On a class of pseudo calibrated generalized complex structures related to Norden, para-Norden and statistical manifolds

Antonella Nannicini

Abstract

We consider pseudo calibrated generalized complex structures, \widehat{J}, defined by a pseudo Riemannian metric g and a g-symmetric operator H such that $H^{2}=\mu I, \mu \in \mathbb{R}$, on a smooth manifold M. These structures include the case of complex Norden manifolds for $\mu=-1$, studied in [20], the case of almost tangent structures for $\mu=0, \operatorname{ImH}=\operatorname{Ker} H$, and the case of para Norden manifolds for $\mu=1$. The special case $H=O$ is described in [19]. We study integrability conditions of \widehat{J}, with respect to a linear connection ∇, and we describe examples of geometric structures that naturally give rise to integrable pseudo calibrated generalized complex structures. We prove that for $\mu \neq-1$ integrability implies that the $\pm i$-eigenbundles of $\widehat{J}, E_{\widehat{J}}^{1,0}, E_{\widehat{J}}^{0,1}$, are complex Lie algebroids. We define the concept of generalized $\bar{\partial}_{\widehat{J}}$ operator of (M, H, g, ∇) and we study holomorphic sections.

M.S.C. 2010: 53C15, 53D18, 53C80, 53C38.

Key words: general geometric structures on manifolds; generalized geometry; Norden manifolds; para Norden manifolds; Lie algebroids.

1 Introduction

Generalized complex structures were introduced by Hitchin in [9], and further investigated by Gualtieri in [10], in order to unify symplectic and complex geometry. In this paper we consider the concept of generalized complex structure introduced in [16], [17] and also studied in [5], [18], [19], [20].

Let (M, g) be a smooth pseudo Riemannian manifold, let $T(M)$ be the tangent bundle, let $T^{*}(M)$ be the cotangent bundle and let $E=T(M) \oplus T^{*}(M)$ be the generalized tangent bundle of M. A pseudo calibrated generalized complex structure of M is a complex structure on E which is pseudo calibrated with respect to the canonical symplectic structure of E. A linear connection, ∇, on M defines a bracket, $[,]_{\nabla}$,

[^0]on sections of E and we can define the concept of ∇-integrability for generalized complex structures. We consider pseudo calibrated generalized complex structures \widehat{J} defined by a pseudo Riemannian metric g and a g - symmetric operator H such that $H^{2}=\mu I, \mu \in \mathbb{R}$, on M. These structures include the case of complex Norden manifolds for $\mu=-1$, studied in [20], the case of almost tangent structures for $\mu=0$, $\operatorname{ImH}=\operatorname{Ker} H$, and the case of para Norden manifolds for $\mu=1$. The special case $H=O$ is described in [19].

We study the integrability conditions of \widehat{J}, with respect to a linear connection ∇ with torsion T^{∇}, and we describe examples of geometric structures that naturally give rise to integrable pseudo calibrated generalized complex structures. Then we prove that for $\mu \neq-1$ integrability implies that the $\pm i$-eigenbundles of $\widehat{J}, E_{\widehat{J}}^{1,0}$, $E_{\widehat{J}}^{0,1}$, are complex Lie algebroids. We define the concept of generalized $\bar{\partial}_{\widehat{J}}-$ operator of (M, H, g, ∇); from the Jacobi identity on $E_{\widehat{J}}^{1,0}$ it follows $\left(\bar{\partial}_{\widehat{J}}\right)^{2}=0$ and, as $\bar{\partial}_{\widehat{J}}$ is the exterior derivative of the Lie algebroid $E_{\widehat{J}}^{1,0}$, we get that $\left(C^{\infty}\left(\wedge^{\bullet}\left(E_{\widehat{J}}^{1,0}\right)\right), \wedge, \bar{\partial}_{\widehat{J}},[,]_{\nabla}\right)$ is a differential Gerstenhaber algebra, where \wedge denotes the Schouten bracket, [13], [28]. Finally we study certain holomorphic sections.

The paper is organized as in the following. In section 2 we introduce preliminary material of the generalized tangent bundle and of generalized complex structures; in section 3 we compute integrability conditions and in section 4 we give examples of integrable structures; section 5 is devoted to the study of complex Lie algebroids naturally associated to integrable pseudo calibrated generalized complex structures; in section 6 we define the concept of generalized $\bar{\partial}_{\widehat{J}}$-operator on M and in section 7 we study some generalized holomorphic sections, in particular, in this context, Hessian manifolds occur as interesting examples.

This paper is a generalization of our previous papers [19], [20] and allows us to unify complex Norden and para Norden manifolds through almost tangent structures and statistical manifolds. The theory reveals that the case of complex Norden manifolds is special.

2 Preliminaries

Let M be a smooth manifold of real dimension n and let $E=T(M) \oplus T^{*}(M)$ be the generalized tangent bundle of M. Smooth sections of E are elements $X+\xi \in C^{\infty}(E)$ where $X \in C^{\infty}(T(M))$ is a vector field and $\xi \in C^{\infty}\left(T^{*}(M)\right)$ is a 1 - form.
E is equipped with a natural symplectic structure, (,), defined by:

$$
\begin{equation*}
(X+\xi, Y+\eta)=-\frac{1}{2}(\xi(Y)-\eta(X)) \tag{2.1}
\end{equation*}
$$

and a natural indefinite metric, \langle,$\rangle , defined by:$

$$
\begin{equation*}
\langle X+\xi, Y+\eta\rangle=-\frac{1}{2}(\xi(Y)+\eta(X)) \tag{2.2}
\end{equation*}
$$

\langle,$\rangle is non degenerate and of signature (n, n)$.

A linear connection on M, ∇, defines, in a canonical way, a bracket $[,]_{\nabla}$ on $C^{\infty}(E)$, as follows:

$$
\begin{equation*}
[X+\xi, Y+\eta]_{\nabla}=[X, Y]+\nabla_{X} \eta-\nabla_{Y} \xi \tag{2.3}
\end{equation*}
$$

Like in [16], a direct computation gives the following:
Lemma 2.1. For all $X, Y \in C^{\infty}(T(M))$, for all $\xi, \eta \in C^{\infty}\left(T^{*}(M)\right)$ and for all $f \in C^{\infty}(M)$ we have:

1. $[X+\xi, Y+\eta]_{\nabla}=-[Y+\eta, X+\xi]_{\nabla}$,
2. $[f(X+\xi), Y+\eta]_{\nabla}=f[X+\xi, Y+\eta]_{\nabla}-Y(f)(X+\xi)$,
3. Jacobi's identity holds for $[,]_{\nabla}$ if and only if ∇ has zero curvature.

We consider the following concept of generalized complex structure:
Definition 2.2. A generalized complex structure on M is an endomorphism $\widehat{J}: E \rightarrow$ E such that $\widehat{J}^{2}=-I$.
Definition 2.3. A generalized complex structure \widehat{J} is called pseudo calibrated if it is $($,$) -invariant and if the bilinear symmetric form defined by (, \widehat{J})$ on $T(M)$ is non degenerate, moreover \widehat{J} is called calibrated if it is pseudo calibrated and $(, \widehat{J})$ is positive definite.

From the definition we get that a pseudo calibrated complex structure \widehat{J} can be written in the following block matrix form:

$$
\widehat{J}=\left(\begin{array}{cc}
H & -\left(I+H^{2}\right) g^{-1} \tag{2.4}\\
g & -H^{*}
\end{array}\right)
$$

where $g: T(M) \rightarrow T^{*}(M)$ is identified to the bemolle musical isomorphism of the pseudo Riemannian metric g on $M, H: T(M) \rightarrow T(M)$ is a g-symmetric operator and $H^{*}: T^{*}(M) \rightarrow T^{*}(M)$ is the dual operator of H defined by: $H^{*}(\xi)(X)=\xi(H(X))$.

