On a class of pseudo calibrated generalized complex structures related to Norden, para-Norden and statistical manifolds

Antonella Nannicini

Abstract. We consider pseudo calibrated generalized complex structures, \hat{J} , defined by a pseudo Riemannian metric g and a g-symmetric operator H such that $H^2 = \mu I$, $\mu \in \mathbb{R}$, on a smooth manifold M. These structures include the case of complex Norden manifolds for $\mu = -1$, studied in [20], the case of almost tangent structures for $\mu = 0$, ImH = KerH, and the case of para Norden manifolds for $\mu = 1$. The special case H = Ois described in [19]. We study integrability conditions of \hat{J} , with respect to a linear connection ∇ , and we describe examples of geometric structures that naturally give rise to integrable pseudo calibrated generalized complex structures. We prove that for $\mu \neq -1$ integrability implies that the $\pm i$ -eigenbundles of \hat{J} , $E_{\hat{J}}^{1,0}$, $E_{\hat{J}}^{0,1}$, are complex Lie algebroids. We define the concept of generalized $\overline{\partial}_{\hat{J}}$ -operator of (M, H, g, ∇) and we study holomorphic sections.

M.S.C. 2010: 53C15, 53D18, 53C80, 53C38.

Key words: general geometric structures on manifolds; generalized geometry; Norden manifolds; para Norden manifolds; Lie algebroids.

1 Introduction

Generalized complex structures were introduced by Hitchin in [9], and further investigated by Gualtieri in [10], in order to unify symplectic and complex geometry. In this paper we consider the concept of generalized complex structure introduced in [16], [17] and also studied in [5], [18], [19], [20].

Let (M, g) be a smooth pseudo Riemannian manifold, let T(M) be the tangent bundle, let $T^*(M)$ be the cotangent bundle and let $E = T(M) \oplus T^*(M)$ be the generalized tangent bundle of M. A pseudo calibrated generalized complex structure of M is a complex structure on E which is pseudo calibrated with respect to the canonical symplectic structure of E. A linear connection, ∇ , on M defines a bracket, $[,]_{\nabla}$,

Balkan Journal of Geometry and Its Applications, Vol.22, No.1, 2017, pp. 51-69.

[©] Balkan Society of Geometers, Geometry Balkan Press 2017.

on sections of E and we can define the concept of ∇ -integrability for generalized complex structures. We consider pseudo calibrated generalized complex structures \widehat{J} defined by a pseudo Riemannian metric g and a g- symmetric operator H such that $H^2 = \mu I$, $\mu \in \mathbb{R}$, on M. These structures include the case of complex Norden manifolds for $\mu = -1$, studied in [20], the case of almost tangent structures for $\mu = 0$, ImH = KerH, and the case of para Norden manifolds for $\mu = 1$. The special case H = O is described in [19].

We study the integrability conditions of \widehat{J} , with respect to a linear connection ∇ with torsion T^{∇} , and we describe examples of geometric structures that naturally give rise to integrable pseudo calibrated generalized complex structures. Then we prove that for $\mu \neq -1$ integrability implies that the $\pm i$ -eigenbundles of \widehat{J} , $E_{\widehat{J}}^{1,0}$, $E_{\widehat{J}}^{0,1}$, are complex Lie algebroids. We define the concept of generalized $\overline{\partial}_{\widehat{J}}$ - operator of (M, H, g, ∇) ; from the Jacobi identity on $E_{\widehat{J}}^{1,0}$ it follows $(\overline{\partial}_{\widehat{J}})^2 = 0$ and, as $\overline{\partial}_{\widehat{J}}$ is the exterior derivative of the Lie algebroid $E_{\widehat{J}}^{1,0}$, we get that $(C^{\infty}(\wedge^{\bullet}(E_{\widehat{J}}^{1,0})), \wedge, \overline{\partial}_{\widehat{J},}, [,]_{\nabla})$ is a differential Gerstenhaber algebra, where \wedge denotes the Schouten bracket, [13], [28]. Finally we study certain holomorphic sections.

The paper is organized as in the following. In section 2 we introduce preliminary material of the generalized tangent bundle and of generalized complex structures; in section 3 we compute integrability conditions and in section 4 we give examples of integrable structures; section 5 is devoted to the study of complex Lie algebroids naturally associated to integrable pseudo calibrated generalized complex structures; in section 6 we define the concept of generalized $\overline{\partial}_{\hat{j}}$ —operator on M and in section 7 we study some generalized holomorphic sections, in particular, in this context, Hessian manifolds occur as interesting examples.

This paper is a generalization of our previous papers [19], [20] and allows us to unify complex Norden and para Norden manifolds through almost tangent structures and statistical manifolds. The theory reveals that the case of complex Norden manifolds is special.

2 Preliminaries

Let M be a smooth manifold of real dimension n and let $E = T(M) \oplus T^*(M)$ be the generalized tangent bundle of M. Smooth sections of E are elements $X + \xi \in C^{\infty}(E)$ where $X \in C^{\infty}(T(M))$ is a vector field and $\xi \in C^{\infty}(T^*(M))$ is a 1- form.

E is equipped with a natural symplectic structure, (,), defined by:

(2.1)
$$(X + \xi, Y + \eta) = -\frac{1}{2}(\xi(Y) - \eta(X))$$

and a natural indefinite metric, \langle , \rangle , defined by:

(2.2)
$$\langle X+\xi, Y+\eta\rangle = -\frac{1}{2}(\xi(Y)+\eta(X)).$$

 \langle , \rangle is non degenerate and of signature (n, n).

A linear connection on M, ∇ , defines, in a canonical way, a bracket $[,]_{\nabla}$ on $C^{\infty}(E)$, as follows:

(2.3)
$$[X + \xi, Y + \eta]_{\nabla} = [X, Y] + \nabla_X \eta - \nabla_Y \xi.$$

Like in [16], a direct computation gives the following:

Lemma 2.1. For all $X, Y \in C^{\infty}(T(M))$, for all $\xi, \eta \in C^{\infty}(T^*(M))$ and for all $f \in C^{\infty}(M)$ we have:

- 1. $[X + \xi, Y + \eta]_{\nabla} = -[Y + \eta, X + \xi]_{\nabla}$,
- 2. $[f(X + \xi), Y + \eta]_{\nabla} = f[X + \xi, Y + \eta]_{\nabla} Y(f)(X + \xi),$
- 3. Jacobi's identity holds for $[,]_{\nabla}$ if and only if ∇ has zero curvature.

We consider the following concept of generalized complex structure:

Definition 2.2. A generalized complex structure on M is an endomorphism $\widehat{J}: E \to E$ such that $\widehat{J}^2 = -I$.

Definition 2.3. A generalized complex structure \hat{J} is called *pseudo calibrated* if it is (,)-invariant and if the bilinear symmetric form defined by $(, \hat{J})$ on T(M) is non degenerate, moreover \hat{J} is called *calibrated* if it is pseudo calibrated and $(, \hat{J})$ is positive definite.

