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Abstract. We consider pseudo calibrated generalized complex structures,
Ĵ , defined by a pseudo Riemannian metric g and a g−symmetric operator
H such that H2 = µI, µ ∈ R, on a smooth manifold M. These struc-
tures include the case of complex Norden manifolds for µ = −1, studied
in [20], the case of almost tangent structures for µ = 0, ImH = KerH,
and the case of para Norden manifolds for µ = 1. The special case H = O
is described in [19]. We study integrability conditions of Ĵ , with respect
to a linear connection ∇, and we describe examples of geometric struc-
tures that naturally give rise to integrable pseudo calibrated generalized
complex structures. We prove that for µ ̸= −1 integrability implies that
the ±i−eigenbundles of Ĵ , E1,0

Ĵ
, E0,1

Ĵ
, are complex Lie algebroids. We de-

fine the concept of generalized ∂Ĵ -operator of (M,H, g,∇) and we study
holomorphic sections.
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1 Introduction

Generalized complex structures were introduced by Hitchin in [9], and further investi-
gated by Gualtieri in [10], in order to unify symplectic and complex geometry. In this
paper we consider the concept of generalized complex structure introduced in [16],
[17] and also studied in [5], [18], [19], [20].

Let (M, g) be a smooth pseudo Riemannian manifold, let T (M) be the tangent
bundle, let T ∗ (M) be the cotangent bundle and let E = T (M)⊕T ∗ (M) be the gen-
eralized tangent bundle of M . A pseudo calibrated generalized complex structure of
M is a complex structure on E which is pseudo calibrated with respect to the canon-
ical symplectic structure of E. A linear connection, ∇, on M defines a bracket, [ , ]∇,
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on sections of E and we can define the concept of ∇−integrability for generalized
complex structures. We consider pseudo calibrated generalized complex structures
Ĵ defined by a pseudo Riemannian metric g and a g− symmetric operator H such
that H2 = µI, µ ∈ R, on M. These structures include the case of complex Norden
manifolds for µ = −1, studied in [20], the case of almost tangent structures for µ = 0,
ImH = KerH, and the case of para Norden manifolds for µ = 1. The special case
H = O is described in [19].

We study the integrability conditions of Ĵ , with respect to a linear connection
∇ with torsion T∇, and we describe examples of geometric structures that naturally
give rise to integrable pseudo calibrated generalized complex structures. Then we
prove that for µ ̸= −1 integrability implies that the ±i−eigenbundles of Ĵ , E1,0

Ĵ
,

E0,1

Ĵ
, are complex Lie algebroids. We define the concept of generalized ∂Ĵ− operator

of (M,H, g,∇); from the Jacobi identity on E1,0

Ĵ
it follows (∂Ĵ)

2 = 0 and, as ∂Ĵ is the

exterior derivative of the Lie algebroid E1,0

Ĵ
, we get that (C∞(∧•(E1,0

Ĵ
)),∧, ∂Ĵ,, [ , ]∇)

is a differential Gerstenhaber algebra, where ∧ denotes the Schouten bracket, [13], [28].
Finally we study certain holomorphic sections.

The paper is organized as in the following. In section 2 we introduce preliminary
material of the generalized tangent bundle and of generalized complex structures; in
section 3 we compute integrability conditions and in section 4 we give examples of
integrable structures; section 5 is devoted to the study of complex Lie algebroids nat-
urally associated to integrable pseudo calibrated generalized complex structures; in
section 6 we define the concept of generalized ∂Ĵ−operator on M and in section 7 we
study some generalized holomorphic sections, in particular, in this context, Hessian
manifolds occur as interesting examples.

This paper is a generalization of our previous papers [19], [20] and allows us to
unify complex Norden and para Norden manifolds through almost tangent structures
and statistical manifolds. The theory reveals that the case of complex Norden mani-
folds is special.

2 Preliminaries

Let M be a smooth manifold of real dimension n and let E = T (M)⊕T ∗ (M) be the
generalized tangent bundle of M. Smooth sections of E are elements X + ξ ∈ C∞(E)
where X ∈ C∞(T (M)) is a vector field and ξ ∈ C∞(T ∗ (M)) is a 1− form.

E is equipped with a natural symplectic structure, ( , ), defined by:

(2.1) (X + ξ, Y + η) = −1

2
(ξ(Y )− η(X))

and a natural indefinite metric, ⟨ , ⟩, defined by:

(2.2) ⟨X + ξ, Y + η⟩ = −1

2
(ξ(Y ) + η(X)).

⟨ , ⟩ is non degenerate and of signature (n, n).
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A linear connection on M , ∇, defines, in a canonical way, a bracket [ , ]∇ on
C∞(E), as follows:

(2.3) [X + ξ, Y + η]∇ = [X,Y ] +∇Xη −∇Y ξ.

Like in [16], a direct computation gives the following:

Lemma 2.1. For all X,Y ∈ C∞(T (M)), for all ξ, η ∈ C∞(T ∗(M)) and for all
f ∈ C∞(M) we have:
1. [X + ξ, Y + η]∇ = − [Y + η,X + ξ]∇ ,

2. [f(X + ξ), Y + η]∇ = f [X + ξ, Y + η]∇ − Y (f) (X + ξ) ,

3. Jacobi’s identity holds for [ , ]∇ if and only if ∇ has zero curvature.

We consider the following concept of generalized complex structure:

Definition 2.2. A generalized complex structure on M is an endomorphism Ĵ : E →
E such that Ĵ2 = −I .