We have:

$$
\begin{equation*}
(g(X))(Y)=g(X, Y)=2(X, \widehat{J} Y) \tag{2.5}
\end{equation*}
$$

for all $X, Y \in T(M)$.
In the following we will consider g-symmetric operators $H: T(M) \rightarrow T(M)$ such that $H^{2}=\mu I$ where $\mu \in \mathbb{R}$ and I denotes identity. In this case we have:

$$
\widehat{J}=\left(\begin{array}{cc}
H & \lambda g^{-1} \tag{2.6}\\
g & -H^{*}
\end{array}\right)
$$

where $\lambda=-1-\mu$.
We remark that for $\mu=-1(M, H, g)$ is a Norden manifold, [20], for $\mu=0$ and $\operatorname{ImH}=\operatorname{Ker} H,(M, H)$ is an almost tangent manifold, [2], and for $\mu=1(M, H, g)$ is a para Norden manifold. The special case $H=O$ is described in [19].

3 Integrability

Let ∇ be a linear connection on M and let $[,]_{\nabla}$ be the bracket on $C^{\infty}(E)$ defined by ∇, the following holds:
Lemma 3.1. ([17]) Let $\widehat{J}: E \rightarrow E$ be a generalized complex structure on M and let

$$
\begin{equation*}
N^{\nabla}(\widehat{J}): C^{\infty}(E) \times C^{\infty}(E) \rightarrow C^{\infty}(E) \tag{3.1}
\end{equation*}
$$

defined by:

$$
\begin{equation*}
N^{\nabla}(\widehat{J})(\sigma, \tau)=[\widehat{J} \sigma, \widehat{J} \tau]_{\nabla}-\widehat{J}[\widehat{J} \sigma, \tau]_{\nabla}-\widehat{J}[\sigma, \widehat{J} \tau]_{\nabla}-[\sigma, \tau]_{\nabla} \tag{3.2}
\end{equation*}
$$

for all $\sigma, \tau \in C^{\infty}(E) ; N^{\nabla}(\widehat{J})$ is a skew symmetric tensor.

Definition 3.2. $N^{\nabla}(\widehat{J})$ is called the Nijenhuis tensor of \widehat{J} with respect to ∇.
Definition 3.3. Let $\widehat{J}: E \rightarrow E$ be a generalized complex structure on M, \widehat{J} is called ∇-integrable if $N^{\nabla}(\widehat{J})=0$.

Let T^{∇} be the torsion of ∇ :

$$
\begin{equation*}
T^{\nabla}(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] \tag{3.3}
\end{equation*}
$$

and let d^{∇} be the exterior differential associated to ∇ :

$$
\begin{equation*}
\left(d^{\nabla} g\right)(X, Y)=\left(\nabla_{X} g\right)(Y)-\left(\nabla_{Y} g\right)(X)+g\left(T^{\nabla}(X, Y)\right) \tag{3.4}
\end{equation*}
$$

for all $X, Y \in C^{\infty}(T M)$.
We have the following:
Proposition 3.4. Let $\widehat{J}=\left(\begin{array}{cc}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ be the pseudo calibrated generalized complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of $T(M)$ such that $H^{2}=(-1-\lambda) I$. Let $N^{\nabla}(\hat{J})$ be the generalized Nijenhuis tensor of \widehat{J} defined by (3.2), then for all $X, Y \in C^{\infty}(T(M))$ we have:

$$
\begin{gather*}
N^{\nabla}(\widehat{J})(X, Y)=N(H)(X, Y)-\lambda g^{-1}\left(\left(d^{\nabla} g\right)(X, Y)\right)+ \\
+\left(d^{\nabla} g\right)(H X, Y)+\left(d^{\nabla} g\right)(X, H Y)+g\left(\left(\nabla_{Y} H\right)(X)-\left(\nabla_{X} H\right)(Y)\right) \tag{3.5}
\end{gather*}
$$

$$
N^{\nabla}(\widehat{J})(X, g(Y))=\lambda\left(\left(\nabla_{X} H\right)(Y)-\left(\nabla_{Y} H\right)(X)\right)+
$$

$$
-\lambda g^{-1}\left(\left(\nabla_{H X} g\right)(Y)-\left(\nabla_{X} g\right)(H Y)\right)+
$$

$$
+\lambda g^{-1}\left(T^{\nabla}(H X, Y)-H T^{\nabla}(X, Y)\right)+
$$

$$
+\lambda\left(\left(d^{\nabla} g\right)(X, Y)\right)-g\left(\left(\nabla_{H X} H\right)(Y)-H\left(\nabla_{X} H\right)(Y)\right)
$$

$$
\begin{gather*}
N^{\nabla}(\widehat{J})(g(X), g(Y))=-\lambda^{2} g^{-1}\left(\left(d^{\nabla} g\right)(X, Y)\right)+ \tag{3.7}\\
+\lambda g\left(\left(\nabla_{Y} H\right)(X)-\left(\nabla_{X} H\right)(Y)\right)
\end{gather*}
$$

where $N(H)$ is the Nijenhuis tensor of H defined by:

$$
\begin{equation*}
N(H)(X, Y)=[H X, H Y]-H[H X, Y]-H[X, H Y]+H^{2}[X, Y] \tag{3.8}
\end{equation*}
$$

Proof. Direct computations give:

$$
\begin{aligned}
& N^{\nabla}(\widehat{J})(X, Y)=[H X+g(X), H Y+g(Y)]_{\nabla}+ \\
& -\widehat{J}[H X+g(X), Y)]_{\nabla}-\widehat{J}[X, H Y+g(Y)]_{\nabla}-[X, Y]_{\nabla} \\
& =[H X, H Y]+\nabla_{H X} g(Y)-\nabla_{H Y} g(X)+ \\
& -\widehat{J}\left([H X, Y]-\nabla_{Y} g(X)+[X, H Y]+\nabla_{X} g(Y)\right)-[X, Y] \\
& =[H X, H Y]-H[H X, Y]-H[X, H Y]+\lambda g^{-1}\left(\nabla_{Y} g(X)-\nabla_{X} g(Y)\right)+ \\
& -[X, Y]+\nabla_{H X} g(Y)-\nabla_{H Y} g(X)-g([H X, Y])+ \\
& -H^{*}\left(\nabla_{Y} g(X)\right)-g([X, H Y])+H^{*}\left(\nabla_{X} g(Y)\right) \\
& =N^{\prime}(H)(X, Y)+\lambda[X, Y]+\lambda g^{-1}\left(\left(\nabla_{Y} g\right)(X)-g\left(\nabla_{X} Y\right)\right)+ \\
& +\left(\nabla_{H X} g\right)(Y)-\left(\nabla_{H Y} g\right)(X)+g\left(\left(\nabla_{Y} H\right)(X)-\left(\nabla_{X} H\right)(Y)\right)+ \\
& -H^{*}\left(\left(\nabla_{Y} g\right)(X)\right)+H^{*}\left(\left(\nabla_{X} g\right)(Y)\right)+g\left(T^{\nabla}(H X, Y)+T^{\nabla}(X, H Y)\right) \\
& =N(H)(X, Y)+\lambda g^{-1}\left(\left(\nabla_{Y} g\right)(X)-\left(\nabla_{X} g\right)(Y)-\lambda T^{\nabla}(X, Y)\right)+ \\
& +\left(\nabla_{H X} g\right)(Y)-\left(\nabla_{H Y} g\right)(X)+g\left(\left(\nabla_{Y} H\right)(X)-\left(\nabla_{X} H\right)(Y)\right)+ \\
& -\left(\left(\nabla_{Y} g\right)(H X)\right)+\left(\left(\nabla_{X} g\right)(H Y)\right)+g\left(T^{\nabla}(H X, Y)+T^{\nabla}(X, H Y)\right) \\
& =N(H)(X, Y)-\lambda g^{-1}\left(\left(d^{\nabla} g\right)(X, Y)\right)+ \\
& +\left(d^{\nabla} g\right)(H X, Y)+\left(d^{\nabla} g\right)(X, H Y)+g\left(\left(\nabla_{Y} H\right)(X)-\left(\nabla_{X} H\right)(Y)\right) \\
& N^{\nabla}(\widehat{J})(X, g(Y))=[H X+g(X), \lambda Y-g(H Y)]_{\nabla}-\widehat{J}[H X+g(X), g(Y)]_{\nabla}+ \\
& -\widehat{J}[X, \lambda Y-g(H Y)]_{\nabla}-\nabla_{X} g(Y) \\
& =\lambda[H X, Y]-\nabla_{H X} g(H Y)-\lambda \nabla_{Y} g(X)-\widehat{J} \lambda[X, Y]+ \\
& +\widehat{J} \nabla_{X} g(H Y)-\widehat{J} \nabla_{H X} g(Y)-\nabla_{X} g(Y) \\
& =\lambda[H X, Y]-\nabla_{H X} g(H Y)-\lambda \nabla_{Y} g(X)-\widehat{J} \lambda[X, Y]+ \\
& -\lambda H[X, Y]-\lambda g([X, Y])+\lambda g^{-1}\left(\nabla_{X} g(H Y)\right)-\lambda g^{-1}\left(\left(\nabla_{H X} g(Y)-\nabla_{Y} g(X)\right)\right. \\
& +H^{*}\left(\nabla_{H X} g(Y)\right)-H^{*}\left(\nabla_{X} g(H Y)\right)-\nabla_{X} g(Y) \\
& =\lambda\left(\left(\nabla_{X} H\right)(Y)-\left(\nabla_{Y} H\right)(X)-g^{-1}\left(\left(\nabla_{H X} g\right)(Y)-\left(\nabla_{X} g\right)(H Y)+\right.\right. \\
& \left.+g\left(T^{\nabla}(H X, Y)-H T^{\nabla}(X, Y)\right)\right)+\lambda\left(d^{\nabla} g\right)(X, Y)-g\left(\left(\nabla_{H X} H\right)(Y)-\left(\nabla_{X} H\right)(Y)\right) \\
& N^{\nabla}(\widehat{J})(g(X), g(Y))=[\lambda X-g(H X), \lambda Y-g(H Y)]_{\nabla}+ \\
&
\end{aligned}
$$

$$
\begin{aligned}
& -\widehat{J}[\lambda X-g(H X), Y)]_{\nabla}-\widehat{J}[g(X), \lambda Y-g(H Y)]_{\nabla} \\
& =\lambda^{2}[X, Y]-\lambda\left\{\lambda g^{-1}\left(\left(\nabla_{X} g(Y)-\nabla_{Y} g(X)\right)\right\}+\right. \\
& -\lambda\left\{-H^{*}\left(\nabla_{X} g(Y)\right)+H^{*}\left(\nabla_{Y} g(X)\right)\right\} \\
& =\lambda^{2}\left(-T^{\nabla}(X, Y)-g^{-1}\left(\left(\nabla_{X} g\right)(Y)-\left(\nabla_{Y} g\right)(X)\right)+\right. \\
& -\lambda\left(g\left(\left(\nabla_{Y} H\right)(X)-\left(\nabla_{X} H\right)(Y)\right)\right) \\
& =-\lambda^{2} g^{-1}\left(\left(d^{\nabla} g\right)(X, Y)\right)+\lambda g\left(\left(\nabla_{Y} H\right) X-\left(\nabla_{X} H\right) Y\right) .
\end{aligned}
$$

In particular we get:
Theorem 3.5. For $\lambda(\lambda+1) \neq 0 \widehat{J}=\left(\begin{array}{cc}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ is ∇-integrable if and only if the following conditions hold:

$$
\left\{\begin{array}{l}
d^{\nabla} g=0 \tag{3.9}\\
N(H)=0 \\
\nabla H=0
\end{array}\right.
$$

For $\lambda=0 \widehat{J}=\left(\begin{array}{cc}H & O \\ g & -H^{*}\end{array}\right)$ is ∇-integrable if and only if the following conditions hold:

$$
\left\{\begin{array}{l}
N(H)=0 \tag{3.10}\\
\left(\nabla_{H X} H\right)=H\left(\nabla_{X} H\right) \\
\left(d^{\nabla} g\right)(H X, Y)+\left(d^{\nabla} g\right)(X, H Y)-g\left(\left(\nabla_{X} H\right)(Y)-\left(\nabla_{Y} H\right)(X)\right)=0
\end{array}\right.
$$

For $\lambda=-1 \widehat{J}=\left(\begin{array}{cc}H & -g^{-1} \\ g & -H^{*}\end{array}\right)$ is ∇-integrable if and only if the following conditions hold:

$$
\left\{\begin{array}{l}
d^{\nabla} g=0 \tag{3.11}\\
N(H)=0 \\
\left(\nabla_{X} H\right)(Y)=\left(\nabla_{Y} H\right)(X) \\
\left(\nabla_{H X} H\right)=H\left(\nabla_{X} H\right)
\end{array}\right.
$$

Proof. If $\lambda \neq 0$ then from (3.7) and (3.5) we get immediately the first and second condition in (3.9) and (3.11) and the third in (3.11). Moreover:

$$
\begin{aligned}
& \left(\nabla_{H X} g\right)(Y)-\left(\nabla_{X} g\right)(H Y)+g\left(T^{\nabla}(H X, Y)-H T^{\nabla}(X, Y)\right) \\
= & \left(d^{\nabla} g\right)(H X, Y)+\left(\nabla_{Y} g\right)(H X)-\left(\nabla_{X} g\right)(H Y)-g\left(H T^{\nabla}(X, Y)\right) \\
= & \left(d^{\nabla} g\right)(H X, Y)+H^{*}\left(\left(\nabla_{Y} g\right)(X)-\left(\nabla_{X} g\right)(Y)-g\left(T^{\nabla}(X, Y)\right)\right. \\
= & \left(d^{\nabla} g\right)(H X, Y)-H^{*}\left(\left(d^{\nabla} g\right)(X, Y)\right)
\end{aligned}
$$

then we get (3.11). In order to obtain (3.9) remark that if $\lambda \neq-1$, we have

$$
\begin{aligned}
\left(\nabla_{X} H\right)(Y) & =H^{-1}\left(\left(\nabla_{H X} H\right)(Y)\right)=\frac{1}{-1-\lambda} H\left(\left(\nabla_{H X} H\right)(Y)\right) \\
& =\frac{1}{-1-\lambda} H\left(\left(\nabla_{Y} H\right)(H X)\right) \\
& \left.=\frac{1}{-1-\lambda} H\left(\nabla_{Y} H^{2} X-H \nabla_{Y} H X\right)\right) \\
& =\frac{1}{-1-\lambda} H^{2}\left(H \nabla_{Y} X-\nabla_{Y} H X\right) \\
& =-\left(\nabla_{Y} H\right)(X) \\
& =-\left(\nabla_{X} H\right)(Y)
\end{aligned}
$$

thus the third condition in (3.9) is obtained. Finally, (3.10) and (3.12) immediately follow. On the other hand if (3.9), respectively (3.10), (3.11) hold, then $N^{\nabla}(\widehat{J})=0$, and the proof is complete.