From the definition we get that a pseudo calibrated complex structure \widehat{J} can be written in the following block matrix form:

(2.4)
$$\widehat{J} = \begin{pmatrix} H & -(I+H^2)g^{-1} \\ g & -H^* \end{pmatrix}$$

where $g: T(M) \to T^*(M)$ is identified to the bemolle musical isomorphism of the pseudo Riemannian metric g on M, $H: T(M) \to T(M)$ is a g-symmetric operator and $H^*: T^*(M) \to T^*(M)$ is the dual operator of H defined by: $H^*(\xi)(X) = \xi(H(X)).$

We have:

(2.5)
$$(g(X))(Y) = g(X,Y) = 2\left(X,\widehat{J}Y\right)$$

for all $X, Y \in T(M)$.

In the following we will consider g-symmetric operators $H: T(M) \to T(M)$ such that $H^2 = \mu I$ where $\mu \in \mathbb{R}$ and I denotes identity. In this case we have:

(2.6)
$$\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$$

where $\lambda = -1 - \mu$.

We remark that for $\mu = -1$ (M, H, g) is a Norden manifold, [20], for $\mu = 0$ and ImH = KerH, (M, H) is an almost tangent manifold, [2], and for $\mu = 1$ (M, H, g) is a para Norden manifold. The special case H = O is described in [19].

3 Integrability

Let ∇ be a linear connection on M and let $[,]_{\nabla}$ be the bracket on $C^{\infty}(E)$ defined by ∇ , the following holds:

Lemma 3.1. ([17]) Let $\widehat{J}: E \to E$ be a generalized complex structure on M and let

(3.1)
$$N^{\nabla}(\widehat{J}): C^{\infty}(E) \times C^{\infty}(E) \to C^{\infty}(E)$$

defined by:

(3.2)
$$N^{\nabla}(\widehat{J})(\sigma,\tau) = \left[\widehat{J}\sigma,\widehat{J}\tau\right]_{\nabla} - \widehat{J}\left[\widehat{J}\sigma,\tau\right]_{\nabla} - \widehat{J}\left[\sigma,\widehat{J}\tau\right]_{\nabla} - [\sigma,\tau]_{\nabla},$$

for all $\sigma, \tau \in C^{\infty}(E)$; $N^{\nabla}(\widehat{J})$ is a skew symmetric tensor.

Definition 3.2. $N^{\nabla}(\widehat{J})$ is called the *Nijenhuis tensor of* \widehat{J} with respect to ∇ .

Definition 3.3. Let $\widehat{J}: E \to E$ be a generalized complex structure on M, \widehat{J} is called ∇ -integrable if $N^{\nabla}(\widehat{J}) = 0$.

Let T^{∇} be the torsion of ∇ :

(3.3)
$$T^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

and let d^{∇} be the exterior differential associated to ∇ :

(3.4)
$$(d^{\nabla}g)(X,Y) = (\nabla_X g)(Y) - (\nabla_Y g)(X) + g(T^{\nabla}(X,Y))$$

for all $X, Y \in C^{\infty}(TM)$.

We have the following:

Proposition 3.4. Let $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ be the pseudo calibrated generalized complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of T(M) such that $H^2 = (-1 - \lambda)I$. Let $N^{\nabla}(\widehat{J})$ be the generalized Nijenhuis tensor of \widehat{J} defined by (3.2), then for all $X, Y \in C^{\infty}(T(M))$ we have:

(3.5)
$$N^{\nabla}(J)(X,Y) = N(H)(X,Y) - \lambda g^{-1} \left((d^{\nabla}g)(X,Y) \right) + (d^{\nabla}g)(HX,Y) + (d^{\nabla}g)(X,HY) + g((\nabla_Y H)(X) - (\nabla_X H)(Y))$$

(3.6)

$$N^{\nabla}(J)(X,g(Y)) = \lambda \left(\left(\nabla_X H \right) (Y) - \left(\nabla_Y H \right) (X) \right) + -\lambda g^{-1} \left(\left(\nabla_{HX} g \right) (Y) - \left(\nabla_X g \right) (HY) \right) + +\lambda g^{-1} (T^{\nabla}(HX,Y) - HT^{\nabla}(X,Y)) + +\lambda \left(\left(d^{\nabla} g \right) (X,Y) \right) - g \left(\left(\nabla_{HX} H \right) (Y) - H \left(\nabla_X H \right) (Y) \right)$$

On a class of pseudo-calibrated generalized complex structures

(3.7)
$$N^{\nabla}(\widehat{J})(g(X),g(Y)) = -\lambda^2 g^{-1} \left((d^{\nabla}g)(X,Y) \right) + \lambda g((\nabla_Y H)(X) - (\nabla_X H)(Y))$$

where N(H) is the Nijenhuis tensor of H defined by:

(3.8)
$$N(H)(X,Y) = [HX,HY] - H[HX,Y] - H[X,HY] + H^{2}[X,Y].$$

Proof. Direct computations give:

$$\begin{split} N^{\nabla}(\hat{J})(X,Y) &= [HX + g(X), HY + g(Y)]_{\nabla} + \\ &-\hat{J}[HX + g(X),Y)]_{\nabla} - \hat{J}[X, HY + g(Y)]_{\nabla} - [X,Y]_{\nabla} \\ &= [HX, HY] + \nabla_{HX}g(Y) - \nabla_{HY}g(X) + \\ &-\hat{J}([HX,Y] - \nabla_{Y}g(X) + [X,HY] + \nabla_{X}g(Y)) - [X,Y] \\ &= [HX,HY] - H[HX,Y] - H[X,HY] + \lambda g^{-1}(\nabla_{Y}g(X) - \nabla_{X}g(Y)) + \\ &- [X,Y] + \nabla_{HX}g(Y) - \nabla_{HY}g(X) - g([HX,Y]) + \\ &- H^{*}(\nabla_{Y}g(X)) - g([X,HY]) + H^{*}(\nabla_{X}g(Y)) \\ &= N(H)(X,Y) + \lambda[X,Y] + \lambda g^{-1}((\nabla_{Y}g)(X) - g(\nabla_{X}Y)) + \\ &+ (\nabla_{HX}g)(Y) - (\nabla_{HY}g)(X) + g((\nabla_{Y}H)(X) - (\nabla_{X}H)(Y)) + \\ &- H^{*}((\nabla_{Y}g)(X)) + H^{*}((\nabla_{X}g)(Y)) + g(T^{\nabla}(HX,Y) + T^{\nabla}(X,HY)) \\ &= N(H)(X,Y) + \lambda g^{-1}((\nabla_{Y}g)(X) - (\nabla_{X}g)(Y) - \lambda T^{\nabla}(X,Y)) + \\ &+ (\nabla_{HX}g)(Y) - (\nabla_{HY}g)(X) + g((\nabla_{Y}H)(X) - (\nabla_{X}H)(Y)) + \\ &- ((\nabla_{Y}g)(HX)) + ((\nabla_{X}g)(HY)) + g(T^{\nabla}(HX,Y) + T^{\nabla}(X,HY)) \\ &= N(H)(X,Y) - \lambda g^{-1}((d^{\nabla}g)(X,Y)) + \\ &+ (d^{\nabla}g)(HX,Y) + (d^{\nabla}g)(X,HY) + g((\nabla_{Y}H)(X) - (\nabla_{X}H)(Y)) \\ N^{\nabla}(\hat{J})(X,g(Y)) = [HX + g(X), \lambda Y - g(HY)]_{\nabla} - \hat{J}[HX + g(X),g(Y)]_{\nabla} + \\ &- \hat{J}[X, \lambda Y - g(HY)]_{\nabla} - \nabla_{X}g(Y) \\ &= \lambda [HX,Y] - \nabla_{HX}g(HY) - \lambda \nabla_{Y}g(X) - \hat{J}\lambda[X,Y] + \\ &+ \hat{J}\nabla_{X}g(HY) - \hat{J}\nabla_{HX}g(Y) - \nabla_{X}g(Y) \\ &= \lambda [HX,Y] - \nabla_{HX}g(HY) - \lambda \nabla_{Y}g(X) - \hat{J}\lambda[X,Y] + \\ &- \lambda H[X,Y] - \nabla_{HX}g(HY) - \lambda \nabla_{Y}g(X) - \hat{J}\lambda[X,Y] + \\ &- \lambda H[X,Y] - \nabla_{HX}g(HY) - \lambda \nabla_{Y}g(X) - \hat{J}\lambda[X,Y] + \\ &- \lambda H[X,Y] - \lambda g([X,Y]) + \lambda g^{-1}(\nabla_{X}g(HY)) - \lambda g^{-1}((\nabla_{HX}g(Y) - \nabla_{Y}g(X)) \\ &+ H^{*}(\nabla_{HX}g(Y)) - H^{*}(\nabla_{X}g(HY)) - \nabla_{X}g(Y) \\ &= \lambda ((\nabla_{X}H)(Y) - (\nabla_{Y}H)(X) - g^{-1}((\nabla_{HX}g)(Y) - (\nabla_{X}H)(Y)) \\ N^{\nabla}(\hat{J})(g(X),g(Y)) = [\lambda X - g(HX), \lambda Y - g(HY)]_{\nabla} + \end{aligned}$$