Definition 2.3. A generalized complex structure Ĵ is called pseudo calibrated if it
is ( , )−invariant and if the bilinear symmetric form defined by ( , Ĵ) on T (M) is

non degenerate, moreover Ĵ is called calibrated if it is pseudo calibrated and ( , Ĵ )
is positive definite.

From the definition we get that a pseudo calibrated complex structure Ĵ can be
written in the following block matrix form:

(2.4) Ĵ =

(
H −(I +H2)g−1

g −H∗

)

where g : T (M) → T ∗ (M) is identified to the bemolle musical isomorphism of the
pseudo Riemannian metric g on M , H : T (M) → T (M) is a g-symmetric operator
and H∗ : T ∗ (M) → T ∗ (M) is the dual operator of H defined by:
H∗(ξ)(X) = ξ(H(X)).

We have:

(2.5) (g(X)) (Y ) = g(X,Y ) = 2
(
X, ĴY

)
for all X,Y ∈ T (M).

In the following we will consider g-symmetric operators H : T (M) → T (M) such
that H2 = µI where µ ∈ R and I denotes identity. In this case we have:

(2.6) Ĵ =

(
H λg−1

g −H∗

)
where λ = −1− µ.

We remark that for µ = −1 (M,H, g) is a Norden manifold, [20], for µ = 0 and
ImH = KerH, (M,H) is an almost tangent manifold, [2], and for µ = 1 (M,H, g) is
a para Norden manifold. The special case H = O is described in [19].
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3 Integrability

Let ∇ be a linear connection on M and let [ , ]∇ be the bracket on C∞(E) defined
by ∇, the following holds:

Lemma 3.1. ([17]) Let Ĵ : E → E be a generalized complex structure on M and let

(3.1) N∇(Ĵ) : C∞(E)× C∞(E) → C∞(E)

defined by:

(3.2) N∇(Ĵ)(σ, τ) =
[
Ĵσ, Ĵτ

]
∇
− Ĵ

[
Ĵσ, τ

]
∇
− Ĵ

[
σ, Ĵτ

]
∇
− [σ, τ ]∇ ,

for all σ, τ ∈ C∞(E); N∇(Ĵ) is a skew symmetric tensor.

Definition 3.2. N∇(Ĵ) is called the Nijenhuis tensor of Ĵ with respect to ∇.

Definition 3.3. Let Ĵ : E → E be a generalized complex structure on M, Ĵ is called
∇−integrable if N∇(Ĵ) = 0.

Let T∇ be the torsion of ∇:

(3.3) T∇(X,Y ) = ∇XY −∇YX − [X,Y ]

and let d∇ be the exterior differential associated to ∇:

(3.4)
(
d∇g

)
(X,Y ) = (∇Xg) (Y )− (∇Y g) (X) + g

(
T∇(X,Y )

)
for all X,Y ∈ C∞(TM).

We have the following:

Proposition 3.4. Let Ĵ =

(
H λg−1

g −H∗

)
be the pseudo calibrated generalized com-

plex structure on M defined by a pseudo Riemannian metric g and a g−symmetric
operator H of T (M) such that H2 = (−1− λ)I. Let N∇(Ĵ) be the generalized Nijen-

huis tensor of Ĵ defined by (3 .2 ), then for all X,Y ∈ C∞(T (M)) we have:

(3.5)
N∇(Ĵ)(X,Y ) = N(H)(X,Y )− λg−1

(
(d∇g)(X,Y )

)
+

+(d∇g)(HX,Y ) + (d∇g)(X,HY ) + g((∇YH) (X)− (∇XH) (Y ))

(3.6)

N∇(Ĵ)(X, g(Y )) = λ ((∇XH) (Y )− (∇YH) (X))+

−λg−1((∇HXg) (Y )− (∇Xg) (HY ))+

+λg−1(T∇(HX,Y )−HT∇(X,Y ))+

+λ((d∇g)(X,Y ))− g((∇HXH) (Y )−H (∇XH) (Y ))
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(3.7)
N∇(Ĵ)(g(X), g(Y )) = −λ2g−1

(
(d∇g)(X,Y )

)
+

+λg((∇YH)(X)− (∇XH) (Y ))

where N(H) is the Nijenhuis tensor of H defined by:

(3.8) N(H)(X,Y ) = [HX,HY ]−H [HX,Y ]−H [X,HY ] +H2 [X,Y ] .

