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Abstract. The aim of the present paper is to study real hypersurfaces in
non-flat complex planes, for which the curvature satisfies
R(X,Y )Z = κ(η(Y )X − η(X)Y )+µ(η(Y )hX − η(X)hY )+ ν(η(Y )hϕX − η(X)hϕY ).

Such manifolds are called (κ, µ, ν)-manifolds, and the relation is called
(κ, µ, ν) condition. This condition has been studied for contact metric
manifolds. In this work, we study it for real hypersurfaces M of the com-
plex plane M2(c), since M always admits an almost contact metric struc-
ture - weaker than the contact metric one. One of the obtained results
is that real hypersurfaces satisfying the (κ, µ, ν) condition do not admit
a contact structure, even though they admit an almost contact structure.
Classification results are given too, depending on the number of principal
curvatures.
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1 Introduction

Contact metric manifolds have been studied by many points of view. D.E. Blair
studied contact metric manifolds satisfying R(X,Y )ξ = 0 ([2]), where R denotes
the Riemannian curvature tensor. Another type of (almost) contact manifolds, is
the Sasakian one, which satisfies the condition R(X,Y )ξ = η(Y )X − η(X)Y . A
generalization of both the R(X,Y )ξ = 0 and the Sasakian case, was introduced by
Blair, Koufogiorgos and Papantoniou ([4]), with the condition R(X,Y )ξ = κ(η(Y )X−
η(X)Y ) + µ(η(Y )hX − η(X)hY ), where κ and µ are constants and h = 1

2Lξϕ. These
manifolds were called (κ, µ)-manifolds.

In 2000, Koufogiorgos and Tsichlias ([7]), considered the spaces called generalized
(κ, µ)-manifolds; the same condition as in (κ, µ)-manifolds holds, but κ, µ are now
functions. They showed that in dimension ≥ 5, κ and µ must be constants, while in
dimension 3, they gave an example for which κ and µ are not constant. It should
be mentioned that this idea is closely related to the idea of the characteristic vector
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field as a map into the tangent sphere bundle being a harmonic map. For further
information on these manifolds and its applications, we refer to [3].

Following up on the above ideas, Koufogiorgos, Markellos and Papantoniou intro-
duced the notion of a (κ, µ, ν)-manifold in [6], as a contact metric manifold whose
curvature tensor satisfies

(1.1) R(X,Y )Z = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )

+ν(η(Y )hϕX − η(X)hϕY )

for some functions κ, µ and ν, and showed that for dimension > 3, such a manifold
is a (κ, µ)-manifold. However, in dimension 3 they proved that a (κ, µ, ν)-manifold is
an H-contact manifold ([3]) and conversely, a 3-dimensional H-contact manifold is a
(κ, µ, ν)-manifold on an everywhere open dense set.

An n-dimensional Kaehlerian manifold of constant holomorphic sectional curva-
ture c is called complex space form and is denoted by Mn(c). A complete and simply
connected complex space form is complex analytically isometric to a projective space
CPn if c > 0, a hyperbolic space CHn if c < 0, or a Euclidean space Cn if c = 0. The
induced almost contact metric structure of a real hypersurface M of Mn(c) is denoted
by (ϕ, ξ, η, g). The vector field ξ is defined by ξ = −JN where J is the complex
structure of Mn(c) and N is a unit normal vector field.

Real hypersurface have been studied by many authors and from many points of
view. An important class of hypersurfaces is Hopf hypersurfaces. Hopf hypersurfaces
with constant principal curvatures have been classified in CPn. Any such hypersur-
face is an open subset of one of the following ([12]):

(A1) Geodesic spheres.
(A2) Tubes over totally geodesic complex projective spaces CP k, where 1 ≤ k ≤ n−2.
(B) Tubes over complex quadrics and RPn.
(C) Tubes over the Segre embedding of CP 1 × CPm where 2m+ 1 = n and n ≥ 5.
(D) Tubes over the Plucker embedding of the complex Grassmann manifold G2,5.
(occur only for n = 9).
(E) Tubes over the canonical embedding of the Hermitian symmetric space SO(10)=U(5)(Occur
only for n = 15).