$$\begin{split} &-\widehat{J}\left[\lambda X - g(HX), Y)\right]_{\nabla} - \widehat{J}\left[g(X), \lambda Y - g(HY)\right]_{\nabla} \\ &= \lambda^{2}\left[X, Y\right] - \lambda\left\{\lambda g^{-1}((\nabla_{X}g(Y) - \nabla_{Y}g(X)))\right\} + \\ &-\lambda\left\{-H^{*}\left(\nabla_{X}g(Y)\right) + H^{*}\left(\nabla_{Y}g(X)\right)\right\} \\ &= \lambda^{2}\left(-T^{\nabla}(X, Y) - g^{-1}((\nabla_{X}g)\left(Y\right) - (\nabla_{Y}g)\left(X\right)\right) + \\ &-\lambda\left(g((\nabla_{Y}H)(X) - (\nabla_{X}H)\left(Y\right)\right)) \\ &= -\lambda^{2}g^{-1}\left((d^{\nabla}g)(X, Y)\right) + \lambda g((\nabla_{Y}H)X - (\nabla_{X}H)Y). \end{split}$$

In particular we get:

Theorem 3.5. For $\lambda(\lambda+1) \neq 0$ $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ is ∇ -integrable if and only if the following conditions hold:

(3.9)
$$\begin{cases} d^{\nabla}g = 0\\ N(H) = 0\\ \nabla H = 0. \end{cases}$$

For $\lambda = 0$ $\hat{J} = \begin{pmatrix} H & O \\ g & -H^* \end{pmatrix}$ is ∇ -integrable if and only if the following conditions hold:

(3.10)
$$\begin{cases} N(H) = 0 \\ (\nabla_{HX}H) = H(\nabla_XH) \\ (d^{\nabla}g)(HX,Y) + (d^{\nabla}g)(X,HY) - g((\nabla_XH)(Y) - (\nabla_YH)(X)) = 0. \end{cases}$$

For $\lambda = -1 \ \widehat{J} = \begin{pmatrix} H & -g^{-1} \\ g & -H^* \end{pmatrix}$ is ∇ -integrable if and only if the following conditions hold:

(3.11)
$$\begin{cases} d^{\nabla}g = 0\\ N(H) = 0\\ (\nabla_X H)(Y) = (\nabla_Y H)(X)\\ (\nabla_{HX} H) = H(\nabla_X H). \end{cases}$$

Proof. If $\lambda \neq 0$ then from (3.7) and (3.5) we get immediately the first and second condition in (3.9) and (3.11) and the third in (3.11). Moreover:

$$\begin{aligned} \left(\nabla_{HX}g \right)(Y) &- \left(\nabla_{X}g \right)(HY) + g(T^{\nabla}(HX,Y) - HT^{\nabla}(X,Y)) \\ &= \left(d^{\nabla}g \right)(HX,Y) + \left(\nabla_{Y}g \right)(HX) - \left(\nabla_{X}g \right)(HY) - g(HT^{\nabla}(X,Y)) \\ &= \left(d^{\nabla}g \right)(HX,Y) + H^{*}(\left(\nabla_{Y}g \right)(X) - \left(\nabla_{X}g \right)(Y) - g(T^{\nabla}(X,Y)) \\ &= \left(d^{\nabla}g \right)(HX,Y) - H^{*}\left(\left(d^{\nabla}g \right)(X,Y) \right); \end{aligned}$$

56

then we get (3.11). In order to obtain (3.9) remark that if $\lambda \neq -1$, we have

$$\begin{aligned} \left(\nabla_X H\right)(Y) &= H^{-1}(\left(\nabla_{HX} H\right)(Y)\right) &= \frac{1}{-1-\lambda} H(\left(\nabla_{HX} H\right)(Y)) \\ &= \frac{1}{-1-\lambda} H(\left(\nabla_Y H\right)(HX)) \\ &= \frac{1}{-1-\lambda} H\left(\nabla_Y H^2 X - H\nabla_Y HX)\right) \\ &= \frac{1}{-1-\lambda} H^2(H\nabla_Y X - \nabla_Y HX) \\ &= -(\nabla_Y H)(X) \\ &= -(\nabla_X H)(Y); \end{aligned}$$

thus the third condition in (3.9) is obtained. Finally, (3.10) and (3.12) immediately follow. On the other hand if (3.9), respectively (3.10), (3.11) hold, then $N^{\nabla}(\hat{J}) = 0$, and the proof is complete.

Corollary 3.6. If
$$H = O \ \widehat{J} = \begin{pmatrix} O & -g^{-1} \\ g & O \end{pmatrix}$$
 is ∇ - integrable if and only if
(3.12) $d^{\nabla}g = 0.$

4 Examples

Examples of integrable structures with H = 0 can be found in the context of quasi statistical manifolds.

Definition 4.1. ([1]), ([21]) Let (M, g, ∇) be a pseudo Riemannian manifold with a torsion free linear connection, if ∇g is symmetric then (M, g, ∇) is called a *statistical manifold*.