Corollary 3.6. If $H=O \widehat{J}=\left(\begin{array}{ll}O & -g^{-1} \\ g & O\end{array}\right)$ is ∇-integrable if and only if

$$
\begin{equation*}
d^{\nabla} g=0 . \tag{3.12}
\end{equation*}
$$

4 Examples

Examples of integrable structures with $H=0$ can be found in the context of quasi statistical manifolds.

Definition 4.1. ([1]), ([21]) Let (M, g, ∇) be a pseudo Riemannian manifold with a torsion free linear connection, if ∇g is symmetric then (M, g, ∇) is called a statistical manifold.

The concept of statistical manifold can be generalized to statistical manifolds admitting torsion or quasi statistical manifolds [12]:

Definition 4.2. Let (M, g) be a pseudo Riemannian manifold and let ∇ be a linear connection on M with torsion T^{∇} then (M, g, ∇) is called a quasi statistical manifold or statistical manifold admitting torsion if, for all $X, Y \in C^{\infty}(T(M))$, the following formula holds:

$$
\begin{equation*}
\left(\nabla_{X} g\right) Y-\left(\nabla_{Y} g\right) X+g\left(T^{\nabla}(X, Y)\right)=0 \tag{4.1}
\end{equation*}
$$

As a direct consequence of (3.4) and (3.12) we get the following:
Corollary 4.3. Let (M, g) be a pseudo Riemannian manifold and let ∇ be a linear connection on M with torsion T^{∇}, let

$$
\widehat{J}=\left(\begin{array}{cc}
O & -g^{-1} \tag{4.2}\\
g & O
\end{array}\right)
$$

be the generalized complex structure on M defined by g, \widehat{J} is ∇ - integrable if and only if (M, g, ∇) is a quasi statistical manifold.

Examples of integrable structures with $H^{2}=-I$ can be found in the context of Norden manifolds.

Norden manifolds were introduced by A. P. Norden in [22] and then studied also under the names of almost complex manifolds with B-metric and anti Kählerian manifolds, [3], [11]. They have applications in mathematics and in theoretical physics.

Definition 4.4. Let (M, H) be an almost complex manifold of real dimension $2 n$ and let g be a pseudo Riemannian metric on M, if H is a g-symmetric operator then g is called Norden metric and (M, H, g) is called Norden manifold. If (M, H, g) is a Norden manifold with H integrable then it is called complex Norden manifold.

Let (M, H, g) be a complex Norden manifold, the following holds:
Theorem 4.5. ([11]) On a complex manifold with Norden metric (M, H, g) there exists a unique linear connection D with torsion T such that:

$$
\begin{gather*}
\left(D_{X} g\right)(Y, Z)=0 \tag{4.3}\\
T(H X, Y)=-T(X, H Y) \tag{4.4}\\
g(T(X, Y), Z)+g(T(Y, Z), X)+g(T(Z, X), Y)=0 \tag{4.5}
\end{gather*}
$$

for all vector fields X, Y, Z on M.
D is called the natural canonical connection of the Norden manifold or B-connection and it is defined by:

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y-\frac{1}{2} H\left(\nabla_{X} H\right) Y \tag{4.6}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g.
In particular, if D is the natural canonical connection of the complex Norden manifold (M, H, g), then

$$
\begin{equation*}
D H=0 \tag{4.7}
\end{equation*}
$$

Corollary 4.6. Let (M, H, g) be a complex Norden manifold and let D be the natural canonical connection, let

$$
\widehat{J}=\left(\begin{array}{cc}
H & O \tag{4.8}\\
g & -H^{*}
\end{array}\right)
$$

be the generalized complex structure defined by H and g, \widehat{J} is D - integrable.
Definition 4.7. Let (M, H, g) be a Norden manifold and let ∇ be the Levi-Civita connection of g, if $\nabla H=0$ then (M, H, g) is called Kähler Norden manifold.

We remark that for a Kähler Norden manifold (M, H, g) the structure H is integrable and the natural canonical connection is the Levi Civita connection.

Examples of integrable structures with $H^{2}=I$ are given by para Norden manifolds, [4], [25].

Definition 4.8. An almost product structure on a differentiable manifold M is a $(1,1)$ tensor field H on M such that $H^{2}=I$. The pair (M, H) is called an almost product manifold.

Definition 4.9. An almost paracomplex manifold is an almost product manifold (M, H) such that the two eigenbundles, $T^{+}(M), T^{-}(M)$, associated to the two eigenvalues, +1 and -1 of H respectively, have the same rank.

Definition 4.10. An almost paracomplex Norden manifold (M, H, g) is a real smooth manifold of dimension $2 n$ with an almost paracomplex structure H and a pseudo Riemannian metric g such that H is a g-symmetric operator.

Definition 4.11. A paraholomorphic Norden manifold, or para Kähler Norden manifold, is an almost paracomplex Norden manifold (M, H, g) such that $\nabla H=0$, where ∇ is the Levi Civita connection of g.

We remark that for an almost paracomplex structure H the vanishing of the Nijenhuis tensor $N(H)$ is equivalent to the existence of a torsion free linear connection ∇ such that $\nabla H=0,[25]$. In particular from (3.9) we get immediately the following:

Corollary 4.12. Let (M, H, g) be a paraholomorphic Norden manifold and let ∇ be the Levi Civita connection of g, let

$$
\widehat{J}=\left(\begin{array}{cc}
H & -2 g^{-1} \tag{4.9}\\
g & -H^{*}
\end{array}\right)
$$

be the generalized complex structure on M defined by H and g, \widehat{J} is ∇ - integrable.

5 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [23]; we recall here the definition and the main properties.

Definition 5.1. A complex Lie algebroid is a complex vector bundle L over a smooth real manifold M such that: a Lie bracket [,] is defined on $C^{\infty}(L)$, a smooth bundle map $\rho: L \rightarrow T(M) \otimes \mathbb{C}$, called anchor, is defined and, for all $\sigma, \tau \in C^{\infty}(L)$, for all $f \in C^{\infty}(M)$, the following conditions hold:

1. $\rho([\sigma, \tau])=[\rho(\sigma), \rho(\tau)]$
2. $[f \sigma, \tau]=f([\sigma, \tau])-(\rho(\tau)(f)) \sigma$.

Let L and its dual vector bundle L^{*} be Lie algebroids; on sections of $\wedge L$, respectively $\wedge L^{*}$, the Schouten bracket is defined by:

$$
\begin{gather*}
{[,]_{L}: C^{\infty}\left(\wedge^{p} L\right) \times C^{\infty}\left(\wedge^{q} L\right) \longrightarrow C^{\infty}\left(\wedge^{p+q-1} L\right)} \tag{5.1}\\
{\left[X_{1} \wedge \ldots \wedge X_{p}, Y_{1} \wedge \ldots \wedge Y_{q}\right]_{L}=} \\
=\sum_{i=1}^{p} \sum_{j=1}^{q}(-1)^{i+j}\left[X_{i}, Y_{j}\right]_{L} \wedge X_{1} \wedge . .^{\hat{i}} . . \wedge X_{p} \wedge Y_{1} \wedge . .^{\widehat{j}} . . \wedge Y_{q} \tag{5.2}
\end{gather*}
$$

and, for $f \in C^{\infty}(M), X \in C^{\infty}(L)$

$$
\begin{equation*}
[X, f]_{L}=-[f, X]_{L}=\rho(X)(f) \tag{5.3}
\end{equation*}
$$

respectively, by:

$$
\begin{gather*}
{[,]_{L^{*}}: C^{\infty}\left(\wedge^{p} L^{*}\right) \times C^{\infty}\left(\wedge^{q} L^{*}\right) \longrightarrow C^{\infty}\left(\wedge^{p+q-1} L^{*}\right)} \tag{5.4}\\
{\left[X_{1}^{*} \wedge \ldots \wedge X_{p}^{*}, Y_{1}^{*} \wedge \ldots \wedge Y_{q}^{*}\right]_{L^{*}}=} \\
=\sum_{i=1}^{p} \sum_{j=1}^{q}(-1)^{i+j}\left[X_{i}^{*}, Y_{j}^{*}\right]_{L^{*}} \wedge X_{1}^{*} \wedge . .^{\hat{i}} . . \wedge X_{p}^{*} \wedge Y_{1}^{*} \wedge . .^{\widehat{j}} . . \wedge Y_{q}^{*} \tag{5.5}
\end{gather*}
$$

and, for $f \in C^{\infty}(M), X \in C^{\infty}\left(L^{*}\right)$

$$
\begin{equation*}
[X, f]_{L^{*}}=-[f, X]_{L^{*}}=\rho(X)(f) \tag{5.6}
\end{equation*}
$$

Moreover the exterior derivatives d and d_{*} associated with the Lie algebroid structure of L and L^{*} are defined respectively by:

$$
\begin{gather*}
d: C^{\infty}\left(\wedge^{p} L^{*}\right) \longrightarrow C^{\infty}\left(\wedge^{p+1} L^{*}\right) \tag{5.7}\\
(d \alpha)\left(\sigma_{0}, \ldots, \sigma_{p}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0},^{\hat{i}} . ., \sigma_{p}\right)+\sum_{i \lessdot j}(-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{L}, \sigma_{0}, . .^{\hat{i}} . . \widehat{j} . ., \sigma_{p}\right) \tag{5.8}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\wedge^{p} L^{*}\right), \sigma_{0}, \ldots, \sigma_{p} \in C^{\infty}(L)$,
and:

$$
\begin{gather*}
\left(d_{*} \alpha\right)\left(\sigma_{0}, \ldots, \sigma_{p}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0},_{i}^{i} . ., \sigma_{p}\right)+\sum_{i \lessdot j}(-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{L^{*}}, \sigma_{0}, . . \hat{i}^{\hat{i}} . . \widehat{j} . ., \sigma_{p}\right) \tag{5.10}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\wedge^{p} L\right), \sigma_{0}, \ldots, \sigma_{p} \in C^{\infty}\left(L^{*}\right)$.

Let M be a smooth manifold and let $\widehat{J}=\left(\begin{array}{rr}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ be the generalized pseudo calibrated complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of $T(M)$ such that $H^{2}=(-1-\lambda) I$.

Let

$$
\begin{equation*}
E^{\mathbb{C}}=\left(T(M) \oplus T^{*}(M)\right) \otimes \mathbb{C} \tag{5.11}
\end{equation*}
$$

be the complexified generalized tangent bundle. The splitting in $\pm i$ eigenspaces of \widehat{J} is denoted by:

$$
\begin{equation*}
E^{\mathbb{C}}=E_{\widehat{J}}^{1,0} \oplus E_{\widehat{J}}^{0,1} \tag{5.12}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{\widehat{J}}^{0,1}=\overline{E_{\widehat{J}}^{1,0}} \tag{5.13}
\end{equation*}
$$

A direct computation gives:

$$
\stackrel{(5.14)}{E_{\widehat{J}}^{1,0}}=\left\{Z-i H Z+g(W+i H W-i Z)+i(-\lambda) W \mid Z, W \in C^{\infty}(T(M) \otimes \mathbb{C})\right\}
$$

equivalently $E_{\widehat{J}}^{1,0}$ is generated by elements of the following type:

$$
\begin{equation*}
Z-i H Z-i g(Z) \tag{5.15}
\end{equation*}
$$

with $Z \in C^{\infty}(T(M))$,

$$
\begin{equation*}
-\lambda i W+g(W+i H W) \tag{5.16}
\end{equation*}
$$

with $W \in C^{\infty}(T(M))$.
Analogously we have:
$\stackrel{(5.17)}{E_{\widehat{J}}^{0,1}}=\left\{Z+i H Z+g(W-i H W+i Z)-i(-\lambda) W \mid Z, W \in C^{\infty}(T(M) \otimes \mathbb{C})\right\}$
and $E_{\widehat{J}}^{0,1}$ is generated by elements of the following type:

$$
\begin{gather*}
Z+i H Z+i g(Z) \text { with } Z \in C^{\infty}(T(M)) \tag{5.18}\\
\lambda i W+g(W-i H W) \text { with } W \in C^{\infty}(T(M)) . \tag{5.19}
\end{gather*}
$$

Lemma 5.2. For $\lambda \neq 0$ the map

$$
\psi: T(M) \otimes \mathbb{C} \rightarrow T(M) \otimes \mathbb{C}
$$

defined by:

$$
\begin{equation*}
\psi(Z)=Z+i H Z \tag{5.20}
\end{equation*}
$$

is an isomorphism and
(5.21) $\psi(Z-i H Z)-i g(\psi(Z))=-\lambda Z-i g(Z+i H Z)=-i(-\lambda i Z+g(Z+i H Z))$.

Proof. We have that ψ injective if and only if $(I+i H)$ is invertible, or i is not an eigenvalue of H. Moreover a direct computation, by using the condition $H^{2}=$ $(-1-\lambda) I$, gives (5.21).

Corollary 5.3. If $\lambda \neq 0$ then:

$$
\begin{align*}
& E_{\widehat{J}}^{1,0}=\left\{-\lambda Z-i g(Z+i H Z) \mid Z \in C^{\infty}(T(M) \otimes \mathbb{C})\right\}, \tag{5.22}\\
& E_{\widehat{J}}^{0,1}=\left\{-\lambda Z+i g(Z-i H Z) \mid Z \in C^{\infty}(T(M) \otimes \mathbb{C})\right\} . \tag{5.23}
\end{align*}
$$

Moreover, for any linear connection ∇, the following holds:
Lemma 5.4. $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are $[,]_{\nabla}$-involutive if and only if $N^{\nabla}(\widehat{J})=0$.
Proof. Let $P_{+}: E^{\mathbb{C}} \rightarrow E_{\widehat{J}}^{1,0}$ and $P_{-}: E^{\mathbb{C}} \rightarrow E_{\widehat{J}}^{0,1}$ be the projection operators:

$$
\begin{equation*}
P_{ \pm}=\frac{1}{2}(I \mp i \widehat{J}), \tag{5.24}
\end{equation*}
$$

for all $\sigma, \tau \in C^{\infty}\left(E^{\mathbb{C}}\right)$ we have:

$$
\begin{gather*}
P_{\mp}\left[P_{ \pm}(\sigma), P_{ \pm}(\tau)\right]_{\nabla}=P_{\mp}\left[\frac{1}{2}(\sigma \mp i \widehat{J} \sigma), \frac{1}{2}(\tau \mp i \widehat{J} \tau)\right]_{\nabla} \tag{5.25}\\
=-\frac{1}{8}\left(N^{\nabla}(\widehat{J})(\sigma, \tau) \pm i \widehat{J} N^{\nabla}(\widehat{J})(\sigma, \tau)\right)=-\frac{1}{4} P_{\mp}\left(N^{\nabla}(\widehat{J})(\sigma, \tau)\right),
\end{gather*}
$$

and the proof is complete.
Theorem 5.4. Let $\widehat{J}=\left(\begin{array}{cc}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ be the pseudo calibrated generalized complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of $T(M)$ such that $H^{2}=(-1-\lambda) I$ with $\lambda \neq 0$, let ∇ be a linear connection on M, if \widehat{J} is ∇-integrable then $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids.