The above list is often referred as ”Takagi’s list”. In CHn, a Hopf hypersurface,
all of whose principal curvatures are constant, is locally congruent to one of the fol-
lowing ([8]):
(A0) The horosphere in CHn.
(A1,0) A geodesic sphere of radius r (0 < r < ∞).
(A1,1) A tube of radius r around totally geodesic CHn−1(c), where 0 < r < ∞.
(A2) A tube of radius r around totally geodesic CHn(l) , where 0 ≤ l ≤ n− 2.
(B) A tube of radius r around totally real totally geodesicRHn( c4 ), where 0 < r < ∞.

The above list can be found in [9]. The classification of these hypersurfaces was
begun by S. Montiel in [10] (who also described the examples in detail) and completed
by J. Berndt in [1].

In this paper, real hypersurfaces satisfying condition (1.1) are studied. In section 1
we introduce the notions and relations which will be our tools throughout the paper.
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In section 2 auxiliary relations and lemmas are given. In Section 3, classification
results and properties of these hypersurfaces are established. In addition, it is proved
that such hypersurfaces, do not admit a contact structure, even though they admit
an almost contact structure.

2 Preliminaries

Let Mn be a Kaehlerian manifold of real dimension 2n, equipped with an almost
complex structure J and a Hermitian metric tensor G. Then for any vector fields X
and Y on Mn(c), the following relations hold: J2X = −X, G(JX, JY ) = G(X,Y ),

∇̃J = 0, where ∇̃ denotes the Riemannian connection of G of Mn.
Let M2n−1 be a real (2n-1)-dimensional hypersurface of Mn(c), and denote by

N a unit normal vector field on a neighborhood of a point in M2n−1 (from now on
we shall write M instead of M2n−1). For any vector field X tangent to M we have
JX = ϕX+η(X)N , where ϕX is the tangent component of JX, η(X)N is the normal
component, and ξ = −JN , η(X) = g(X, ξ), g = G|M .

From the properties of the almost complex structure J and from the definitions
of η and g, the following relations hold ([2]):

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,(2.1)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ).(2.2)

The above relations define an almost contact metric structure on M which is denoted
by (ϕ, ξ, g, η). When an almost contact metric structure is defined on M , we can lo-
cally define a specific orthonormal basis {e1, e2, . . . en−1, ϕe1, ϕe2, . . . ϕen−1, ξ}, called
a ϕ − basis. We mention that the contact metric structure is similar to an almost
contact one, with the additional condition η ∧ (dη)n ̸= 0. However we will not use
this condition in our calculations, rather than make use of metric relations that only
hold in a contact metric structure.

Furthermore, let A be the shape operator in the direction of N , and denote by
∇ the Riemannian connection of g on M . Then A is symmetric, and the following
relations are satisfied:

(2.3) i) ∇Xξ = ϕAX, ii) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.

Since the ambient space Mn(c) is of constant holomorphic sectional curvature c, the
equations of Gauss and Codazzi are respectively given by:

(2.4) R(X,Y )Z =
c

4
[g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(2.5) (∇XA)Y − (∇Y A)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ].

The tangent space TpM , for every point p ∈ M , is decomposed as following: TpM =
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D⊥ ⊕ D, where D = ker(η) = {X ∈ TpM : η(X) = 0}.

Based on the above decomposition, by virtue of (2.3), we decompose the vector field
Aξ in the following way:

(2.6) Aξ = αξ + βU,

where β = |ϕ∇ξξ|, α is a smooth function on M and U = − 1
βϕ∇ξξ ∈ ker(η), provided

that β ̸= 0. If the vector field Aξ is expressed as Aξ = αξ, then ξ is called principal
vector field.

The almost contact metric structure of a real hypersurface M is a contact one, if
and only if

(2.7) Aϕ+ ϕA = 2ϕ

holds ([5]). In a 3-dimensional contact metric manifold we have

(2.8) (∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX).