The concept of statistical manifold can be generalized to *statistical manifolds admitting torsion* or *quasi statistical manifolds* [12]:

Definition 4.2. Let (M, g) be a pseudo Riemannian manifold and let ∇ be a linear connection on M with torsion T^{∇} then (M, g, ∇) is called a *quasi statistical manifold* or *statistical manifold admitting torsion* if, for all $X, Y \in C^{\infty}(T(M))$, the following formula holds:

(4.1)
$$(\nabla_X g)Y - (\nabla_Y g)X + g(T^{\nabla}(X,Y)) = 0.$$

As a direct consequence of (3.4) and (3.12) we get the following:

Corollary 4.3. Let (M,g) be a pseudo Riemannian manifold and let ∇ be a linear connection on M with torsion T^{∇} , let

(4.2)
$$\widehat{J} = \begin{pmatrix} O & -g^{-1} \\ g & O \end{pmatrix}$$

be the generalized complex structure on M defined by g, \hat{J} is ∇ - integrable if and only if (M, g, ∇) is a quasi statistical manifold.

Examples of integrable structures with $H^2 = -I$ can be found in the context of Norden manifolds.

Norden manifolds were introduced by A. P. Norden in [22] and then studied also under the names of almost complex manifolds with B-metric and anti Kählerian manifolds, [3], [11]. They have applications in mathematics and in theoretical physics.

Definition 4.4. Let (M, H) be an almost complex manifold of real dimension 2n and let g be a pseudo Riemannian metric on M, if H is a g-symmetric operator then g is called *Norden metric* and (M, H, g) is called *Norden manifold*. If (M, H, g) is a Norden manifold with H integrable then it is called *complex Norden manifold*.

Let (M, H, g) be a complex Norden manifold, the following holds:

Theorem 4.5. ([11]) On a complex manifold with Norden metric (M, H, g) there exists a unique linear connection D with torsion T such that:

$$(4.3) (D_X g)(Y, Z) = 0$$

(4.4)
$$T(HX,Y) = -T(X,HY)$$

(4.5)
$$g(T(X,Y),Z) + g(T(Y,Z),X) + g(T(Z,X),Y) = 0$$

for all vector fields X, Y, Z on M.

D is called the *natural canonical connection* of the Norden manifold or B-connection and it is defined by:

(4.6)
$$D_X Y = \nabla_X Y - \frac{1}{2} H(\nabla_X H) Y$$

where ∇ is the Levi-Civita connection of g.

In particular, if D is the natural canonical connection of the complex Norden manifold (M, H, g), then

$$DH = 0.$$

Corollary 4.6. Let (M, H, g) be a complex Norden manifold and let D be the natural canonical connection, let

(4.8)
$$\widehat{J} = \begin{pmatrix} H & O \\ g & -H^* \end{pmatrix}$$

be the generalized complex structure defined by H and g, \hat{J} is D- integrable.

Definition 4.7. Let (M, H, g) be a Norden manifold and let ∇ be the Levi-Civita connection of g, if $\nabla H = 0$ then (M, H, g) is called *Kähler Norden manifold*.

We remark that for a Kähler Norden manifold (M, H, g) the structure H is integrable and the natural canonical connection is the Levi Civita connection.

Examples of integrable structures with $H^2 = I$ are given by para Norden manifolds, [4], [25].

Definition 4.8. An almost product structure on a differentiable manifold M is a (1,1) tensor field H on M such that $H^2 = I$. The pair (M,H) is called an almost product manifold.

Definition 4.9. An almost paracomplex manifold is an almost product manifold (M, H) such that the two eigenbundles, $T^+(M)$, $T^-(M)$, associated to the two eigenvalues, +1 and -1 of H respectively, have the same rank.

Definition 4.10. An almost paracomplex Norden manifold (M, H, g) is a real smooth manifold of dimension 2n with an almost paracomplex structure H and a pseudo Riemannian metric g such that H is a g-symmetric operator.

Definition 4.11. A paraholomorphic Norden manifold, or para Kähler Norden manifold, is an almost paracomplex Norden manifold (M, H, g) such that $\nabla H = 0$, where ∇ is the Levi Civita connection of g.

We remark that for an almost paracomplex structure H the vanishing of the Nijenhuis tensor N(H) is equivalent to the existence of a torsion free linear connection ∇ such that $\nabla H = 0$, [25]. In particular from (3.9) we get immediately the following:

Corollary 4.12. Let (M, H, g) be a paraholomorphic Norden manifold and let ∇ be the Levi Civita connection of g, let

(4.9)
$$\widehat{J} = \begin{pmatrix} H & -2g^{-1} \\ g & -H^* \end{pmatrix}$$

be the generalized complex structure on M defined by H and g, \widehat{J} is ∇ - integrable.

5 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [23]; we recall here the definition and the main properties.

Definition 5.1. A complex Lie algebroid is a complex vector bundle L over a smooth real manifold M such that: a Lie bracket [,] is defined on $C^{\infty}(L)$, a smooth bundle map $\rho: L \to T(M) \otimes \mathbb{C}$, called *anchor*, is defined and, for all $\sigma, \tau \in C^{\infty}(L)$, for all $f \in C^{\infty}(M)$, the following conditions hold:

1.
$$\rho([\sigma, \tau]) = [\rho(\sigma), \rho(\tau)]$$

2. $[f\sigma, \tau] = f([\sigma, \tau]) - (\rho(\tau)(f))\sigma$.

Let L and its dual vector bundle L^* be Lie algebroids; on sections of $\wedge L$, respectively $\wedge L^*$, the *Schouten bracket* is defined by:

(5.1)
$$[,]_L : C^{\infty}(\wedge^p L) \times C^{\infty}(\wedge^q L) \longrightarrow C^{\infty}(\wedge^{p+q-1}L)$$

 $\left[X_1 \wedge \ldots \wedge X_p, Y_1 \wedge \ldots \wedge Y_q\right]_L =$

(5.2)
$$= \sum_{i=1}^{p} \sum_{j=1}^{q} (-1)^{i+j} [X_i, Y_j]_L \wedge X_1 \wedge ..^{\hat{i}} ... \wedge X_p \wedge Y_1 \wedge ..^{\hat{j}} ... \wedge Y_q$$

and, for $f \in C^{\infty}(M)$, $X \in C^{\infty}(L)$

(5.3)
$$[X,f]_L = -[f,X]_L = \rho(X)(f);$$

respectively, by:

(5.4)
$$[,]_{L^*}: C^{\infty}(\wedge^p L^*) \times C^{\infty}(\wedge^q L^*) \longrightarrow C^{\infty}(\wedge^{p+q-1}L^*)$$

(5.5)
$$\begin{bmatrix} X_1^* \wedge \dots \wedge X_p^*, Y_1^* \wedge \dots \wedge Y_q^* \end{bmatrix}_{L^*} =$$
$$= \sum_{i=1}^p \sum_{j=1}^q (-1)^{i+j} \left[X_i^*, Y_j^* \right]_{L^*} \wedge X_1^* \wedge ..^{\hat{i}} \dots \wedge X_p^* \wedge Y_1^* \wedge ..^{\hat{j}} \dots \wedge Y_q^*$$

and, for $f \in C^{\infty}\left(M\right)$, $X \in C^{\infty}\left(L^{*}\right)$

(5.6)
$$[X,f]_{L^*} = -[f,X]_{L^*} = \rho(X)(f).$$

Moreover the *exterior derivatives* d and d_* associated with the Lie algebroid structure of L and L^* are defined respectively by:

(5.7)
$$d: C^{\infty} (\wedge^{p} L^{*}) \longrightarrow C^{\infty} (\wedge^{p+1} L^{*})$$

(5.8)
$$(d\alpha) (\sigma_0, ..., \sigma_p) =$$
$$= \sum_{i=0}^p (-1)^i \rho (\sigma_i) \alpha \left(\sigma_0, ...^{\widehat{i}} ..., \sigma_p\right) + \sum_{i < j} (-1)^{i+j} \alpha \left(\left[\sigma_i, \sigma_j\right]_L, \sigma_0, ...^{\widehat{i}} ...^{\widehat{j}} ..., \sigma_p \right)$$

for $\alpha \in C^{\infty}(\wedge^{p}L^{*}), \sigma_{0}, ..., \sigma_{p} \in C^{\infty}(L)$, and:

(5.9)
$$d_*: C^{\infty} (\wedge^p L) \longrightarrow C^{\infty} (\wedge^{p+1} L)$$

(5.10)
$$(d_*\alpha) (\sigma_0, ..., \sigma_p) =$$

$$= \sum_{i=0}^p (-1)^i \rho(\sigma_i) \alpha \left(\sigma_0, ..., \sigma_p\right) + \sum_{i < j} (-1)^{i+j} \alpha \left([\sigma_i, \sigma_j]_{L^*}, \sigma_0, ..., \widehat{i}_{...,j}, \sigma_p \right)$$

for $\alpha \in C^{\infty}(\wedge^{p}L), \sigma_{0}, ..., \sigma_{p} \in C^{\infty}(L^{*})$.

Let M be a smooth manifold and let $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ be the generalized pseudo calibrated complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of T(M) such that $H^2 = (-1 - \lambda)I$. Let

(5.11)
$$E^{\mathbb{C}} = (T(M) \oplus T^*(M)) \otimes \mathbb{C}$$

be the complexified generalized tangent bundle. The splitting in $\pm i$ eigenspaces of \widehat{J} is denoted by:

(5.12)
$$E^{\mathbb{C}} = E_{\widehat{I}}^{1,0} \oplus E_{\widehat{I}}^{0,1}$$

with

(5.13)
$$E_{\hat{j}}^{0,1} = \overline{E_{\hat{j}}^{1,0}}$$

A direct computation gives:

equivalently $E_{\widehat{J}}^{1,0}$ is generated by elements of the following type:

with $Z \in C^{\infty}(T(M))$,

$$(5.16) \qquad \qquad -\lambda iW + g(W + iHW)$$

with $W \in C^{\infty}(T(M))$.

Analogously we have:

(5.17)

$$E_{\widehat{J}}^{0,1} = \{ Z + iHZ + g(W - iHW + iZ) - i(-\lambda)W \mid Z, W \in C^{\infty}(T(M) \otimes \mathbb{C}) \}$$

and $E_{\hat{i}}^{0,1}$ is generated by elements of the following type:

(5.18)
$$Z + iHZ + ig(Z) \text{ with } Z \in C^{\infty}(T(M)).$$

(5.19)
$$\lambda iW + g(W - iHW) \text{ with } W \in C^{\infty}(T(M))$$

Lemma 5.2. For $\lambda \neq 0$ the map

$$\psi: T(M) \otimes \mathbb{C} \to T(M) \otimes \mathbb{C}$$

defined by:

(5.20) $\psi(Z) = Z + iHZ$

is an isomorphism and

$$(5.21) \quad \psi(Z - iHZ) - ig(\psi(Z)) = -\lambda Z - ig(Z + iHZ) = -i(-\lambda iZ + g(Z + iHZ))$$

Proof. We have that ψ injective if and only if (I + iH) is invertible, or i is not an eigenvalue of H. Moreover a direct computation, by using the condition $H^2 = (-1 - \lambda)I$, gives (5.21).

Corollary 5.3. If $\lambda \neq 0$ then:

(5.22)
$$E_{\widehat{J}}^{1,0} = \{-\lambda Z - ig(Z + iHZ) \mid Z \in C^{\infty}(T(M) \otimes \mathbb{C})\},\$$

(5.23)
$$E_{\widehat{J}}^{0,1} = \{-\lambda Z + ig(Z - iHZ) \mid Z \in C^{\infty}(T(M) \otimes \mathbb{C})\}.$$

Moreover, for any linear connection ∇ , the following holds:

Lemma 5.4. $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are $[,]_{\nabla}$ -involutive if and only if $N^{\nabla}(\widehat{J}) = 0$.

Proof. Let $P_+: E^{\mathbb{C}} \to E_{\widehat{J}}^{1,0}$ and $P_-: E^{\mathbb{C}} \to E_{\widehat{J}}^{0,1}$ be the projection operators:

(5.24)
$$P_{\pm} = \frac{1}{2} (I \mp i \widehat{J}),$$

for all $\sigma, \tau \in C^{\infty}(E^{\mathbb{C}})$ we have:

(5.25)
$$P_{\mp} \left[P_{\pm}(\sigma), P_{\pm}(\tau) \right]_{\nabla} = P_{\mp} \left[\frac{1}{2} \left(\sigma \mp i \widehat{J} \sigma \right), \frac{1}{2} \left(\tau \mp i \widehat{J} \tau \right) \right]_{\nabla} \\ = -\frac{1}{8} (N^{\nabla}(\widehat{J}) \left(\sigma, \tau \right) \pm i \widehat{J} N^{\nabla}(\widehat{J}) \left(\sigma, \tau \right)) = -\frac{1}{4} P_{\mp} \left(N^{\nabla}(\widehat{J}) \left(\sigma, \tau \right) \right),$$

and the proof is complete.

Theorem 5.4. Let $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ be the pseudo calibrated generalized complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of T(M) such that $H^2 = (-1 - \lambda)I$ with $\lambda \neq 0$, let ∇ be a linear connection on M, if \widehat{J} is ∇ -integrable then $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids.

Proof. The anchor

(5.26)
$$\rho: E_{\widehat{i}}^{1,0} \to T(M) \otimes \mathbb{C}$$

is defined by

(5.27)
$$\rho(-\lambda Z - ig(Z + iHZ)) = -\lambda Z.$$

Conditions 1. and 2. of the definition are trivially satisfied then we need to prove the the Jacobi identity holds.

