Q)$, for Q = K. 378
- 379

Proof. To see that (i) implies (ii), recall that if K is centered, then $h(K, \cdot)$ is an even 380 function, and $S_i(K)$ is an even measure. The implication is now a consequence of the 381 fact that $d\overline{W}_{n,i}(K,\cdot) = \frac{1}{nW_i(K)}h(K,\cdot)dS_i(K,\cdot).$ 382

That (ii) yields (iii) is a consequence of the following integra representation

$$W_{\varphi,i}(K,Q) = W_i(K) \int_{S^{n-1}} \varphi\left(\frac{h(Q,u)}{h(K,u)}\right) d\bar{W}_{n,i}(K,u)$$

and the fact that, in general, h(-Q, u) = h(Q, -u), for all $u \in S^{n-1}$. Obviously, (iv) 383 follows directly from (iii). 384

To see that (iv) implies (i), notice that (iv), for Q = K, gives

$$W_i(K) = W_{\varphi,i}(K, -K).$$

The desired result follows from the fact that $W_i(-K) = W_i(K)$ and the equality 385 conditions of the Orlicz-Minkoski inequality (4.7). 386

Corollary 8.5. Suppose $\varphi \in \Phi$. For $K \in \mathcal{K}_{oo}^n$, the following statements are equiva-387 lent: 388

- (i) The body K is centered, 389
- (ii) The measure $\overline{V}_n(K, \cdot)$ is even. 390
- (*iii*) $V_{\varphi}(K,Q) = V_{\varphi}(K,-Q)$, for all $Q \in \mathcal{K}_{oo}^{n}$. (*iv*) $V_{\varphi}(K,Q) = V_{\varphi,i}(K,-Q)$, for Q = K. 391
- 392

Proof. The results follow immediately from Theorem 8.5 with i = 0. 393

Corollary 8.6. Suppose $0 \le i < n$ and p > 1. For $K \in \mathcal{K}_{oo}^n$, the following statements 394 are equivalent: 395

- (i) The body K is centered, 396
- (ii) The measure $S_{p,i}(K, \cdot)$ is even. 397
- (iii) $W_{p,i}(K,Q) = W_{p,i}(K,-Q)$, for all $Q \in \mathcal{K}_{oo}^n$. (iv) $W_{p,i}(K,Q) = W_{p,i}(K,-Q)$, for Q = K. 398
- 399

Proof. The results follow immediately from Theorem 8.5 with $\varphi(t) = t^p$ and $p > 1.\square$ 400

This was proved by Lutwak [21]. That (iii) implies that K is centrally symmetric, 401

for the case p = 1 and i = 0, was shown (using other methods) by Goodey [10]. 402

Acknowledgements. This research was supported by the National Natural Sciences 403