Proof. Direct computations give:

N∇(Ĵ)(X,Y ) = [HX + g(X),HY + g(Y )]∇ +

−Ĵ [HX + g(X), Y )]∇ − Ĵ [X,HY + g(Y )]∇ − [X,Y ]∇

= [HX,HY ] +∇HXg(Y )−∇HY g(X)+

−Ĵ ([HX,Y ]−∇Y g(X) + [X,HY ] +∇Xg(Y ))− [X,Y ]

= [HX,HY ]−H [HX,Y ]−H [X,HY ] + λg−1 (∇Y g(X)−∇Xg(Y ))+

− [X,Y ] +∇HXg(Y )−∇HY g(X)− g ([HX,Y ])+

−H∗ (∇Y g(X))− g ([X,HY ]) +H∗ (∇Xg(Y ))

= N(H)(X,Y ) + λ [X,Y ] + λg−1((∇Y g)(X)− g (∇XY ))+

+ (∇HXg) (Y )− (∇HY g) (X) + g((∇YH)(X)− (∇XH)(Y ))+

−H∗ ((∇Y g) (X)) +H∗ ((∇Xg) (Y )) + g
(
T∇(HX,Y

)
+ T∇(X,HY ))

= N(H)(X,Y ) + λg−1((∇Y g)(X)− (∇Xg)(Y )− λT∇(X,Y ))+

+ (∇HXg) (Y )− (∇HY g) (X) + g((∇YH)(X)− (∇XH)(Y ))+

− ((∇Y g) (HX)) + ((∇Xg) (HY )) + g
(
T∇(HX,Y

)
+ T∇(X,HY ))

= N(H)(X,Y )− λg−1
(
(d∇g)(X,Y )

)
+

+(d∇g)(HX,Y ) + (d∇g)(X,HY ) + g((∇YH)(X)− (∇XH) (Y ))

N∇(Ĵ)(X, g(Y )) = [HX + g(X), λY − g(HY )]∇ − Ĵ [HX + g(X), g(Y )]∇ +

−Ĵ [X,λY − g(HY )]∇ −∇Xg(Y )

= λ [HX,Y ]−∇HXg(HY )− λ∇Y g(X)− Ĵλ [X,Y ] +

+Ĵ∇Xg(HY )− Ĵ∇HXg(Y )−∇Xg(Y )

= λ [HX,Y ]−∇HXg(HY )− λ∇Y g(X)− Ĵλ [X,Y ] +

−λH [X,Y ]− λg ([X,Y ]) + λg−1(∇Xg(HY ))− λg−1((∇HXg(Y )−∇Y g(X))

+H∗ (∇HXg(Y ))−H∗ (∇Xg(HY ))−∇Xg(Y )

= λ((∇XH)(Y )− (∇YH) (X)− g−1((∇HXg)(Y )− (∇Xg)(HY )+

+g(T∇(HX,Y )−HT∇(X,Y )))+λ(d∇g)(X,Y )− g((∇HXH)(Y )− (∇XH) (Y ))

N∇(Ĵ)(g(X), g(Y )) = [λX − g(HX), λY − g(HY )]∇ +
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−Ĵ [λX − g(HX), Y )]∇ − Ĵ [g(X), λY − g(HY )]∇

= λ2 [X,Y ]− λ
{
λg−1((∇Xg(Y )−∇Y g(X))

}
+

−λ {−H∗ (∇Xg(Y )) +H∗ (∇Y g(X))}
= λ2

(
−T∇(X,Y )− g−1((∇Xg) (Y )− (∇Y g) (X)

)
+

−λ (g((∇YH)(X)− (∇XH) (Y )))

= −λ2g−1
(
(d∇g)(X,Y )

)
+ λg((∇YH)X − (∇XH)Y ).

�

In particular we get:

Theorem 3.5. For λ(λ+ 1) ̸= 0 Ĵ =

(
H λg−1

g −H∗

)
is ∇−integrable if and only if

the following conditions hold:

(3.9)


d∇g = 0

N(H) = 0

∇H = 0.

For λ = 0 Ĵ =

(
H O

g −H∗

)
is ∇−integrable if and only if the following conditions

hold:

(3.10)


N(H) = 0

(∇HXH) = H (∇XH)(
d∇g

)
(HX,Y ) + (d∇g)(X,HY )− g((∇XH) (Y )− (∇YH) (X)) = 0.

For λ = −1 Ĵ =

(
H −g−1

g −H∗

)
is∇−integrable if and only if the following conditions

hold:

(3.11)



d∇g = 0

N(H) = 0

(∇XH) (Y ) = (∇YH) (X)

(∇HXH) = H (∇XH) .

Proof. If λ ̸= 0 then from (3.7) and (3.5) we get immediately the first and second
condition in (3.9) and (3.11) and the third in (3.11) . Moreover:

(∇HXg) (Y )− (∇Xg) (HY ) + g(T∇(HX,Y )−HT∇(X,Y ))

=
(
d∇g

)
(HX,Y ) + (∇Y g) (HX)− (∇Xg) (HY )− g(HT∇(X,Y ))

=
(
d∇g

)
(HX,Y ) +H∗((∇Y g) (X)− (∇Xg) (Y )− g(T∇(X,Y ))

=
(
d∇g

)
(HX,Y )−H∗ ((d∇g) (X,Y )

)
;
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then we get (3.11) . In order to obtain (3.9) remark that if λ ̸= −1, we have

(∇XH) (Y ) = H−1((∇HXH) (Y )) =
1

−1− λ
H((∇HXH) (Y ))

=
1

−1− λ
H((∇YH) (HX))

=
1

−1− λ
H
(
∇YH

2X −H∇YHX)
)

=
1

−1− λ
H2(H∇YX −∇YHX)

= − (∇YH) (X)

= − (∇XH) (Y );

thus the third condition in (3.9) is obtained. Finally, (3.10) and (3.12) immediately

follow. On the other hand if (3.9), respectively (3.10), (3.11) hold, then N∇(Ĵ) = 0,
and the proof is complete. �

Corollary 3.6. If H = O Ĵ =

(
O −g−1

g O

)
is ∇− integrable if and only if

(3.12) d∇g = 0.