Let $\sigma, \tau, v \in E_{\widehat{J}}^{1,0}$, we denote *Jacobiator* with *Jac*, that is:

$$(5.28) Jac [[\sigma,\tau]_{\nabla}, v]_{\nabla} = [[\sigma,\tau]_{\nabla}, v]_{\nabla} + [[\tau,v]_{\nabla}, \sigma]_{\nabla} + [[v,\sigma]_{\nabla}, \tau]_{\nabla}$$

We may assume, without loss of generality, that:

(5.29)
$$\sigma = -\lambda Z - ig(Z + iHZ)$$
$$\tau = -\lambda W - ig(W + iHW)$$
$$\upsilon = -\lambda U - ig(U + iHU),$$

with $Z, W, U \in C^{\infty}(T(M) \otimes \mathbb{C})$ and use integrability conditions. We compute

 $Jac\left[\left[-\lambda Z - ig(Z + iHZ), -\lambda W - ig(W + iHW)\right]_{\nabla}, -\lambda U - ig(U + iHU)\right]_{\nabla}.$

As well, we have

$$\begin{split} & [-\lambda Z - ig(Z + iHZ), -\lambda W - ig(W + iHW)]_{\nabla} \\ = & -\lambda^2 \left[Z, W \right] + i\lambda \nabla_Z g(W + iHW) - i\lambda \nabla_W g(Z + iHZ) \\ = & -i\lambda \left\{ -i\lambda \left[Z, W \right] - (\nabla_Z g) \left(W + iHW \right) + (\nabla_W g) \left(Z + iHZ \right) \right\} + \\ & +i\lambda \left\{ g \left(\nabla_Z (W + iHW) \right) - g \left(\nabla_W (Z + iHZ) \right) \right\} \\ = & -i\lambda \left\{ -i\lambda \left[Z, W \right] - g \left(\left[Z, W \right] - iH \left[Z, W \right] \right) \right\} + \\ & - \left(d^{\nabla}g \right) \left(Z, W \right) - iH^* (d^{\nabla}g) (Z, W) \\ = & -i\lambda \left\{ -i\lambda \left[Z, W \right] + g \left(\left[Z, W \right] + iH \left[Z, W \right] \right) \right\}, \end{split}$$

and then

$$\begin{split} &Jac\left[\left[-\lambda Z-ig(Z+iHZ),-\lambda W-ig(W+iHW)\right]_{\nabla},-\lambda U-ig(U+iHU)\right]_{\nabla}\\ = &-i\lambda\left\{-i\lambda Jac\left[\left[Z,W\right],U\right]+g\left(Jac\left[\left[Z,W\right],U\right]+iHJac\left[\left[Z,W\right],U\right]\right)\right\}=O, \end{split}$$

or,

$$Jac\,[[\sigma,\tau]_{\nabla}\,,\upsilon]_{\nabla}=O.$$

A similar computation for $E_{\widehat{J}}^{0,1}$ gives the statement, and the proof is complete. \Box

We remark that in the case $\lambda = 0$, ∇ -integrability of \widehat{J} is not sufficient to have the Jacobi identity on $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$. Namely, in this case, we get the following:

Proposition 5.5. ([20]) Let (M, H, g) be a complex Norden manifold, the Jacobi identity holds on $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ if and only if the following conditions are satisfied:

(5.30)
$$R^{D}(HY, HZ) - HR^{D}(HY, Z) - HR^{D}(Y, HZ) - R^{D}(Y, Z) = O$$

(5.31)
$$(R^{D}(HX,Y) + R^{D}(X,HY)) Z + (R^{D}(HZ,X) + R^{D}(Z,HX)) Y + (R^{D}(Y,HZ) + R^{D}(HY,Z)) X = O$$

for all $X, Y, Z \in C^{\infty}(T(M))$, where R^D denotes the curvature operator of the natural canonical connection D on M,

(5.32)
$$R^{D}(X,Y) = D_{X}D_{Y} - D_{Y}D_{X} - D_{[X,Y]}$$

In particular we have the following, [20]:

Theorem 5.6. Let (M, H, g) be a Kähler Norden manifold then $E_{\widehat{j}}^{1,0}$ and $E_{\widehat{j}}^{0,1}$ are complex Lie algebroids.

6 The generalized $\overline{\partial}_{\hat{j}}$ -operator

The following holds:

Proposition 6.1. Let M be a smooth manifold and let $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ be the generalized pseudo calibrated complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of T(M) such that $H^2 = (-1 - \lambda)I$. The natural symplectic structure on E defines a canonical isomorphism between $E_{\widehat{J}}^{0,1}$ and the dual bundle of $E_{\widehat{J}}^{1,0}$, $\left(E_{\widehat{J}}^{1,0}\right)^*$.

Proof. We define

(6.1)
$$\varphi: E_{\widehat{J}}^{0,1} \to \left(E_{\widehat{J}}^{1,0}\right)^*$$

by:

(6.2)

$$(\varphi(Z + iHZ + g(W - iHW + iZ) + i\lambda W))$$
$$(X - iHX + g(Y + iHY - iX) - i\lambda Y) =$$
$$= (Z + iHZ + g(W - iHW + iZ) + i\lambda W, X - iHX + g(Y + iHY - iX) - i\lambda Y)$$

for all $X, Y, Z, W \in C^{\infty}(T(M) \otimes \mathbb{C})$ and we extend by linearity. A direct computation gives:

(6.3)

$$(\varphi(Z + iHZ + g(W - iHW + iZ) + i\lambda W))$$

$$(X - iHX + g(Y + iHY - iX) - i\lambda Y) =$$

$$= g(Y, Z) - g(W, X) + i (g(W, HX) + g(Y, HZ) - g(X, Z))$$

We have immediately that φ is injective and furthermore φ is an isomorphism. \Box

The canonical isomorphism φ between $E_{\hat{j}}^{0,1}$ and the dual bundle $\left(E_{\hat{j}}^{1,0}\right)^*$ allows us to define the $\overline{\partial}_{\hat{j}}$ – *operator* associated to the complex structure \hat{J} , and to the fixed linear connection ∇ on M, as in the following:

let
$$f \in C^{\infty}(M)$$
 and let $df \in C^{\infty}(T^*(M)) \hookrightarrow C^{\infty}(T(M) \oplus T^*(M))$, we pose

(6.4)
$$\overline{\partial}_{\widehat{J}}f = 2\left(df\right)^{0,1} = df + i\widehat{J}df,$$

or,

(6.5)
$$\partial_{\widehat{J}}f = df - iJ^* (df) = df - i (df) J;$$

moreover, we define:

(6.6)
$$\overline{\partial}_{\widehat{J}}: C^{\infty}\left(E^{0,1}_{\widehat{J}}\right) \to C^{\infty}\left(\wedge^{2}\left(E^{0,1}_{\widehat{J}}\right)\right)$$

via the natural isomorphism

(6.7)
$$E_{\widehat{J}}^{0,1} \stackrel{\varphi}{\simeq} \left(E_{\widehat{J}}^{1,0}\right)^*$$

(6.8)
$$\overline{\partial}_{\widehat{J}}: C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \to C^{\infty}\left(\wedge^{2}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$$

(6.9)
$$\left(\overline{\partial}_{\widehat{j}}\alpha\right)(\sigma,\tau) = \rho(\sigma)\,\alpha(\tau) - \rho(\tau)\,\alpha(\sigma) - \alpha\left([\sigma,\tau]_{\nabla}\right),$$

for $\alpha \in C^{\infty}\left(\left(E_{\widehat{j}}^{1,0}\right)^{*}\right), \, \sigma, \tau \in C^{\infty}\left(E_{\widehat{j}}^{1,0}\right).$