Finally, for every vector field X, the tensor h is defined as

(2.9) hX =
1

2
(Lξϕ) =

1

2

(
[ξ, ϕX]− ϕ[ξ,X]

)
.

The differentiation of X along a function f will be denoted by (Xf). All manifolds,
vector fields, e.t.c., of this paper are assumed to be connected and of class C∞.

3 Auxiliary Relations

Let N = {p ∈ M : β ̸= 0 in a neighborhood around p}. We define the open subsets
N1 and N2 of N such that:
N1 = {p ∈ N : α ̸= 0 in a neighborhood around p},
N2 = {p ∈ N : α = 0 in a neighborhood around p}.
Then N1 ∪N2 is open and dense in the closure of N .

Lemma 3.1. Let M be a real hypersurface of a complex plane M2(c). Then the fol-
lowing relations hold on N1.

(3.1) AU =
(γ

α
− c

4α
+

β2

α

)
U +

δ

α
ϕU + βξ, AϕU =

δ

α
U + (

ϵ

α
− c

4α
)ϕU

(3.2) ∇ξξ = βϕU, ∇Uξ = − δ

α
U +

(γ

α
− c

4α
+

β2

α

)
ϕU,

∇ϕUξ = −(
ϵ

α
− c

4α
)U +

δ

α
ϕU
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(3.3) ∇ξU = κ1ϕU, ∇UU = κ2ϕU +
δ

α
ξ, ∇ϕUU = κ3ϕU + (

ϵ

α
− c

4α
)ξ

(3.4) ∇ξϕU = −κ1U − βξ, ∇UϕU = −κ2U −
( γ

α
− c

4α
+

β2

α

)
ξ,

∇ϕUϕU = −κ3U − δ

α
ξ

where κ1, κ2, κ3 are smooth functions on N1.

Proof.
From(1.4) we obtain

(3.5) lU =
c

4
U + αAU − βAξ, lϕU =

c

4
ϕU + αAϕU.

The inner products of lU with U and ϕU yield respectively

(3.6) g(AU,U) =
γ

α
− c

4α
+

β2

α
, g(AU, ϕU) =

δ

α

where γ = g(lU, U) and δ = g(lU, ϕU).

So, (3.6) and g(AU, ξ) = g(Aξ,U) = β, yield the first of (3.1). Since l is symmetric
with respect to metric g, the scalar products of the second of (3.5) with U and ϕU
yield respectively

(3.7) g(AϕU,U) =
δ

α
, g(AϕU, ϕU) =

ϵ

α
− c

4α
,

where ϵ = g(lϕU, ϕU). So, (3.7) and g(AϕU, ξ) = g(Aξ, ϕU) = 0, yield the second of
(3.1). Combining (3.1) and (3.5), we obtain

(3.8) lU = γU + δϕU, lϕU = δU + ϵϕU.

By virtue of (2.6) and (3.1), (2.3.i) for X = ξ, X = U and X = ϕU yields (3.2).

It is well known that:

(3.9) Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ).

The relation (3.9) for X = ξ, Y = Z = U and X = Z = ξ, Y = U , because of (3.2),
implies respectively g(∇ξU,U) = 0 = g(∇ξU, ξ). So if we put g(∇ξU, ϕU) = κ1, we
have the first of (3.3). Similarly (3.9) for X = Y = Z = U and X = Y = U , Z = ξ
, because of (3.2), yields respectively g(∇UU,U) = 0, g(∇UU, ξ) = δ

a . Therefore,
putting g(∇UU, ϕU) = κ2, we have the second of (3.3). By the use of (3.2) and
(3.9), we have that g(∇ϕUU,U) = 0 and g(∇ϕUU, ξ) = ϵ

α − c
4α . Then, if we set

g(∇ϕUU, ϕU) = κ3, we get the third of (3.3). In a similar way using (3.9) we obtain
(3.4). � By virtue of Lemma 3.1 and (2.9) we obtain

(3.10) hξ = 0, hU =
1

2
(
ϵ

α
− γ

α
− β2

α
)U − β

2
ξ hϕU = (

γ

α
− ϵ

α
+

β2

α
)ϕU.
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Using (3.10) and the condition (1.1) we calculate lU = R(U, ξ)ξ = [κ + µ
2 (

ϵ
α − γ

α −
β2

α )]U + ν
2 (

ϵ
α − γ

α − β2

α )ϕU − µβ
2 ξ. By comparing the last relation with the first of

(3.5) and by virtue of (3.1), we gain

(3.11) κ = γ, ν(
ϵ

α
− γ

α
− β2

α
) = δ.