4 Examples

Examples of integrable structures with H = 0 can be found in the context of quasi
statistical manifolds.

Definition 4.1. ([1]), ([21]) Let (M, g,∇) be a pseudo Riemannian manifold with a
torsion free linear connection, if ∇g is symmetric then (M, g,∇) is called a statistical
manifold.

The concept of statistical manifold can be generalized to statistical manifolds ad-
mitting torsion or quasi statistical manifolds [12]:

Definition 4.2. Let (M, g) be a pseudo Riemannian manifold and let ∇ be a linear
connection on M with torsion T∇ then (M, g,∇) is called a quasi statistical manifold
or statistical manifold admitting torsion if, for all X,Y ∈ C∞(T (M)), the following
formula holds:

(4.1) (∇Xg)Y − (∇Y g)X + g(T∇(X,Y )) = 0.

As a direct consequence of (3.4) and (3.12) we get the following:

Corollary 4.3. Let (M, g) be a pseudo Riemannian manifold and let ∇ be a linear
connection on M with torsion T∇, let

(4.2) Ĵ =

(
O −g−1

g O

)
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be the generalized complex structure on M defined by g, Ĵ is ∇− integrable if and
only if (M, g,∇) is a quasi statistical manifold.

Examples of integrable structures with H2 = −I can be found in the context of
Norden manifolds.

Norden manifolds were introduced by A. P. Norden in [22] and then studied also
under the names of almost complex manifolds with B-metric and anti Kählerian man-
ifolds, [3], [11]. They have applications in mathematics and in theoretical physics.

Definition 4.4. Let (M,H) be an almost complex manifold of real dimension 2n
and let g be a pseudo Riemannian metric on M , if H is a g-symmetric operator then
g is called Norden metric and (M,H, g) is called Norden manifold. If (M,H, g) is a
Norden manifold with H integrable then it is called complex Norden manifold.

Let (M,H, g) be a complex Norden manifold, the following holds:

Theorem 4.5. ([11]) On a complex manifold with Norden metric (M,H, g) there
exists a unique linear connection D with torsion T such that:

(4.3) (DXg) (Y, Z) = 0

(4.4) T (HX,Y ) = −T (X,HY )

(4.5) g(T (X,Y ), Z) + g(T (Y, Z), X) + g(T (Z,X), Y ) = 0

for all vector fields X, Y , Z on M.

D is called the natural canonical connection of the Norden manifold orB−connection
and it is defined by:

(4.6) DXY = ∇XY − 1

2
H(∇XH)Y

where ∇ is the Levi-Civita connection of g.
In particular, if D is the natural canonical connection of the complex Norden

manifold (M,H, g) , then

(4.7) DH = 0.

Corollary 4.6. Let (M,H, g) be a complex Norden manifold and let D be the natural
canonical connection, let

(4.8) Ĵ =

(
H O
g −H∗

)
be the generalized complex structure defined by H and g, Ĵ is D− integrable.

Definition 4.7. Let (M,H, g) be a Norden manifold and let ∇ be the Levi-Civita
connection of g, if ∇H = 0 then (M,H, g) is called Kähler Norden manifold.
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We remark that for a Kähler Norden manifold (M,H, g) the structure H is inte-
grable and the natural canonical connection is the Levi Civita connection.

Examples of integrable structures with H2 = I are given by para Norden mani-
folds, [4], [25].

Definition 4.8. An almost product structure on a differentiable manifold M is a
(1, 1) tensor field H on M such that H2 = I. The pair (M,H) is called an almost
product manifold.

Definition 4.9. An almost paracomplex manifold is an almost product manifold
(M,H) such that the two eigenbundles, T+(M), T−(M), associated to the two eigen-
values, +1 and −1 of H respectively, have the same rank.

Definition 4.10. An almost paracomplex Norden manifold (M,H, g) is a real smooth
manifold of dimension 2n with an almost paracomplex structure H and a pseudo Rie-
mannian metric g such that H is a g−symmetric operator.

Definition 4.11. A paraholomorphic Norden manifold, or para Kähler Norden man-
ifold, is an almost paracomplex Norden manifold (M,H, g) such that ∇H = 0, where
∇ is the Levi Civita connection of g.

We remark that for an almost paracomplex structure H the vanishing of the
Nijenhuis tensor N(H) is equivalent to the existence of a torsion free linear connection
∇ such that ∇H = 0, [25]. In particular from (3.9) we get immediately the following:

Corollary 4.12. Let (M,H, g) be a paraholomorphic Norden manifold and let ∇ be
the Levi Civita connection of g, let

(4.9) Ĵ =

(
H −2g−1

g −H∗

)
be the generalized complex structure on M defined by H and g, Ĵ is ∇− integrable.