In general:

as:

(6.10)
$$\overline{\partial}_{\widehat{J}}: C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \to C^{\infty}\left(\wedge^{p+1}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$$

is defined by:

$$(\overline{\partial}_{\widehat{j}}\alpha)(\sigma_0,...,\sigma_p) =$$

$$(6.11) = \sum_{i=0}^p (-1)^i \rho(\sigma_i) \alpha\left(\sigma_0,..^{\widehat{i}}..,\sigma_p\right) + \sum_{i < j} (-1)^{i+j} \alpha\left([\sigma_i,\sigma_j]_{\nabla},\sigma_0,..^{\widehat{i}}..^{\widehat{j}}..,\sigma_p\right),$$
for $\alpha \in C^{\infty}\left(\wedge^p \left(E_{\widehat{j}}^{1,0}\right)^*\right), \sigma_0,...,\sigma_p \in C^{\infty}\left(E_{\widehat{j}}^{1,0}\right).$

Definition 6.2. $\overline{\partial}_{\widehat{J}}$ is called *generalized* $\overline{\partial}$ – operator of (M, J, g, ∇) or *generalized* $\overline{\partial}_{\widehat{1}} - operator.$

We get the following:

Proposition 6.3. If $E_{\hat{j}}^{1,0}$ and $E_{\hat{j}}^{0,1}$ are complex Lie algebroids then $(\overline{\partial}_{\hat{j}})^2 = 0$ and $\left(\partial_{\hat{\tau}}\right)^2 = 0.$

Proof. It follows from the fact that Jacobi identity holds on $E_{\hat{j}}^{1,0}$ and $\left(E_{\hat{j}}^{1,0}\right)^*$.

It turns out that $\overline{\partial}_{\hat{J}}$ - operator is the exterior derivative, d_L , of the Lie algebroid $L = E_{\widehat{j}}^{1,0}$. Moreover the exterior derivative d_{L^*} of $L^* = \left(E_{\widehat{j}}^{1,0}\right)^*$ is given by the operator $\partial_{\widehat{I}}$ defined by:

(6.12)
$$\partial_{\widehat{J}} : C^{\infty} \left(\wedge^{p} \left(E_{\widehat{J}}^{1,0} \right) \right) \to C^{\infty} \left(\wedge^{p+1} \left(E_{\widehat{J}}^{1,0} \right) \right)$$
$$\left(\partial_{\widehat{J}} \sigma \right) \left(\alpha_{0}^{*}, ..., \alpha_{p}^{*} \right) =$$

$$(6.13) = \sum_{i=0}^{p} (-1)^{i} \rho\left(\alpha_{i}^{*}\right) \sigma\left(\alpha_{0}^{*}, .., \alpha_{p}^{*}\right) + \sum_{i < j} (-1)^{i+j} \sigma\left(\left[\alpha_{i}^{*}, \alpha_{j}^{*}\right]_{\nabla}, \alpha_{0}^{*}, .., \alpha_{p}^{*}\right)$$

for $\sigma \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)\right), \alpha_{0}^{*}, ..., \alpha_{p}^{*} \in C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right).$ In particular $\left(C^{\infty}\left(\wedge^{\bullet}\left(E_{\widehat{J}}^{1,0}\right)\right), \wedge, \overline{\partial}_{\widehat{J}_{j}}, [,]_{\nabla}\right)$ is a differential Gerstenhaber algebraic formula (19)

bra, where \wedge denotes the Schouten bracket, [13], [28].

7 Generalized holomorphic sections

Definition 7.1. $\alpha \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$ is called *generalized holomorphic section* if

(7.1)
$$\overline{\partial}_{\widehat{J}}\alpha = 0.$$

We remark that for all $f \in C^{\infty}(M)$ we have $\overline{\partial}_{\hat{J}}f = 0$ if and only if df = 0, so the generalized holomorphic condition for functions gives only constant functions on connected components of M.

The following holds:

Proposition 7.2. Let $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ be the pseudo calibrated generalized complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of T(M), assume that $H^2 = (-1 - \lambda)I$ with $\lambda \neq 0$. Let ∇ be a linear connection on M such that \widehat{J} is ∇ -integrable, let $W \in C^{\infty}(T(M))$ and let $\sigma = -\lambda W + ig(W - iHW) \in E_{\widehat{J}}^{0,1}$, then $\overline{\partial}_{\widehat{J}}\sigma = 0$ if and only if g(W) is a Lagrangian submanifold of $T^*(M)$ with respect to the standard symplectic structure.

Proof. Let $X, Y \in C^{\infty}(T(M))$, direct computations give:

(7.2)

$$\begin{aligned}
\left(\overline{\partial}_{\widehat{j}}\sigma\right)\left(-\lambda X - ig(X + iHX), -\lambda Y - ig(Y + iHY)\right) &= \\
&= -\lambda X(-2i\lambda g\left(W,Y\right)) + \lambda Y(-2i\lambda g(X,W)) + \\
-\sigma([\lambda X,\lambda Y] + ig(X + iHY,\lambda Y) - ig(\lambda X,Y + iHY)) \\
&= 2i\lambda^2 \{Xg(W,Y) - Yg(W,X) - g([X,Y],W)\}.
\end{aligned}$$

In particular we have $(\overline{\partial}_{\widehat{I}}\sigma) = 0$ if and only if:

(7.3)
$$(d(g(W)))(X,Y) = 0,$$

and then, by using a classical result in symplectic geometry, [15], we have that $\sigma = -\lambda W + ig(W - iHW)$ is a generalized holomorphic section of $E_{\hat{J}}^{0,1}$ if and only if g(W) is a Lagrangian submanifold of $T^*(M)$ with respect to the standard symplectic structure.

Examples of generalized holomorphic sections can be obtained naturally in the field of Hessian geometry, [24], [26]. The concept of Hessian manifold was inspired by the Bergmann metric on bounded domains in \mathbb{C}^n and now is a very interesting topic, related to many other fields in mathematics and theoretical physics: Kähler and symplectic geometry, affine differential geometry, special manifolds, string theory and mirror symmetry, [6], [7], [8], [14], [26], [27].

Definition 7.3. Let (M, g) be a pseudo Riemannian manifold, g is called of *Hessian* type if there exists $u \in C^{\infty}(M)$ such that $g = Hess(u) = \nabla^2 u$, where ∇ is the Levi Civita connection of g. (M, g) is called *Hessian pseudo Riemannian manifold* if g is of Hessian type.