Similarly, from (1.1) and (3.10) we obtain lϕU = R(ϕU, ξ)ξ = [κ+ ν
2 (

ϵ
α − γ

α − β2

α )]ϕU ,
which - with the aid of (3.1), (3.11) - is compared to (3.5), giving

(3.12) κ = ϵ, δ = 0.

Finally, the calculation of R(U, ϕU)ξ from (1.1) yields R(U, ϕU)ξ = 0. However,
from Lemma 3.1 and equations (2.4), (3.11), (3.12), it results that R(U, ϕU)ξ =
β( γα − c

4α )ϕU . The two expressions of R(U, ϕU)ξ with (2.11) and (2.12) lead to the
following lemma:

Lemma 3.2. Let M be a real hypersurface of a complex plane M2(c). Then the fol-
lowing relations hold on N1:

κ = γ = ϵ =
c

4
, ν = δ = 0.

We will now prove the following Lemma.

Lemma 3.3. Let M be a real hypersurface of a complex plane M2(c), satisfying (0.1).

The set N1 is the empty set: N1 = f� .

Proof.
Equation (2.5), for X = U , Y = ξ yields (∇UA)ξ−(∇ξA)U = − c

4ϕU , which is further
developed with the aid of Lemmas 3.1, 3.2, giving

[(Uα)− (ξβ)]ξ + [(Uβ)− (ξ
β2

α
)]U + (κ2β − κ1β

2

α
+

c

4
)ϕU = 0.

The above relation, due to the linear independence of the vector fields U , ϕU and ξ,
gives

(3.13) (Uα) = (ξβ), (Uβ) = (ξ
β2

α
), κ2β − κ1β

2

α
+

c

4
= 0.

Similarly, equation (2.5) for X = ϕU , Y = ξ yields (∇ϕUA)ξ − (∇ξA)ϕU = c
4U ,

which is analyzed with the aid of Lemmas 3.1 and 3.2, resulting to

(3.14) i)(ϕUα) = κ1β + αβ, ii)(ϕUβ) = κ1
β2

α
+ β2 − c

4
, iii)κ3 = 0.

In a similar way, (2.5) yields (∇UA)ϕU − (∇ϕUA)U = − c
2ξ, which is analyzed, by

virtue of Lemmas 3.1, 3.2 and (3.14.iii), giving

(3.15) i)κ2
β2

α
+

β3

α
− ϕU(

β2

α
) = 0, ii)κ2β + β2 − (ϕUβ) = − c

2
.
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Relation (3.15.i) is further analyzed giving κ2β+ β2 − 2(ϕUβ) + β
α (ϕUα) = 0. In the

last equation, the term κ2β+β2 is replaced by (3.15.ii), and we take β
α (ϕUα)−(ϕUβ)−

c
2 = 0. In the last relation, the terms (ϕUα), and (ϕUβ) are replaced respectively by

(3.14.i) and (3.14.ii), giving c = 0 which is a contradiction onN1. ThereforeN1 = f� .
�

4 Main results

Theorem 4.1. A real hypersurface M of a complex plane M2(c), satisfying (1.1) is
a Hopf hypersurface.

Proof. From Lemma 3.3, we conclude that the set N coincides with N2, which
means α = 0 in N . Equation (2.4) yields

(4.1) i)lU = (
c

4
− β2)U, ii)lϕU =

c

4
ϕU.

Since the vector fields U , ϕU and ξ are linearly independent, from (2.6) and the
symmetry of A, the following decompositions hold.