5 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [23]; we recall here the definition
and the main properties.

Definition 5.1. A complex Lie algebroid is a complex vector bundle L over a smooth
real manifold M such that: a Lie bracket [ , ] is defined on C∞(L), a smooth bundle
map ρ : L → T (M) ⊗ C, called anchor, is defined and, for all σ, τ ∈ C∞(L), for all
f ∈ C∞(M), the following conditions hold:
1. ρ ([σ, τ ]) = [ρ (σ) , ρ (τ)]

2. [fσ, τ ] = f ([σ, τ ])− (ρ (τ) (f))σ.
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Let L and its dual vector bundle L∗ be Lie algebroids; on sections of ∧L, respec-
tively ∧L∗, the Schouten bracket is defined by:

(5.1) [ , ]L : C∞ (∧pL)× C∞ (∧qL) −→ C∞ (∧p+q−1L
)

(5.2)

[X1 ∧ ... ∧Xp, Y1 ∧ ... ∧ Yq]L =

=
p∑

i=1

q∑
j=1

(−1)i+j [Xi, Yj ]L ∧X1 ∧ ..̂i.. ∧Xp ∧ Y1 ∧ ..ĵ .. ∧ Yq

and, for f ∈ C∞ (M) , X ∈ C∞ (L)

(5.3) [X, f ]L = − [f,X]L = ρ(X)(f);

respectively, by:

(5.4) [ , ]L∗ : C∞ (∧pL∗)× C∞ (∧qL∗) −→ C∞ (∧p+q−1L∗)

(5.5)

[
X∗

1 ∧ ... ∧X∗
p , Y

∗
1 ∧ ... ∧ Y ∗

q

]
L∗ =

=
p∑

i=1

q∑
j=1

(−1)i+j
[
X∗

i , Y
∗
j

]
L∗ ∧X∗

1 ∧ ..̂i.. ∧X∗
p ∧ Y ∗

1 ∧ ..ĵ .. ∧ Y ∗
q

and, for f ∈ C∞ (M) , X ∈ C∞ (L∗)

(5.6) [X, f ]L∗ = − [f,X]L∗ = ρ(X)(f).

Moreover the exterior derivatives d and d∗ associated with the Lie algebroid struc-
ture of L and L∗ are defined respectively by:

(5.7) d : C∞ (∧pL∗) −→ C∞ (∧p+1L∗)

(5.8)

(dα) (σ0, ..., σp) =

=
p∑

i=0

(−1)iρ (σi)α
(
σ0, ..̂

i.., σp

)
+
∑
ilj

(−1)i+jα
(
[σi, σj ]L , σ0, ..̂

i..ĵ .., σp

)
for α ∈ C∞ (∧pL∗), σ0, ..., σp ∈ C∞ (L) ,
and:

(5.9) d∗ : C∞ (∧pL) −→ C∞ (∧p+1L
)

(5.10)

(d∗α) (σ0, ..., σp) =

=
p∑

i=0

(−1)iρ (σi)α
(
σ0, ..̂

i.., σp

)
+
∑
ilj

(−1)i+jα
(
[σi, σj ]L∗ , σ0, ..̂

i..ĵ .., σp

)
for α ∈ C∞ (∧pL), σ0, ..., σp ∈ C∞ (L∗) .
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LetM be a smooth manifold and let Ĵ =

(
H λg−1

g −H∗

)
be the generalized pseudo

calibrated complex structure on M defined by a pseudo Riemannian metric g and a
g−symmetric operator H of T (M) such that H2 = (−1− λ)I.

Let

(5.11) EC = (T (M)⊕ T ∗ (M))⊗ C

be the complexified generalized tangent bundle. The splitting in ±i eigenspaces of Ĵ
is denoted by:

(5.12) EC = E1,0

Ĵ
⊕ E0,1

Ĵ

with

(5.13) E0,1

Ĵ
= E1,0

Ĵ
.

A direct computation gives:

(5.14)
E1,0

Ĵ
= {Z − iHZ + g(W + iHW − iZ) + i(−λ)W | Z,W ∈ C∞(T (M)⊗ C)} ,

equivalently E1,0

Ĵ
is generated by elements of the following type:

(5.15) Z − iHZ − ig(Z)

with Z ∈ C∞(T (M)),

(5.16) −λiW + g(W + iHW )

with W ∈ C∞(T (M)).

Analogously we have:

(5.17)
E0,1

Ĵ
= {Z + iHZ + g(W − iHW + iZ)− i(−λ)W | Z,W ∈ C∞(T (M)⊗ C)}

and E0,1

Ĵ
is generated by elements of the following type:

(5.18) Z + iHZ + ig(Z) with Z ∈ C∞(T (M)),

(5.19) λiW + g(W − iHW ) with W ∈ C∞(T (M)).