Proposition 7.4. Let (M, H, g) be a Hessian pseudo Riemannian manifold such that H is a g-symmetric operator and $H^2 = (-1 - \lambda)I$, $\lambda \neq 0$. Let ∇ be the Levi Civita connection of g, assume $\widehat{J} = \begin{pmatrix} H & \lambda g^{-1} \\ g & -H^* \end{pmatrix}$ is ∇ -integrable. Let $\{x_1, ..., x_n\}$ be local coordinates on M, let $\left\{\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_n}\right\}$ be local frames for T(M), if the curvature tensor of ∇ , R^{∇} , vanishes, then for all k = 1, ..., n the local section

$$\sigma_k = -\lambda \frac{\partial}{\partial x_k} + ig\left(\frac{\partial}{\partial x_k} - iH\frac{\partial}{\partial x_k}\right) \in C^{\infty}\left(E_{\widehat{J}}^{0,1}\right)$$

is $\overline{\partial}_{\widehat{1}}$ -closed.

Proof. Let $g = \nabla^2 u$, then:

$$g_{jk} = \frac{\partial^2 u}{\partial x_j \partial x_k} - \sum_{l=1}^n \Gamma_{jk}^l \frac{\partial u}{\partial x_l},$$

where $\left\{\Gamma_{jk}^{l}\right\}$ are Christoffel's symbols of g. In particular $g\left(\frac{\partial}{\partial x_{k}}\right)$ is d closed if and only if for all i, j, k = 1, ..., n:

$$\begin{aligned} &\frac{\partial^3 u}{\partial x_j \partial x_k \partial x_i} - \sum_{l=1}^n \frac{\partial \Gamma_{jk}^l}{\partial x_i} \frac{\partial u}{\partial x_l} - \sum_{l=1}^n \Gamma_{jk}^l \frac{\partial^2 u}{\partial x_l \partial x_i} + \\ &- \frac{\partial^3 u}{\partial x_i \partial x_k \partial x_j} + \sum_{l=1}^n \frac{\partial \Gamma_{ik}^l}{\partial x_j} \frac{\partial u}{\partial x_l} + \sum_{l=1}^n \Gamma_{ik}^l \frac{\partial^2 u}{\partial x_l \partial x_j} \\ &= \sum_{l=1}^n \left(\Gamma_{ik}^l \left(\frac{\partial^2 u}{\partial x_l \partial x_j} - \sum_{r=1}^n \Gamma_{lj}^r \frac{\partial u}{\partial x_r} \right) - \Gamma_{jk}^l \left(\frac{\partial^2 u}{\partial x_l \partial x_i} - \sum_{r=1}^n \Gamma_{li}^r \frac{\partial u}{\partial x_r} \right) \right) \\ &= 0 \end{aligned}$$

or:

$$\sum_{l=1}^{n} \left(\frac{\partial \Gamma_{ik}^{l}}{\partial x_{j}} - \frac{\partial \Gamma_{jk}^{l}}{\partial x_{i}} + \sum_{r=1}^{n} \left(\Gamma_{ik}^{r} \Gamma_{rj}^{l} - \Gamma_{jk}^{r} \Gamma_{ri}^{l} \right) \right) \frac{\partial u}{\partial x_{l}}$$
$$= \sum_{l=1}^{n} R_{ijk}^{i} \frac{\partial u}{\partial x_{l}} = 0$$

and thus, by using Proposition 7.2., we have the statement.

The holomorphic sections in the case $\lambda = 0$ have been studied in [20].

Acknowledgement. The author acknowledges the support of PRIN "Proprietà geometriche delle varietà geometriche reali e complesse" of MIUR (2010NNBZ78) and of GNSAGA of INDAM.

References

- S. Amari, Differential-Geometrical Methods in Statistics, Lectures Notes in Statistics 28 (1985).
- [2] A.M. Blaga, M. Crasmareanu, A class of almost tangent structures in generalized geometry, Balkan J. Geom. Appl. 19 (2014), no. 2, 23-35.
- [3] A. Borowiec, M. Francaviglia, I. Volovich, Anti-Kählerian manifolds, Diff. Geom. Appl. 12 (2000), 281-289.
- [4] V. Cruceanu, P. Fortuny, P. M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math. 26 (1995), 83-115.
- [5] L. David, On cotangent manifolds, complex structures and generalized geometry, Annals-Institut Fourier 66 (2016), 1-28.
- [6] J. Diustermaat, On Hessian Riemannian structures, Asian J. Math. 5 (2001), 79-91.
- [7] D. S. Freed, Special Kähler manifolds, Comm. in Math. Physics 203(1) (1999), 31-52.
- [8] N. Hitchin, The moduli space of special Lagrangian submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 503-515.
- [9] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford 54, (2003), 281-308.
- [10] M. Gualtieri, Generalized Complex Geometry, Ann. of Math. (2) 174 (2011), 75-123.
- [11] G. Ganchev, V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. et Inf. 81, (1987), 195-206.
- [12] T. Kurose, Statistical manifolds admitting torsion, Geometry and Somethong, Fukuoka University, (2007).
- [13] Y. Kosmann-Schwarzbach, Exact Gerstenhaber Algebras and Lie Bialgebroids, Acta Applicandae Mathematicae 41 (1995), 153-165.
- [14] J. Loftin, S.T. Yau, E. Zaslow, Affine manifolds, SYZ Geometry and the "Y" vertex, Journal of Differential Geometry 71 (1) (2005), 129-158.
- [15] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical Monographs, Oxford Science Publications (1995).
- [16] A. Nannicini, Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, Journal of Geometry and Physics 56 (2006), 903-916.
- [17] A. Nannicini, Almost complex structures on cotangent bundles and generalized geometry, Journal of Geometry and Physics 60 (2010), 1781-1791.
- [18] A. Nannicini, Special Kähler manifolds generalized geometry, Differential Geometry and its Applications 31 (2013), 230-238.
- [19] A. Nannicini, Generalized geometry of pseudo-Riemannian manifolds and generalized d
 -operator, Adv. Geom. 16 (2) (2016), 165-173.
- [20] A. Nannicini, Generalized geometry of Norden manifolds, Journal of Geometry and Physics 99 (2016), 244-255.
- [21] M. Nogushi, Geometry of statistical manifolds, Differential Geometry and its Applications 2 (1992), 197-222.

- [22] A. P. Norden, On a class of four-dimensional A-spaces, Russian Math. (Izv VUZ) 17(4)(1960), 145-157.
- [23] J. Pradines, Théorie de Lie pour les groupoides différentiables. Calcul différentiel dans la catégorie des groupoides infinitésimaux, C.R.Acad. Sc. Paris, t. 264, Série A, (1967), 245-248.
- [24] A. A. Salimov, A. Gezer, Norden structures of Hessian type, Turk. J. Math. 38 (2014), 462-469.
- [25] A. A. Salimov, M. Iscan, F. Etayo, Paraholomorphic B-manifolds and its properties, Topology and its Applications 154 (2007), 925-933.
- [26] H. Shima, K.Yagi, *Geometry of Hessian manifolds*, Differential geometry and its applications 7 (1997), 277-290.
- [27] B. Totaro, The curvature of a Hessian manifold, Int. J. Math. 15 (4) (2004), 369-391.
- [28] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.

Author's address:

Antonella Nannicini

Università di Firenze, Italy, Dipartimento di Matematica e Informatica "U. Dini" Viale Morgagni 67/a 50134 Firenze, Italy.

E-mail: antonella.nannicini@unifi.it