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Abstract. We consider pseudo calibrated generalized complex structures,
J, defined by a pseudo Riemannian metric g and a g—symmetric operator
H such that H? = ul, u € R, on a smooth manifold M. These struc-
tures include the case of complex Norden manifolds for p = —1, studied
in [20], the case of almost tangent structures for p = 0, ImH = KerH,
and the case of para Norden manifolds for p = 1. The special case H = O
is described in [19]. We study integrability conditions of J, with respect
to a linear connection V, and we describe examples of geometric struc-
tures that naturally give rise to integrable pseudo calibrated generalized
complex structures. We prove that for u # —1 integrability implies that
the +i—eigenbundles of J, E}’O, ngl, are complex Lie algebroids. We de-

fine the concept of generalized gfoperator of (M, H,g,V) and we study
holomorphic sections.
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1 Introduction

Generalized complex structures were introduced by Hitchin in [9], and further investi-
gated by Gualtieri in [10], in order to unify symplectic and complex geometry. In this
paper we consider the concept of generalized complex structure introduced in [16],
[17] and also studied in [5], [18], [19], [20].

Let (M, g) be a smooth pseudo Riemannian manifold, let T (M) be the tangent
bundle, let T* (M) be the cotangent bundle and let E =T (M) & T* (M) be the gen-
eralized tangent bundle of M. A pseudo calibrated generalized complex structure of
M is a complex structure on E which is pseudo calibrated with respect to the canon-
ical symplectic structure of E. A linear connection, V, on M defines a bracket, [, |g,
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on sections of E and we can define the concept of V—integrability for generalized
complex structures. We consider pseudo calibrated generalized complex structures
J defined by a pseudo Riemannian metric g and a g— symmetric operator H such
that H2 = ul, p € R, on M. These structures include the case of complex Norden
manifolds for p = —1, studied in [20], the case of almost tangent structures for u = 0,
ImH = KerH, and the case of para Norden manifolds for 4 = 1. The special case
H = O is described in [19].

We study the integrability conditions of J. , with respect to a linear connection
V with torsion TV, and we describe examples of geometric structures that naturally
give rise to integrable pseudo calibrated generalized complex structures. Then we
prove that for yu # —1 integrability implies that the +i—eigenbundles of J, E}’O,

E%l, are complex Lie algebroids. We define the concept of generalized 0 7— operator
of (M, H,g,V); from the Jacobi identity on E}’O it follows (5(7)2 =0 and, as 5_; is the
exterior derivative of the Lie algebroid E}’O, we get that (C°(A® (E}’O))7 A, 53,, [, ]v)
is a differential Gerstenhaber algebra, where A denotes the Schouten bracket, [13], [28].
Finally we study certain holomorphic sections.

The paper is organized as in the following. In section 2 we introduce preliminary
material of the generalized tangent bundle and of generalized complex structures; in
section 3 we compute integrability conditions and in section 4 we give examples of
integrable structures; section 5 is devoted to the study of complex Lie algebroids nat-
urally associated to integrable pseudo calibrated generalized complex structures; in
section 6 we define the concept of generalized 5j—operator on M and in section 7 we
study some generalized holomorphic sections, in particular, in this context, Hessian
manifolds occur as interesting examples.

This paper is a generalization of our previous papers [19], [20] and allows us to
unify complex Norden and para Norden manifolds through almost tangent structures
and statistical manifolds. The theory reveals that the case of complex Norden mani-
folds is special.

2 Preliminaries
Let M be a smooth manifold of real dimension n and let E =T (M) @®T™* (M) be the

generalized tangent bundle of M. Smooth sections of E are elements X +¢& € C*(E)
where X € C°(T (M)) is a vector field and £ € C°(T* (M)) is a 1— form.

E is equipped with a natural symplectic structure, (, ), defined by:

1
(2.1) (X +&Y +m) = —5(EY) = n(X))
and a natural indefinite metric, ( , ), defined by:

(22) (X &Y +n) = (V) + (X))

(', ) is non degenerate and of signature (n,n).
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A linear connection on M, V, defines, in a canonical way, a bracket [, ] on
C>*(E), as follows:

Like in [16], a direct computation gives the following:

Lemma 2.1. For all X,Y € C®(T (M)), for all &,n € C®(T*(M)) and for all
f e C™(M) we have:

1. [X+57Y+n]v :_[Y+777X+5]va

2. [f(X+8,Y +nlg =X +&Y +nlg —Y (N (X +6),

3. Jacobi’s identity holds for | , |g if and only if V has zero curvature.

We consider the following concept of generalized complex structure:

Definition 2.2. A generalized complex structure on M is an endomorphism J:E —
E such that J2 = —T .