Lemma 5.2. For λ ̸= 0 the map

ψ : T (M)⊗ C → T (M)⊗ C

defined by:

(5.20) ψ(Z) = Z + iHZ

is an isomorphism and

(5.21) ψ(Z − iHZ)− ig(ψ(Z)) = −λZ − ig(Z + iHZ) = −i(−λiZ + g(Z + iHZ)).
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Proof. We have that ψ injective if and only if (I + iH) is invertible, or i is not
an eigenvalue of H. Moreover a direct computation, by using the condition H2 =
(−1− λ)I, gives (5.21) . �

Corollary 5.3. If λ ̸= 0 then:

(5.22) E1,0

Ĵ
= {−λZ − ig(Z + iHZ) | Z ∈ C∞(T (M)⊗ C)} ,

(5.23) E0,1

Ĵ
= {−λZ + ig(Z − iHZ) | Z ∈ C∞(T (M)⊗ C)} .

Moreover, for any linear connection ∇, the following holds:

Lemma 5.4. E1,0

Ĵ
and E0,1

Ĵ
are [ , ]∇ −involutive if and only if N∇(Ĵ) = 0.

Proof. Let P+ : EC → E1,0

Ĵ
and P− : EC → E0,1

Ĵ
be the projection operators:

(5.24) P± =
1

2
(I ∓ iĴ),

for all σ, τ ∈ C∞(EC) we have:

(5.25)
P∓ [P±(σ), P±(τ)]∇ = P∓

[
1
2

(
σ ∓ iĴσ

)
, 12

(
τ ∓ iĴτ

)]
∇

= −1
8 (N

∇(Ĵ) (σ, τ)± iĴN∇(Ĵ) (σ, τ)) = −1
4P∓

(
N∇(Ĵ) (σ, τ)

)
,

and the proof is complete. �

Theorem 5.4. Let Ĵ =

(
H λg−1

g −H∗

)
be the pseudo calibrated generalized complex

structure onM defined by a pseudo Riemannian metric g and a g−symmetric operator
H of T (M) such that H2 = (−1 − λ)I with λ ̸= 0, let ∇ be a linear connection on

M , if Ĵ is ∇−integrable then E1,0

Ĵ
and E0,1

Ĵ
are complex Lie algebroids.

Proof. The anchor

(5.26) ρ : E1,0

Ĵ
→ T (M)⊗ C

is defined by

(5.27) ρ(−λZ − ig(Z + iHZ)) = −λZ.

Conditions 1. and 2. of the definition are trivially satisfied then we need to prove the
the Jacobi identity holds.
Let σ, τ, υ ∈ E1,0

Ĵ
, we denote Jacobiator with Jac, that is:

(5.28) Jac [[σ, τ ]∇ , υ]∇ = [[σ, τ ]∇ , υ]∇ + [[τ, υ]∇ , σ]∇ + [[υ, σ]∇ , τ ]∇ .
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We may assume, without loss of generality, that:

(5.29)

σ = −λZ − ig(Z + iHZ)

τ = −λW − ig(W + iHW )

υ = −λU − ig(U + iHU),

with Z,W,U ∈ C∞(T (M)⊗ C) and use integrability conditions.

We compute

Jac [[−λZ − ig(Z + iHZ),−λW − ig(W + iHW )]∇ ,−λU − ig(U + iHU)]∇ .

As well, we have

[−λZ − ig(Z + iHZ),−λW − ig(W + iHW )]∇
= −λ2 [Z,W ] + iλ∇Zg(W + iHW )− iλ∇W g(Z + iHZ)

= −iλ {−iλ [Z,W ]− (∇Zg) (W + iHW ) + (∇W g) (Z + iHZ)}+
+iλ {g (∇Z(W + iHW ))− g (∇W (Z + iHZ))}

= −iλ {−iλ [Z,W ]− g ([Z,W ]− iH [Z,W ])}+
−
(
d∇g

)
(Z,W )− iH∗(d∇g)(Z,W )

= −iλ {−iλ [Z,W ] + g ([Z,W ] + iH [Z,W ])} ,

and then

Jac [[−λZ − ig(Z + iHZ),−λW − ig(W + iHW )]∇ ,−λU − ig(U + iHU)]∇
= −iλ {−iλJac [[Z,W ] , U ] + g (Jac [[Z,W ] , U ] + iHJac [[Z,W ] , U ])} = O,

or,
Jac [[σ, τ ]∇ , υ]∇ = O.

A similar computation for E0,1

Ĵ
gives the statement, and the proof is complete. �

We remark that in the case λ = 0, ∇−integrability of Ĵ is not sufficient to have
the Jacobi identity on E1,0

Ĵ
and E0,1

Ĵ
. Namely, in this case, we get the following:

Proposition 5.5. ([20]) Let (M,H, g) be a complex Norden manifold, the Jacobi
identity holds on E1,0

Ĵ
and E0,1

Ĵ
if and only if the following conditions are satisfied:

(5.30) RD(HY,HZ)−HRD(HY,Z)−HRD(Y,HZ)−RD(Y, Z) = O

(5.31)

(
RD(HX,Y ) +RD(X,HY )

)
Z +

(
RD(HZ,X) +RD(Z,HX)

)
Y+

+
(
RD(Y,HZ) +RD(HY,Z)

)
X = O

for all X,Y, Z ∈ C∞(T (M)), where RD denotes the curvature operator of the natural
canonical connection D on M ,

(5.32) RD(X,Y ) = DXDY −DYDX −D[X,Y ].