Proof. The anchor

$$
\begin{equation*}
\rho: E_{\widehat{J}}^{1,0} \rightarrow T(M) \otimes \mathbb{C} \tag{5.26}
\end{equation*}
$$

is defined by

$$
\begin{equation*}
\rho(-\lambda Z-i g(Z+i H Z))=-\lambda Z \tag{5.27}
\end{equation*}
$$

Conditions 1. and 2. of the definition are trivially satisfied then we need to prove the the Jacobi identity holds.
Let $\sigma, \tau, v \in E_{\widehat{J}}^{1,0}$, we denote Jacobiator with Jac, that is:

$$
\begin{equation*}
\operatorname{Jac}\left[[\sigma, \tau]_{\nabla}, v\right]_{\nabla}=\left[[\sigma, \tau]_{\nabla}, v\right]_{\nabla}+\left[[\tau, v]_{\nabla}, \sigma\right]_{\nabla}+\left[[v, \sigma]_{\nabla}, \tau\right]_{\nabla} \tag{5.28}
\end{equation*}
$$

We may assume, without loss of generality, that:

$$
\begin{gather*}
\sigma=-\lambda Z-i g(Z+i H Z) \\
\tau=-\lambda W-i g(W+i H W) \tag{5.29}\\
v=-\lambda U-i g(U+i H U)
\end{gather*}
$$

with $Z, W, U \in C^{\infty}(T(M) \otimes \mathbb{C})$ and use integrability conditions.
We compute

$$
J a c\left[[-\lambda Z-i g(Z+i H Z),-\lambda W-i g(W+i H W)]_{\nabla},-\lambda U-i g(U+i H U)\right]_{\nabla}
$$

As well, we have

$$
\begin{aligned}
& {[-\lambda Z-i g(Z+i H Z),-\lambda W-i g(W+i H W)]_{\nabla} } \\
= & -\lambda^{2}[Z, W]+i \lambda \nabla_{Z} g(W+i H W)-i \lambda \nabla_{W} g(Z+i H Z) \\
= & -i \lambda\left\{-i \lambda[Z, W]-\left(\nabla_{Z} g\right)(W+i H W)+\left(\nabla_{W} g\right)(Z+i H Z)\right\}+ \\
& +i \lambda\left\{g\left(\nabla_{Z}(W+i H W)\right)-g\left(\nabla_{W}(Z+i H Z)\right)\right\} \\
= & -i \lambda\{-i \lambda[Z, W]-g([Z, W]-i H[Z, W])\}+ \\
& -\left(d^{\nabla} g\right)(Z, W)-i H^{*}\left(d^{\nabla} g\right)(Z, W) \\
= & -i \lambda\{-i \lambda[Z, W]+g([Z, W]+i H[Z, W])\},
\end{aligned}
$$

and then

$$
\begin{aligned}
& J a c\left[[-\lambda Z-i g(Z+i H Z),-\lambda W-i g(W+i H W)]_{\nabla},-\lambda U-i g(U+i H U)\right]_{\nabla} \\
= & -i \lambda\{-i \lambda J a c[[Z, W], U]+g(J a c[[Z, W], U]+i H J a c[[Z, W], U])\}=O,
\end{aligned}
$$

or,

$$
J a c\left[[\sigma, \tau]_{\nabla}, v\right]_{\nabla}=O
$$

A similar computation for $E_{\widehat{J}}^{0,1}$ gives the statement, and the proof is complete.
We remark that in the case $\lambda=0, \nabla$-integrability of \widehat{J} is not sufficient to have the Jacobi identity on $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$. Namely, in this case, we get the following:
Proposition 5.5. ([20]) Let (M, H, g) be a complex Norden manifold, the Jacobi identity holds on $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ if and only if the following conditions are satisfied:

$$
\begin{gather*}
R^{D}(H Y, H Z)-H R^{D}(H Y, Z)-H R^{D}(Y, H Z)-R^{D}(Y, Z)=O \tag{5.30}\\
\left(R^{D}(H X, Y)+R^{D}(X, H Y)\right) Z+\left(R^{D}(H Z, X)+R^{D}(Z, H X)\right) Y+ \tag{5.31}\\
+\left(R^{D}(Y, H Z)+R^{D}(H Y, Z)\right) X=O
\end{gather*}
$$

for all $X, Y, Z \in C^{\infty}(T(M))$, where R^{D} denotes the curvature operator of the natural canonical connection D on M,

$$
\begin{equation*}
R^{D}(X, Y)=D_{X} D_{Y}-D_{Y} D_{X}-D_{[X, Y]} \tag{5.32}
\end{equation*}
$$

In particular we have the following, [20]:
Theorem 5.6. Let (M, H, g) be a Kähler Norden manifold then $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids.

6 The generalized $\bar{\partial}_{\widehat{J}}$-operator

The following holds:
Proposition 6.1. Let M be a smooth manifold and let $\widehat{J}=\left(\begin{array}{cc}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ be the generalized pseudo calibrated complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of $T(M)$ such that $H^{2}=(-1-\lambda) I$. The natural symplectic structure on E defines a canonical isomorphism between $E_{\widehat{J}}^{0,1}$ and the dual bundle of $E_{\widehat{J}}^{1,0},\left(E_{\widehat{J}}^{1,0}\right)^{*}$.

Proof. We define

$$
\begin{equation*}
\varphi: E_{\widehat{J}}^{0,1} \rightarrow\left(E_{\widehat{J}}^{1,0}\right)^{*} \tag{6.1}
\end{equation*}
$$

by:

$$
\begin{gather*}
(\varphi(Z+i H Z+g(W-i H W+i Z)+i \lambda W)) \tag{6.2}\\
(X-i H X+g(Y+i H Y-i X)-i \lambda Y)= \\
=(Z+i H Z+g(W-i H W+i Z)+i \lambda W, X-i H X+g(Y+i H Y-i X)-i \lambda Y),
\end{gather*}
$$

for all $X, Y, Z, W \in C^{\infty}(T(M) \otimes \mathbb{C})$ and we extend by linearity.
A direct computation gives:

$$
\begin{gather*}
(\varphi(Z+i H Z+g(W-i H W+i Z)+i \lambda W)) \\
(X-i H X+g(Y+i H Y-i X)-i \lambda Y)= \tag{6.3}\\
=g(Y, Z)-g(W, X)+i(g(W, H X)+g(Y, H Z)-g(X, Z)) .
\end{gather*}
$$

We have immediately that φ is injective and furthermore φ is an isomorphism.
The canonical isomorphism φ between $E_{\widehat{J}}^{0,1}$ and the dual bundle $\left(E_{\widehat{J}}^{1,0}\right)^{*}$ allows us to define the $\bar{\partial}_{\widehat{J}}$-operator associated to the complex structure \widehat{J}, and to the fixed linear connection ∇ on M, as in the following:
let $f \in C^{\infty}(M)$ and let $d f \in C^{\infty}\left(T^{*}(M)\right) \hookrightarrow C^{\infty}\left(T(M) \oplus T^{*}(M)\right)$, we pose

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}} f=2(d f)^{0,1}=d f+i \widehat{J} d f \tag{6.4}
\end{equation*}
$$

or,

$$
\begin{align*}
& \bar{\partial}_{\widehat{J}} f=d f-i J^{*}(d f) \tag{6.5}\\
& \quad=d f-i(d f) J
\end{align*}
$$

moreover, we define:

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}}: C^{\infty}\left(E_{\widehat{J}}^{0,1}\right) \rightarrow C^{\infty}\left(\wedge^{2}\left(E_{\widehat{J}}^{0,1}\right)\right) \tag{6.6}
\end{equation*}
$$

via the natural isomorphism

$$
\begin{equation*}
E_{\widehat{J}}^{0,1} \stackrel{\varphi}{\simeq}\left(E_{\widehat{J}}^{1,0}\right)^{*} \tag{6.7}
\end{equation*}
$$

as:

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}}: C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \rightarrow C^{\infty}\left(\wedge^{2}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \tag{6.8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\bar{\partial}_{\widehat{J}} \alpha\right)(\sigma, \tau)=\rho(\sigma) \alpha(\tau)-\rho(\tau) \alpha(\sigma)-\alpha\left([\sigma, \tau]_{\nabla}\right) \tag{6.9}
\end{equation*}
$$

for $\alpha \in C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right), \sigma, \tau \in C^{\infty}\left(E_{\widehat{J}}^{1,0}\right)$.
In general:

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}}: C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \rightarrow C^{\infty}\left(\wedge^{p+1}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \tag{6.10}
\end{equation*}
$$

is defined by:

$$
\begin{gather*}
\left(\bar{\partial}_{\widehat{J}} \alpha\right)\left(\sigma_{0}, \ldots, \sigma_{p}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0}, . \hat{i}^{\hat{i}} . ., \sigma_{p}\right)+\sum_{i \lessdot j}(-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{\nabla}, \sigma_{0},^{\hat{i}} . . \widehat{j}_{. .}, \sigma_{p}\right), \tag{6.11}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right), \sigma_{0}, \ldots, \sigma_{p} \in C^{\infty}\left(E_{\widehat{J}}^{1,0}\right)$.
Definition 6.2. $\bar{\partial}_{\widehat{J}}$ is called generalized $\bar{\partial}$ - operator of (M, J, g, ∇) or generalized $\bar{\partial}_{\widehat{J}}-$ operator.

We get the following:
Proposition 6.3. If $E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are complex Lie algebroids then $\left(\bar{\partial}_{\widehat{J}}\right)^{2}=0$ and $\left(\partial_{\hat{J}}\right)^{2}=0$.

Proof. It follows from the fact that Jacobi identity holds on $E_{\widehat{J}}^{1,0}$ and $\left(E_{\widehat{J}}^{1,0}\right)^{*}$.
It turns out that $\bar{\partial}_{\widehat{J}}-$ operator is the exterior derivative, d_{L}, of the Lie algebroid $L=E_{\widehat{J}}^{1,0}$. Moreover the exterior derivative $d_{L^{*}}$ of $L^{*}=\left(E_{\widehat{J}}^{1,0}\right)^{*}$ is given by the operator $\partial_{\widehat{J}}$ defined by:

$$
\begin{gather*}
\partial_{\widehat{J}}: C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)\right) \rightarrow C^{\infty}\left(\wedge^{p+1}\left(E_{\widehat{J}}^{1,0}\right)\right) \tag{6.12}\\
\left(\partial_{\widehat{J}} \sigma\right)\left(\alpha_{0}^{*}, \ldots, \alpha_{p}^{*}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\alpha_{i}^{*}\right) \sigma\left(\alpha_{0}^{*}, . . \widehat{i}_{. .}, \alpha_{p}^{*}\right)+\sum_{i \lessdot j}(-1)^{i+j} \sigma\left(\left[\alpha_{i}^{*}, \alpha_{j}^{*}\right]_{\nabla}, \alpha_{0}^{*}, . . \widehat{i}^{i} . . \widehat{j} . ., \alpha_{p}^{*}\right) \tag{6.13}
\end{gather*}
$$

for $\sigma \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)\right), \alpha_{0}^{*}, \ldots, \alpha_{p}^{*} \in C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$.
In particular $\left(C^{\infty}\left(\wedge^{\bullet}\left(E_{\widehat{J}}^{1,0}\right)\right), \wedge, \bar{\partial}_{\widehat{J}},[,]_{\nabla}\right)$ is a differential Gerstenhaber algebra, where \wedge denotes the Schouten bracket, [13], [28].

7 Generalized holomorphic sections

Definition 7.1. $\alpha \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$ is called generalized holomorphic section if

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}} \alpha=0 \tag{7.1}
\end{equation*}
$$

We remark that for all $f \in C^{\infty}(M)$ we have $\bar{\partial}_{\widehat{J}} f=0$ if and only if $d f=0$, so the generalized holomorphic condition for functions gives only constant functions on connected components of M.

The following holds:
Proposition 7.2. Let $\widehat{J}=\left(\begin{array}{cc}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ be the pseudo calibrated generalized complex structure on M defined by a pseudo Riemannian metric g and a g-symmetric operator H of $T(M)$, assume that $H^{2}=(-1-\lambda) I$ with $\lambda \neq 0$. Let ∇ be a linear connection on M such that \widehat{J} is ∇-integrable, let $W \in C^{\infty}(T(M))$ and let $\sigma=-\lambda W+i g(W-i H W) \in E_{\widehat{J}}^{0,1}$, then $\bar{\partial}_{\widehat{J}} \sigma=0$ if and only if $g(W)$ is a Lagrangian submanifold of $T^{*}(M)$ with respect to the standard symplectic structure.

Proof. Let $X, Y \in C^{\infty}(T(M))$, direct computations give:

$$
\begin{align*}
& \left(\bar{\partial}_{\widehat{J}} \sigma\right)(-\lambda X-i g(X+i H X),-\lambda Y-i g(Y+i H Y))= \\
& \quad=-\lambda X(-2 i \lambda g(W, Y))+\lambda Y(-2 i \lambda g(X, W))+ \\
& -\sigma([\lambda X, \lambda Y]+i g(X+i H Y, \lambda Y)-i g(\lambda X, Y+i H Y)) \tag{7.2}\\
& \quad=2 i \lambda^{2}\{X g(W, Y)-Y g(W, X)-g([X, Y], W)\}
\end{align*}
$$

In particular we have $\left(\bar{\partial}_{\hat{J}} \sigma\right)=0$ if and only if:

$$
\begin{equation*}
(d(g(W)))(X, Y)=0 \tag{7.3}
\end{equation*}
$$

and then, by using a classical result in symplectic geometry, [15], we have that $\sigma=$ $-\lambda W+i g(W-i H W)$ is a generalized holomorphic section of $E_{\widehat{J}}^{0,1}$ if and only if $g(W)$ is a Lagrangian submanifold of $T^{*}(M)$ with respect to the standard symplectic structure.

Examples of generalized holomorphic sections can be obtained naturally in the field of Hessian geometry, [24], [26]. The concept of Hessian manifold was inspired by the Bergmann metric on bounded domains in \mathbb{C}^{n} and now is a very interesting topic, related to many other fields in mathematics and theoretical physics: Kähler and symplectic geometry, affine differential geometry, special manifolds, string theory and mirror symmetry, [6], [7], [8], [14], [26], [27].
Definition 7.3. Let (M, g) be a pseudo Riemannian manifold, g is called of Hessian type if there exists $u \in C^{\infty}(M)$ such that $g=\operatorname{Hess}(u)=\nabla^{2} u$, where ∇ is the Levi Civita connection of $g .(M, g)$ is called Hessian pseudo Riemannian manifold if g is of Hessian type.