Definition 2.3. A generalized complex structure J is called pseudo calibrated if it

~

is (, ) —invariant and if the bilinear symmetric form defined by ( ,J) on T (M) is

non degenerate, moreover J is called calibrated if it is pseudo calibrated and ( ,J )
is positive definite.

From the definition we get that a pseudo calibrated complex structure J can be
written in the following block matrix form:

_ 2\ —1
(2.4 5 ( H —(I+H?%yg )
9 —H*

where g : T (M) — T* (M) is identified to the bemolle musical isomorphism of the
pseudo Riemannian metric g on M, H : T (M) — T (M) is a g-symmetric operator
and H* : T* (M) — T* (M) is the dual operator of H defined by:

H(§)(X) = €(H ().

We have:
(2.5) (9()) (¥) = g(X,Y) =2 (X, TY)
for all X,Y € T(M).

In the following we will consider g-symmetric operators H : T (M) — T (M) such
that H? = uI where i € R and I denotes identity. In this case we have:

~ H X!
o (e

where A = —1 — p.

We remark that for p = —1 (M, H, g) is a Norden manifold, [20], for ¢ = 0 and
ImH = KerH, (M, H) is an almost tangent manifold, [2], and for u =1 (M, H, g) is
a para Norden manifold. The special case H = O is described in [19].
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3 Integrability

Let V be a linear connection on M and let [, ] be the bracket on C°°(E) defined
by V, the following holds:

Lemma 3.1. ([17]) Let J : E — E be a generalized complex structure on M and let

~

(3.1) NY(J): C®(E) x C*(E) — C*(E)

defined by:

~

v — T 7. — T 7 — T 7. j—
(3.2) NY(J)(o,7) = [JU, JT}V J [JU,T}V J [07 JT]V lo,7]g
for all o,7 € C>®(E); NV(J) is a skew symmetric tensor.

Definition 3.2. Nv(j) is called the Nijenhuis tensor of J with respect to V.
Definition 3.3. Let j : E — FE be a generalized complex structure on M, J is called
V—integrable if NV (J) = 0.

Let TV be the torsion of V:
(3.3) TV(X,Y)=VxY - VyX — [X,Y]
and let dV be the exterior differential associated to V:
(3.4) (dVg) (X,Y) = (Vxg) (Y) — (Vyg) (X) + g (TV(X,Y))

for all X,Y € C*(TM).

We have the following:
H X!

g —H
plex structure on M defined by a pseudo Riemannian metric g and a g—symmetric
operator H of T(M) such that H?> = (=1 — \)I. Let NV (J) be the generalized Nijen-
huis tensor of J defined by (8.2), then for all X, Y € C*(T(M)) we have:

Proposition 3.4. Let J= > be the pseudo calibrated generalized com-

NY(D)(X,Y) = N(H)(X,Y) = \g~! (V) (X, Y)) +

3.5

(3 +(dVg)(HX,Y) + (dVg)(X, HY) + g(Vy H) (X) — (VxH) (Y))
NY(I)(X,g(Y)) = A((VxH) (Y) - (VyH) (X)) +

36) A9~ ((Vaxg) (V) = (Vxg) (HY))+

A HTY(HX,Y) — HTY(X,Y))+
(@Y 9)(X,Y)) = g(VaxH) (V) = H(VxH) (Y))
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~

NY(J)(g(X),g(Y)) = =X2g~ ((dVg)(X,Y)) +

(3.7)
+Ag((Vy H)(X) — (Vx H) (Y))

where N (H) is the Nijenhuis tensor of H defined by:
(3.8) N(H)(X,Y)=[HX,HY] - H[HX,Y] - H[X,HY] + H?[X,Y].
Proof. Direct computations give:
NY(I)(X,Y) = [HX + g(X), HY + g(Y)]y +
~TIHX +9(X),V)lg = TIX, HY +¢(¥)]g ~ [X.Y]g
=[HX,HY]+Vuxg(Y) = Vuyg(X)+
—J(HX,Y] = Vyg(X) + [X, HY] + Vxg(Y)) - [X, Y]
=[HX,HY] - H[HX,Y] - H[X,HY] + Xg~ " (Vyg(X) — Vxg(Y)) +
—[X, Y]+ Vuxg(Y) = Vayg(X) — g ((HX,Y]) +
—H* (Vyg(X)) — g ([X, HY]) + H* (Vxg(Y))
= NH)(X,Y) +AX, Y]+ A7 (Vyg)(X) — g (VxY))+
+(Vaxg) (Y) = (Vayg) (X) +g(Vy H)(X) = (VxH)(Y)) +
—H* ((Vyg) (X)) + H* (Vxg) (V) + g (TY(HX,Y) + TV (X, HY))
= N(H)(X,Y) + Mg~ ((Vyg)(X) = (Vxg)(Y) = ATV (X,Y))+
+(Vaxg) Y) = (Vayg) (X) + g(Vy H)(X) = (VxH)(Y)) +
—((Vyg) (HX)) + (Vxg) (HY)) + g (TV(HX,Y) + TV (X, HY))
= N(H)(X,Y) = Ag~" ((dVg)(X,Y)) +
+H(dVg)(HX,Y) + (dV g)(X, HY) + g(Vy H)(X) — (Vx H) (Y))