In particular we have the following, [20]:

Theorem 5.6. Let (M,H, g) be a Kähler Norden manifold then E1,0

Ĵ
and E0,1

Ĵ
are

complex Lie algebroids.
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6 The generalized ∂Ĵ-operator

The following holds:

Proposition 6.1. Let M be a smooth manifold and let Ĵ =

(
H λg−1

g −H∗

)
be the

generalized pseudo calibrated complex structure onM defined by a pseudo Riemannian
metric g and a g−symmetric operator H of T (M) such that H2 = (−1 − λ)I. The
natural symplectic structure on E defines a canonical isomorphism between E0,1

Ĵ
and

the dual bundle of E1,0

Ĵ
,
(
E1,0

Ĵ

)∗
.

Proof. We define

(6.1) φ : E0,1

Ĵ
→
(
E1,0

Ĵ

)∗
by:

(6.2)
(φ(Z + iHZ + g(W − iHW + iZ) + iλW ))

(X − iHX + g(Y + iHY − iX)− iλY ) =

= (Z + iHZ + g(W − iHW + iZ) + iλW,X − iHX + g(Y + iHY − iX)− iλY ) ,

for all X,Y, Z,W ∈ C∞(T (M)⊗ C) and we extend by linearity.
A direct computation gives:

(6.3)

(φ(Z + iHZ + g(W − iHW + iZ) + iλW ))

(X − iHX + g(Y + iHY − iX)− iλY ) =

= g(Y,Z)− g(W,X) + i (g(W,HX) + g(Y,HZ)− g(X,Z)) .

We have immediately that φ is injective and furthermore φ is an isomorphism. �

The canonical isomorphism φ between E0,1

Ĵ
and the dual bundle

(
E1,0

Ĵ

)∗
allows

us to define the ∂Ĵ −operator associated to the complex structure Ĵ , and to the fixed
linear connection ∇ on M , as in the following:

let f ∈ C∞(M) and let df ∈ C∞(T ∗ (M)) ↪→ C∞(T (M)⊕ T ∗ (M)), we pose

(6.4) ∂Ĵf = 2 (df)
0,1

= df + iĴdf,

or,

(6.5)
∂Ĵf = df − iJ∗ (df)

= df − i (df)J ;

moreover, we define:

(6.6) ∂Ĵ : C∞
(
E0,1

Ĵ

)
→ C∞

(
∧2
(
E0,1

Ĵ

))
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via the natural isomorphism

(6.7) E0,1

Ĵ

φ
≃
(
E1,0

Ĵ

)∗
,

as:

(6.8) ∂Ĵ : C∞
((
E1,0

Ĵ

)∗)
→ C∞

(
∧2
(
E1,0

Ĵ

)∗)
(6.9)

(
∂Ĵα

)
(σ, τ) = ρ (σ)α (τ)− ρ (τ)α (σ)− α ([σ, τ ]∇) ,

for α ∈ C∞
((
E1,0

Ĵ

)∗)
, σ, τ ∈ C∞

(
E1,0

Ĵ

)
.

In general:

(6.10) ∂Ĵ : C∞
(
∧p
(
E1,0

Ĵ

)∗)
→ C∞

(
∧p+1

(
E1,0

Ĵ

)∗)
is defined by:

(6.11)

(
∂Ĵα

)
(σ0, ..., σp) =

=
p∑

i=0

(−1)iρ (σi)α
(
σ0, ..̂

i.., σp

)
+
∑
ilj

(−1)i+jα
(
[σi, σj ]∇ , σ0, ..̂

i..ĵ .., σp

)
,

for α ∈ C∞
(
∧p
(
E1,0

Ĵ

)∗)
, σ0, ..., σp ∈ C∞

(
E1,0

Ĵ

)
.

Definition 6.2. ∂Ĵ is called generalized ∂ − operator of (M,J, g,∇) or generalized

∂Ĵ − operator.

We get the following:

Proposition 6.3. If E1,0

Ĵ
and E0,1

Ĵ
are complex Lie algebroids then

(
∂

Ĵ

)2
= 0 and(

∂
Ĵ

)2
= 0.

Proof. It follows from the fact that Jacobi identity holds on E1,0
Ĵ

and
(
E1,0

Ĵ

)∗
. �

It turns out that ∂Ĵ− operator is the exterior derivative, dL, of the Lie algebroid

L = E1,0

Ĵ
. Moreover the exterior derivative dL∗ of L∗ =

(
E1,0

Ĵ

)∗
is given by the

operator ∂Ĵ defined by:

(6.12) ∂Ĵ : C∞
(
∧p
(
E1,0

Ĵ

))
→ C∞

(
∧p+1

(
E1,0

Ĵ

))

(6.13)

(
∂Ĵσ

) (
α∗
0, ..., α

∗
p

)
=

=
p∑

i=0

(−1)iρ (α∗
i )σ

(
α∗
0, ..̂

i.., α∗
p

)
+
∑
ilj

(−1)i+jσ
([
α∗
i , α

∗
j

]
∇ , α

∗
0, ..̂

i..ĵ .., α∗
p

)
for σ ∈ C∞

(
∧p
(
E1,0

Ĵ

))
, α∗

0, ..., α
∗
p ∈ C∞

((
E1,0

Ĵ

)∗)
.