(4.2) Aξ = βU, AU = α1U + α2ϕU, AϕU = α2U + α3ϕU,

where α1, α1 and α3 are functions. By virtue of (2.3) and (4.2), we obtain

(4.3) ∇ξξ = βϕU, ∇Uξ = −α2U + α1ϕU, ∇ϕUξ = −α3U + α2ϕU.

Using (3.9) for X = Z = ξ, Y = U , and by making use of (4.3), we prove that ∇ξU⊥ξ.
Similarly, (4.3) and (3.9), for X = ξ, Y = Z = U , yield ∇ξU⊥U . Therefore the vector
field ∇ξU is decomposed as ∇ξU = β1ϕU , where β1 is a function. By virtue of the
last equation and (2.3.ii), (4.2), we obtain ∇ξϕU = −β1U − βξ. Summing up, we
have the following decompositions.

(4.4) ∇ξU = β1ϕU, ∇ξϕU = −β1U − βξ.

From (2.9), (4.3) and (4.4) we also have

(4.5) hU =
1

2

(
(α3 − α1)U − 2α2ϕU − βξ

)
, hϕU =

1

2

(
(α1 − α3)ϕU − 2α2U

)
.

Condition (1.1), combined with (4.3) yields

lU = R(U, ξ)ξ = [κ+
µ

2
(α3 − α1) + να2]U + [−µα2 +

ν

2
(α3 − α1)]ϕU − µβ

2
ξ.

Comparing the above relation with (4.1.i) we take

(4.6) µ = 0, ν(α3 − α1) = 0,
c

4
− β2 = κ+ να2.

The calculation of lϕU = R(ϕU, ξ)ξ, from (1.1), (4.5) and (4.6), yields

lϕU = να2U + κϕU.
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The above equation with (4.1.ii) and (4.6), lead to β = 0, which is a contradiction

on N . Therefore we have N = f� and β = 0 everywhere on M , that is M is a Hopf
hypersurface. �

Since we have Aξ = αξ and M is a 3-dimensional real hypersurface, we can define
a ϕ-basis {e, ϕe, ξ}, which satisfies

(4.7) Ae = λ1e, Aϕe = λ2ϕe, Aξ = αξ.

where λ1 = g(Ae, e) and λ2 = g(Aϕe, ϕe) are C∞ functions and α is a constant ([11]).
By virtue of (2.3.i) we calculate the following:

(4.8) i)∇ξξ = 0, ii)∇eξ = λ1ϕe, iii)∇ϕeξ = −λ2e.

Next, we make use of (3.9) for X = ξ, Y = Z = e and prove ∇ξe⊥e. Similarly, (3.9)
for X = Z = ξ, Y = e, with the aid of (4.7.iii) and ϕξ = 0 (due to (2.1)), yields
∇ξe⊥ξ . Therefore, it must be ∇ξe = n1ϕe, where n1 is a function. In a similar way,
from (3.9) we have ∇ee⊥{e, ξ}, which leads to ∇ee = n2ϕe, where n2 is a function.
Again from (3.9) we prove ∇ϕee = n3ϕe+ λ2ξ, where n3 is a function. Summing up
the equations of this paragraph, we have shown that

(4.9) i)∇ξe = n1ϕe, ii)∇ee = n2ϕe, iii)∇ϕee = n3ϕe+ λ2ξ, n3.

By virtue of (4.9) and (2.3.ii), (4.7) we take

(4.10) i)∇ξϕe = −n1e, ii)∇eϕe = −n2 − λ1ξϕe, iii)∇ϕeϕe = −n3e.

From (2.8), (4.8.ii), (4.8.iii), (4.9.i), (4.9.ii) we acquire

(4.11) he =
1

2
(λ2 − λ1)e, hϕe = −1

2
(λ2 − λ1)ϕe.

By virtue of (2.4) and (4.7) we calculate

(4.12) le = R(e, ξ)ξ =
c

4
e+ αλ1e, lϕe = R(e, ξ)ξ =

c

4
ϕe+ αλ2e.