NY(I)(X,g(Y)) = [HX +g(X),\Y = g(HY)]g — J[HX + g(X),g(Y)]y +
—T[X,\Y = g(HY)]g - Vxg(Y)

= A[HX,Y] - Vuxg(HY) — AVyg(X) — JA[X,Y]+

+IVxg(HY) — IVuxg(Y) — Vxg(Y)

= A[HX,Y] - Vuxg(HY) — AVyg(X) — JA[X, Y]+

“AH [X,Y] = Mg ([X,Y]) + Ag7 (Vxg(HY)) = Ag~ (Vuxg(Y) — Vyg(X))
+H* (Vuxg(Y)) — H* (Vxg(HY)) — Vxg(Y)

=AM(VxH)(Y) = (VyH) (X) =g (Vaxg)(Y) = (Vxg)(HY )+
+9(TY(HX,Y) = HTY (X, Y))) + Md¥ 9)(X,Y) = g(VuxH)(Y) = (Vx H) (Y))

~

NY(J)(9(X),9(Y)) = [AX — g(HX),\Y — g(HY )]y +
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~JAX = g(HX),Y)]g — J [9(X),\Y — g(HY)]g

=N[X, Y] = A{ Mg H(Vxg(Y) = Vyg(X)} +

“AM-H" (Vxg(Y)) + H* (Vyg(X))}

=N (-TY(X,Y) =g ((Vxg) (V) = (Vyg) (X)) +
“Ag((Vy H)(X) — (VXH)( )

=N ((dV9)(X,Y)) + M(VyH)X — (VxH)Y).

In particular we get:

H X!

Theorem 3.5. For AA+1) #0 J = ( "
g _ *

) is V—integrable if and only if

the following conditions hold:

dVg=0
(3.9) N(H)=0
VH =0.
~ H O
ForA=0J= ( e > is V—integrable if and only if the following conditions
hold !
N(H)=0
(3.10) VuxH)=H(VxH)

(
(dVg) (HX,Y) + (dVg)(X, HY) — g((Vx H) (Y) — (Vy H) (X)) = 0.

- H —g!
ForA=-1J= ( = ) is V—integrable if and only if the following conditions
g _ *
hold:
dVg=0
N(H)=0
(3.11)
(VxH)(Y) = (VyH)(X)
(VuxH)=H (VxH).

Proof. If X # 0 then from (3.7) and (3.5) we get immediately the first and second
condition in (3.9) and (3.11) and the third in (3.11). Moreover:

(Vaxg) (Y) = (Vxg) (HY) 4+ g(TY(HX,Y) — HTY(X,Y))
(dVg) (HX,Y) + (Vyg) (HX) — (Vxg) (HY) — g(HTY (X,Y))
= (dVg) (HX,Y)+ H*((Vyg) (X) — (Vxg) (Y) = g(TV(X,Y))
(@Vg) (HX,Y)— H* ((dVg) (X,Y));
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then we get (3.11). In order to obtain (3.9) remark that if A # —1, we have

(VxH)(Y) = H™'(VixH) (V) =~ H(VixH) (V)
1
= g H{(VyH)(HX))
= _11_ ~H (VyH?X — HVyHX))
= 7117 )\HQ(HVyX — VyHX)
= —(VWyH)(X)
= —(VxH)(Y);

thus the third condition in (3.9) is obtained. Finally, (3.10) and (3.12) immediately
follow. On the other hand if (3.9), respectively (3.10), (3.11) hold, then NV (J) =0,

and the proof is complete. ([
~ O —g!
Corollary 3.6. If H=0 J = o is V— integrable if and only if
g
(3.12) dVg=0.

4 Examples

Examples of integrable structures with H = 0 can be found in the context of quasi
statistical manifolds.

Definition 4.1. ([1]), ([21]) Let (M, g, V) be a pseudo Riemannian manifold with a
torsion free linear connection, if Vg is symmetric then (M, g, V) is called a statistical
manifold.