In particular
(
C∞

(
∧•
(
E1,0

Ĵ

))
,∧, ∂Ĵ,, [ , ]∇

)
is a differential Gerstenhaber alge-

bra, where ∧ denotes the Schouten bracket, [13], [28].
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7 Generalized holomorphic sections

Definition 7.1. α ∈ C∞
(
∧p
(
E1,0

Ĵ

)∗)
is called generalized holomorphic section if

(7.1) ∂Ĵα = 0.

We remark that for all f ∈ C∞(M) we have ∂Ĵf = 0 if and only if df = 0, so
the generalized holomorphic condition for functions gives only constant functions on
connected components of M .

The following holds:

Proposition 7.2. Let Ĵ =

(
H λg−1

g −H∗

)
be the pseudo calibrated generalized com-

plex structure on M defined by a pseudo Riemannian metric g and a g−symmetric
operator H of T (M) , assume that H2 = (−1 − λ)I with λ ̸= 0. Let ∇ be a lin-

ear connection on M such that Ĵ is ∇−integrable, let W ∈ C∞(T (M)) and let
σ = −λW + ig(W − iHW ) ∈ E0,1

Ĵ
, then ∂Ĵσ = 0 if and only if g(W ) is a Lagrangian

submanifold of T ∗(M) with respect to the standard symplectic structure.

Proof. Let X,Y ∈ C∞(T (M)), direct computations give:

(7.2)

(
∂Ĵσ

)
(−λX − ig(X + iHX),−λY − ig(Y + iHY )) =

= −λX(−2iλg (W,Y )) + λY (−2iλg(X,W ))+

−σ([λX, λY ] + ig(X + iHY, λY )− ig(λX, Y + iHY ))

= 2iλ2{Xg(W,Y )− Y g(W,X)− g([X,Y ],W )}.

In particular we have
(
∂Ĵσ

)
= 0 if and only if:

(7.3) (d(g(W )))(X,Y ) = 0,

and then, by using a classical result in symplectic geometry, [15], we have that σ =
−λW + ig(W − iHW ) is a generalized holomorphic section of E0,1

Ĵ
if and only if

g(W ) is a Lagrangian submanifold of T ∗(M) with respect to the standard symplectic
structure. �

Examples of generalized holomorphic sections can be obtained naturally in the
field of Hessian geometry, [24], [26]. The concept of Hessian manifold was inspired
by the Bergmann metric on bounded domains in Cn and now is a very interesting
topic, related to many other fields in mathematics and theoretical physics: Kähler
and symplectic geometry, affine differential geometry, special manifolds, string theory
and mirror symmetry, [6], [7], [8], [14], [26], [27].

Definition 7.3. Let (M, g) be a pseudo Riemannian manifold, g is called of Hessian
type if there exists u ∈ C∞(M) such that g = Hess(u) = ∇2u, where ∇ is the Levi
Civita connection of g. (M, g) is called Hessian pseudo Riemannian manifold if g is
of Hessian type.
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Proposition 7.4. Let (M,H, g) be a Hessian pseudo Riemannian manifold such that
H is a g−symmetric operator and H2 = (−1 − λ)I, λ ̸= 0. Let ∇ be the Levi Civita

connection of g, assume Ĵ =

(
H λg−1

g −H∗

)
is ∇−integrable. Let {x1, ..., xn} be

local coordinates on M, let

{
∂

∂x1
, ....,

∂

∂xn

}
be local frames for T (M), if the curvature

tensor of ∇, R∇, vanishes, then for all k = 1, ..., n the local section

σk = −λ ∂

∂xk
+ ig

(
∂

∂xk
− iH

∂

∂xk

)
∈ C∞

(
E0,1

Ĵ

)
is ∂Ĵ−closed.

Proof. Let g = ∇2u, then:

gjk =
∂2u

∂xj∂xk
−

n∑
l=1

Γl
jk

∂u

∂xl
,

where
{
Γl
jk

}
are Christoffel’s symbols of g. In particular g

(
∂

∂xk

)
is d closed if and

only if for all i, j, k = 1, ..., n :

∂3u

∂xj∂xk∂xi
−

n∑
l=1

∂Γl
jk

∂xi

∂u

∂xl
−

n∑
l=1

Γl
jk

∂2u

∂xl∂xi
+

− ∂3u

∂xi∂xk∂xj
+

n∑
l=1

∂Γl
ik

∂xj

∂u

∂xl
+

n∑
l=1

Γl
ik

∂2u

∂xl∂xj

=

n∑
l=1

(
Γl
ik

(
∂2u

∂xl∂xj
−

n∑
r=1

Γr
lj

∂u

∂xr

)
− Γl

jk

(
∂2u

∂xl∂xi
−

n∑
r=1

Γr
li

∂u

∂xr

))
= 0

or:

n∑
l=1

(
∂Γl

ik

∂xj
−
∂Γl

jk

∂xi
+

n∑
r=1

(
Γr
ikΓ

l
rj − Γr

jkΓ
l
ri

)) ∂u

∂xl

=
n∑

l=1

Ri
ijk

∂u

∂xl
= 0

and thus, by using Proposition 7.2., we have the statement. �

The holomorphic sections in the case λ = 0 have been studied in [20].
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