However, from (1.1) and (4.11) we get

(4.13) le =
(
κ+

µ

2
(λ2 − λ1)

)
e+

ν

2
(λ2 − λ1)ϕe,

lϕe =
(
κ+

µ

2
(λ1 − λ2)

)
ϕe− ν

2
(λ1 − λ2)e.

By comparing (4.12) with (4.13), we obtain

(4.14) i)κ+
µ

2
(λ2 − λ1) =

c

4
+ αλ1, ii)κ+

µ

2
(λ1 − λ2) =

c

4
+ αλ2,

ν(λ1 − λ2) = 0.

Equation (2.5) for X = e, Y = ξ yields (∇eA)ξ−(∇ξA)e = − c
4ϕe, which is developed

with the help of (4.7), (4.8.ii) and (4.9.i), leading to

(4.15) (ξλ1) = 0, αλ1 − n1(λ1 − λ2)− λ1λ2 = − c

4
.
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Similarly, (2.5) yields (∇ϕeA)ξ − (∇ξA)ϕe =
c
4e, which is developed with the help of

(4.7), (4.8.iii) and (4.10.i), giving

(4.16) (ξλ2) = 0, αλ2 + n1(λ1 − λ2)− λ1λ2 = − c

4
.

Finally, we use (4.9.iii), (4.10.ii) to develop (∇ϕeA)ϕe− (∇eA)ϕe = − c
2ξ (that holds

due to (2.5)) and get

(4.17) i)(eλ2) = n3(λ1 − λ2), ii)(ϕeλ1) = n2(λ1 − λ2),

iii)λ1λ2 =
λ1 + λ2

2
α+

c

4
.

Before proceeding with the proves of main results, we mention that the principal
curvatures can not satisfy α = λ1 = λ2 since, in this case, (4.17.iii) yields c = 0,
which is a contradiction.

Proposition 4.2. Let M be a real hypersurface of a complex plane M2(c), satisfying
(1.1), with α ̸= 0. Then M has a principal curvature λ = λ1 = λ2, of multiplicity 2,
if and only if M is one of the following: type A1 in CP 2, or types A0, A1,0, A1,1, in
a complex hyperbolic space.

Let us assume there exists a point p1 ∈ M such that λ1 = λ2 ̸= α ̸= 0 in a
neighborhood around p1. Then from (4.16) and (4.17) we have (eλ) = (ϕeλ) =
(ξλ) = 0, that is λ is a constant. Based on [12] and [9], the only spaces with a
constant principal curvature λ( ̸= α) are of type A1 in CP 2, or of types A0, A1,0, A1,1

in a complex hyperbolic space. �

Proposition 4.3. A (κ, µ, ν)-real hypersurface M of a complex plane M2(c) admits
no contact structure.

Proof. Let us assume that M admits a contact structure in a neighborhood around
a point p. Then (2.7) yields Aϕe+ ϕAe = 2ϕe which is combined with (4.7), giving

(4.18) λ1 + λ2 = 2.

However (2.8) for X = Y = e, combined with (4.9.ii) and (4.11), gives

(4.19) (∇eϕ)e =
(
1 +

1

2
(λ2 − λ1)

)
ξ.

Moreover, (2.3.ii) for X = Y = e, with the aid of (4.7), yields (∇eϕ)e = −λ1ξ. The
last equation and (4.19), lead to

(4.20) λ1 + λ2 = −2.

From (4.18) and (4.20), we have a contradiction and so M does not admit a contact
structure.

Lemma 4.4. Let M be (κ, µ, ν)-real hypersurface M a complex plane M2(c) with
α ̸= 0. If the principal curvatures satisfy locally λ1 ̸= λ2, then ν = 0, µ = −α and
λ1λ2 = κ.
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Proof. If we have locally λ1 ̸= λ2, then (4.14.iii) gives ν = 0. Moreover, subtract-
ing (4.14.i) form (4.14.ii) we obtain µ = −α. Finally, adding (4.14.i) with (4.14.ii)
we infer

(4.21) κ =
λ1 + λ2

2
α+

c

4
.