405 **References**

- [1] A. D. Aleksandrov, On the theory of mixed volumes I. Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N.S.) 2 (1937), 947-972.
- [2] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, *The log-Brunn-Minkowski in*equality, Adv. Math. 231 (2012), 1974-1997.
- [3] Y. D. Burago, V. A. Zalgaller, *Geometric Inequalities*, Springer-Verlag, Berlin,
 1988.
- [4] H. Busemann, *Convex surfaces*, Interscience, New York, 1958.
- [5] W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Sel skab. Mat.-Fys. Medd., 16 (1938), 1-31.
- [6] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math. 13 (1961), 444-453.
- ⁴¹⁷ [7] W. J. Firey, *p*-means of convex bodies, Math. Scand. 10 (1962), 17-24.
- [8] R. J. Gardner, *Geometric Tomography*, Cambridge University Press, second edi tion, New York, 2006.
- [9] R. J. Gardner, D. Hug, W. Weil, *The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities*, J. Diff. Geom., 97(3) (2014), 427-476.
- [10] P. R. Goodey, Centrally symmetric convex sets and mixed volumes, Mathematika,
 24 (1977), 193-198.
- [11] C. Haberl, E. Lutwak, D. Yang, G. Zhang, *The even Orlicz Minkowski problem*,
 Adv. Math. 224 (2010), 2485-2510.
- [12] C. Haberl, L. Parapatits, *The Centro-Affine Hadwiger Theorem*, J. Amer. Math.
 Soc., in press.
- ⁴²⁸ [13] C. Haberl, F. E. Schuster, Asymmetric affine L_p Sobolev inequalities, J. Funct. ⁴²⁹ Anal. 257 (2009), 641-658.
- ⁴³⁰ [14] C. Haberl, F. E. Schuster, General L_p affine isoperimetric inequalities, J. Diff. ⁴³¹ Geom. 83 (2009), 1-26.
- [15] C. Haberl, F. E. Schuster, J. Xiao, An asymmetric affine Pólya-Szegö principle,
 Math. Ann. 352 (2012), 517-542.
- [16] J. Hoffmann-Jørgensen, Probability With a View Toward Statistics, Vol. I, Chap man and Hall, New York, 1994, 165-243.
- [17] Q. Huang, B. He, On the Orlicz Minkowski problem for polytopes, Discrete Com put. Geom. 48 (2012), 281-297.
- [18] M. A. Krasnosel'skii, Y. B. Rutickii, Convex Functions and Orlicz Spaces, P.
 Noordhoff Ltd., Groningen, 1961.
- ⁴⁴⁰ [19] K. Leichtweiβ, Konvexe Mengen, Springer, Berlin, 1980.
- [20] M. Ludwig, M. Reitzner, A classification of SL(n) invariant valuations, Ann.
 Math. 172 (2010), 1223-1271.
- [21] E. Lutwak, The Brunn-Minkowski-Firey theory I. mixed volumes and the
 Minkowski problem. J. Diff. Goem. 38 (1993), 131-150.
- [22] E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294.
- ⁴⁴⁷ [23] E. Lutwak, D. Yang, G. Zhang, On the L_p -Minkowski problem, Trans. Amer. ⁴⁴⁸ Math. Soc. 356 (2004), 4359-4370.

- [24] E. Lutwak, D. Yang, G. Zhang, L_p John ellipsoids, Proc. London Math. Soc. 90 (2005), 497-520.
- [25] E. Lutwak, D. Yang, G. Zhang, L_p affine isoperimetric inequalities, J. Diff. Geom.
 56 (2000), 111-132.
- [26] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_p Sobolev inequalities, J. Diff.
 Geom. 62 (2002), 17-38.
- [27] E. Lutwak, D. Yang, G. Zhang, *The Brunn-Minkowski-Firey inequality for non- convex sets*, Adv. Appl. Math. 48 (2012), 407-413.
- [28] E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010),
 220-242.
- [29] E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies, J. Diff. Geom. 84 (2010),
 365-387.
- [30] L. Parapatits, SL(n)-covariant L_p -Minkowski valuations, J. Lond. Math. Soc., in press.
- [31] L. Parapatits, SL(n)-contravariant L_p -Minkowski valuations, Trans. Amer. Math. Soc., in press.
- [32] M. M. Rao and Z. D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker, New York,
 1991.
- [33] R. Schneider, Boundary structure and curvature of convex bodies, Contributions
 to Geometry, Birkhäuser, Basel, 1979, 13-59.
- [34] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Uni versity Press, 1993.
- [35] C. Schütt, E. Werner, Surface bodies and p-affine surface area, Adv. Math. 187
 (2004), 98-145.
- [36] E. M. Werner, *Rényi divergence and* L_p -affine surface area for convex bodies, Adv. Math. 230 (2012), 1040-1059.
- ⁴⁷⁵ [37] E. Werner, D. P. Ye, New L_p affine isoperimetric inequalities, Adv. Math. 218 ⁴⁷⁶ (2008), 762-780.
- 477 [38] G. Xiong, D. Zou Orlicz mixed quermassintegrals, Sci. China. 57 (2014), 2549 478 2562.
- [39] G. Zhu, The Orlicz centroid inequality for star bodies, Adv. Appl. Math. 48
 (2012), 432-445.
- 481 Author's address:
- 482 Chang-Jian Zhao
- 483 Department of Mathematics,
- 484 China Jiliang University,
- 485 Hangzhou, 310018, P. R. China.
- 486 E-mail: chjzhao@163.com, chjzhao@aliyun.com