Proposition 7.4. Let (M, H, g) be a Hessian pseudo Riemannian manifold such that H is a g-symmetric operator and $H^{2}=(-1-\lambda) I, \lambda \neq 0$. Let ∇ be the Levi Civita connection of g, assume $\widehat{J}=\left(\begin{array}{cc}H & \lambda g^{-1} \\ g & -H^{*}\end{array}\right)$ is ∇-integrable. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be local coordinates on M, let $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ be local frames for $T(M)$, if the curvature tensor of ∇, R^{∇}, vanishes, then for all $k=1, \ldots, n$ the local section

$$
\sigma_{k}=-\lambda \frac{\partial}{\partial x_{k}}+i g\left(\frac{\partial}{\partial x_{k}}-i H \frac{\partial}{\partial x_{k}}\right) \in C^{\infty}\left(E_{\widehat{J}}^{0,1}\right)
$$

is $\bar{\partial}_{\widehat{J}}-$ closed.

Proof. Let $g=\nabla^{2} u$, then:

$$
g_{j k}=\frac{\partial^{2} u}{\partial x_{j} \partial x_{k}}-\sum_{l=1}^{n} \Gamma_{j k}^{l} \frac{\partial u}{\partial x_{l}}
$$

where $\left\{\Gamma_{j k}^{l}\right\}$ are Christoffel's symbols of g. In particular $g\left(\frac{\partial}{\partial x_{k}}\right)$ is d closed if and only if for all $i, j, k=1, \ldots, n$:

$$
\begin{aligned}
& \frac{\partial^{3} u}{\partial x_{j} \partial x_{k} \partial x_{i}}-\sum_{l=1}^{n} \frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}} \frac{\partial u}{\partial x_{l}}-\sum_{l=1}^{n} \Gamma_{j k}^{l} \frac{\partial^{2} u}{\partial x_{l} \partial x_{i}}+ \\
& -\frac{\partial^{3} u}{\partial x_{i} \partial x_{k} \partial x_{j}}+\sum_{l=1}^{n} \frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}} \frac{\partial u}{\partial x_{l}}+\sum_{l=1}^{n} \Gamma_{i k}^{l} \frac{\partial^{2} u}{\partial x_{l} \partial x_{j}} \\
= & \sum_{l=1}^{n}\left(\Gamma_{i k}^{l}\left(\frac{\partial^{2} u}{\partial x_{l} \partial x_{j}}-\sum_{r=1}^{n} \Gamma_{l j}^{r} \frac{\partial u}{\partial x_{r}}\right)-\Gamma_{j k}^{l}\left(\frac{\partial^{2} u}{\partial x_{l} \partial x_{i}}-\sum_{r=1}^{n} \Gamma_{l i}^{r} \frac{\partial u}{\partial x_{r}}\right)\right) \\
= & 0
\end{aligned}
$$

or:

$$
\begin{aligned}
& \sum_{l=1}^{n}\left(\frac{\partial \Gamma_{i k}^{l}}{\partial x_{j}}-\frac{\partial \Gamma_{j k}^{l}}{\partial x_{i}}+\sum_{r=1}^{n}\left(\Gamma_{i k}^{r} \Gamma_{r j}^{l}-\Gamma_{j k}^{r} \Gamma_{r i}^{l}\right)\right) \frac{\partial u}{\partial x_{l}} \\
= & \sum_{l=1}^{n} R_{i j k}^{i} \frac{\partial u}{\partial x_{l}}=0
\end{aligned}
$$

and thus, by using Proposition 7.2., we have the statement.
The holomorphic sections in the case $\lambda=0$ have been studied in [20].
Acknowledgement. The author acknowledges the support of PRIN "Proprietà geometriche delle varietà geometriche reali e complesse" of MIUR (2010NNBZ78) and of GNSAGA of INDAM.

References

[1] S. Amari, Differential-Geometrical Methods in Statistics, Lectures Notes in Statistics 28 (1985).
[2] A.M. Blaga, M. Crasmareanu, A class of almost tangent structures in generalized geometry, Balkan J. Geom. Appl. 19 (2014), no. 2, 23-35.
[3] A. Borowiec, M. Francaviglia, I. Volovich, Anti-Kählerian manifolds, Diff. Geom. Appl. 12 (2000), 281-289.
[4] V. Cruceanu, P. Fortuny, P. M. Gadea, A survey on paracomplex geometry, Rocky Mountain J. Math. 26 (1995), 83-115.
[5] L. David, On cotangent manifolds, complex structures and generalized geometry, Annals-Institut Fourier 66 (2016), 1-28.
[6] J. Diustermaat, On Hessian Riemannian structures, Asian J. Math. 5 (2001), 79-91.
[7] D. S. Freed, Special Kähler manifolds, Comm. in Math. Physics 203(1) (1999), 31-52.
[8] N. Hitchin, The moduli space of special Lagrangian submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 503-515.
[9] N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford 54, (2003), 281-308.
[10] M. Gualtieri, Generalized Complex Geometry, Ann. of Math. (2) 174 (2011), 75-123.
[11] G. Ganchev, V. Mihova, Canonical connection and the canonical conformal group on an almost complex manifold with B-metric, Ann. Univ. Sofia Fac. Math. et Inf. 81, (1987), 195-206.
[12] T. Kurose, Statistical manifolds admitting torsion, Geometry and Somethong, Fukuoka University, (2007).
[13] Y. Kosmann-Schwarzbach, Exact Gerstenhaber Algebras and Lie Bialgebroids, Acta Applicandae Mathematicae 41 (1995), 153-165.
[14] J. Loftin, S.T. Yau, E. Zaslow, Affine manifolds, SYZ Geometry and the "Y" vertex, Journal of Differential Geometry 71 (1) (2005), 129-158. .
[15] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical Monographs, Oxford Science Publications (1995).
[16] A. Nannicini, Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold, Journal of Geometry and Physics 56 (2006), 903-916.
[17] A. Nannicini, Almost complex structures on cotangent bundles and generalized geometry, Journal of Geometry and Physics 60 (2010), 1781-1791.
[18] A. Nannicini, Special Kähler manifolds generalized geometry, Differential Geometry and its Applications 31 (2013), 230-238.
[19] A. Nannicini, Generalized geometry of pseudo-Riemannian manifolds and generalized $\bar{\partial}$-operator, Adv. Geom. 16 (2) (2016), 165-173.
[20] A. Nannicini, Generalized geometry of Norden manifolds, Journal of Geometry and Physics 99 (2016), 244-255.
[21] M. Nogushi, Geometry of statistical manifolds, Differential Geometry and its Applications 2 (1992), 197-222.
[22] A. P. Norden, On a class of four-dimensional A-spaces, Russian Math. (Izv VUZ) 17 (4) (1960), 145-157.
[23] J. Pradines, Théorie de Lie pour les groupoides différentiables. Calcul différentiel dans la catégorie des groupoides infinitésimaux, C.R.Acad. Sc. Paris, t. 264, Série A, (1967), 245-248.
[24] A. A. Salimov, A. Gezer, Norden structures of Hessian type, Turk. J. Math. 38 (2014), 462-469.
[25] A. A. Salimov, M. Iscan, F. Etayo, Paraholomorphic B-manifolds and its properties, Topology and its Applications 154 (2007), 925-933.
[26] H. Shima, K.Yagi, Geometry of Hessian manifolds, Differential geometry and its applications 7 (1997), 277-290.
[27] B. Totaro, The curvature of a Hessian manifold, Int. J. Math. 15 (4) (2004), 369-391.
[28] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.

Author's address:
Antonella Nannicini
Università di Firenze, Italy, Dipartimento di Matematica e Informatica "U. Dini" Viale Morgagni 67/a 50134 Firenze, Italy.
E-mail: antonella.nannicini@unifi.it

[^0]: Balkan Journal of Geometry and Its Applications, Vol.22, No.1, 2017, pp. 51-69.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2017.