By comparing the last equation with (4.17.ii) we take λ1λ2 = κ.

Proposition 4.5. Let M be (κ, µ, ν)-real hypersurface M a complex plane M2(c) with
α ̸= 0. Then the following hold:

• If the principal curvatures satisfy α ̸= λ1 ̸= λ2 ̸= α then the sectional curvature
c is negative.

• If the principal curvatures satisfy α = λ1 ̸= λ2, then M is of type B in CH2.

Proof. Let as assume that the principal curvatures satisfy α ̸= λ1 ̸= λ2 ̸= α .
Then Lemma 4.4 and (4.17.iii) give λ1λ2 = κ and λ1 + λ2 = 2

α (κ− c
4 ), which means

that λ1, λ2 are roots of the quadric equation X2 + 2
α (

c
4 − κ)X + κ = 0. Since it has

discrete roots λ1 ̸= λ2, the discriminant must be strictly positive. So we have D =
4
α2 (

c
4−κ)2−4κ > 0. The last inequality is rewritten asD = 4

α2κ
2−( 2c

α2 +4)κ+ c2

4α2 > 0.
Therefore, the discriminant is a quadric equation f(κ), which is always positive. So,

the discriminant Dκ of f(κ) must be negative: Dκ = ( 2c
α2 + 4)2 − 4c2

α4 < 0. The last
inequality is rewritten as c < −α2 and so c < 0.

Now, let as assume that the principal curvatures satisfy α = λ1 ̸= λ2. Then from
(3.17.iii) we obtain λ2 = c

2α + α = constant. So λ1 and λ2 are constants.

In the case Mn(c) = CPn, according to [12], M can only be of type A2 or B. If
M is of type A2, then α = λ1 = 2cot2r, λ2 = c

2α + α = cotr. Combining the last
two relations we obtain r = 0 which is a contradiction. If M is of type B, then from
λ2 = c

2α +α = cot(r− π
4 ), α = λ1 = −tan(r− π

4 ), we take c = −2(1+α2) < 0, which
is a contradiction in CPn.

In case Mn(c) = CH2, based on [9] M can only be of type B. �

Remark. We mention that a hypersurface of type B in CH2 with α = λ1 ̸= λ2

satisfying the following specific characteristics: r = 1√
|c|
ln(2 +

√
3), λ1 = α =

√
3|c|
2 ,

λ2 =

√
|c|

2
√
3
.

Proposition 4.6. Let M be a (κ, µ, ν)-real hypersurface of a complex plane M2(c)
with α ̸= 0. If the principal curvatures satisfy α ̸= λ1 ̸= λ2 ̸= α, then we have the
following equivalence: the function κ is constant if and only if λ1, λ2 are constants
and M is of type B in CH2.

Proof. Let us assume that κ is a constant. Then we differentiate λ1λ2 = κ (Lemma
3.4) along the vector fields e and ϕe, to obtain, respectively

(4.22) (eλ1)λ2 + (eλ2)λ1 = 0, (ϕeλ1)λ2 + (ϕeλ2)λ1 = 0.
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We also differentiate (4.21) along the vector fields e and ϕe (κ is a constant) to obtain,
respectively

(4.23) (eλ1) + (eλ2) = 0, (ϕeλ1) + (ϕeλ2) = 0.

Combining (4.22), with (4.23) and since λ1 ̸= λ2, we get (eλ1) = (ϕeλ1) = (eλ2) =
(ϕeλ2) = 0. We also have (ξλ1) = (ξλ2) = 0, from (4.16) and (4.17). So the
principal curvatures λ1 and λ2 are constants. Moreover, from Proposition 4.5 we
infer M2(c) = CH2.

From [9] the only spaces with three distinct constant principal curvatures in CH2,
are type A2 and B. However, a real hypersurface M is of type A if and only if M
satisfies ϕA = Aϕ on M ([11]). So in type A2, we must have ϕAe = Aϕe ⇒ λ1ϕe =
λ2ϕe ⇒ λ1 = λ2, which is a contradiction. So M can only be of type B in CH2. �
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