The concept of statistical manifold can be generalized to statistical manifolds ad-

mitting torsion or quasi statistical manifolds [12]:

Definition 4.2. Let (M, g) be a pseudo Riemannian manifold and let V be a linear
connection on M with torsion TV then (M, g, V) is called a quasi statistical manifold
or statistical manifold admitting torsion if, for all X, Y € C°(T(M)), the following
formula holds:

(4.1) (Vxg)Y — (Vyg) X +9(T% (X, Y)) =0.

As a direct consequence of (3.4) and (3.12) we get the following:

Corollary 4.3. Let (M, g) be a pseudo Riemannian manifold and let V be a linear
connection on M with torsion TV, let

(4.2) = ( (g) _%_1 )
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be the generalized complex structure on M defined by g, J is V— integrable if and
only if (M,g,V) is a quasi statistical manifold.

Examples of integrable structures with H? = —1I can be found in the context of
Norden manifolds.

Norden manifolds were introduced by A. P. Norden in [22] and then studied also
under the names of almost complex manifolds with B-metric and anti Kahlerian man-
ifolds, [3], [11]. They have applications in mathematics and in theoretical physics.

Definition 4.4. Let (M, H) be an almost complex manifold of real dimension 2n
and let g be a pseudo Riemannian metric on M, if H is a g-symmetric operator then
g is called Norden metric and (M, H, g) is called Norden manifold. If (M, H,g) is a
Norden manifold with H integrable then it is called complex Norden manifold.

Let (M, H, g) be a complex Norden manifold, the following holds:

Theorem 4.5. ([11]) On a complex manifold with Norden metric (M, H,g) there
exists a unique linear connection D with torsion T such that:

(4.3) (Dxg)(Y,Z) =0
(4.4) T(HX,Y) = -T(X, HY)
(4.5) 9T (X, Y),Z)+g9(T(Y,2),X)+9g(T(Z,X),Y)=0

for all vector fields X,Y, Z on M.

D is called the natural canonical connection of the Norden manifold or B— connection
and it is defined by:

1
(4.6) DxY =VxY — SH(VxH)Y

where V is the Levi-Civita connection of g.
In particular, if D is the natural canonical connection of the complex Norden
manifold (M, H,g), then

(4.7) DH = 0.

Corollary 4.6. Let (M, H,g) be a complex Norden manifold and let D be the natural
canonical connection, let

=~ H O
s (" 9
be the generalized complex structure defined by H and g, J is D— integrable.

Definition 4.7. Let (M, H, g) be a Norden manifold and let V be the Levi-Civita
connection of g, if VH = 0 then (M, H, g) is called Kahler Norden manifold.
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We remark that for a Kahler Norden manifold (M, H, g) the structure H is inte-
grable and the natural canonical connection is the Levi Civita connection.

Examples of integrable structures with H? = I are given by para Norden mani-
folds, [4], [25].

Definition 4.8. An almost product structure on a differentiable manifold M is a
(1,1) tensor field H on M such that H? = I. The pair (M, H) is called an almost
product manifold.

Definition 4.9. An almost paracomplex manifold is an almost product manifold
(M, H) such that the two eigenbundles, T (M), T~ (M), associated to the two eigen-
values, +1 and —1 of H respectively, have the same rank.

Definition 4.10. An almost paracomplex Norden manifold (M, H, g) is a real smooth
manifold of dimension 2n with an almost paracomplex structure H and a pseudo Rie-
mannian metric g such that H is a g—symmetric operator.

Definition 4.11. A paraholomorphic Norden manifold, or para Kdhler Norden man-
ifold, is an almost paracomplex Norden manifold (M, H, g) such that VH = 0, where
V is the Levi Civita connection of g.

We remark that for an almost paracomplex structure H the vanishing of the
Nijenhuis tensor N (H) is equivalent to the existence of a torsion free linear connection
V such that VH = 0, [25]. In particular from (3.9) we get immediately the following:

Corollary 4.12. Let (M, H,g) be a paraholomorphic Norden manifold and let V be
the Levi Civita connection of g, let

~ (H —2¢7!
" NEE

be the generalized complex structure on M defined by H and g, J is V— integrable.

5 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [23]; we recall here the definition
and the main properties.

Definition 5.1. A complex Lie algebroid is a complex vector bundle L over a smooth
real manifold M such that: a Lie bracket [, ] is defined on C°°(L), a smooth bundle
map p: L — T(M) ® C, called anchor, is defined and, for all o,7 € C°°(L), for all
f € C>®(M), the following conditions hold:

L p(lo,7]) = [p(0), p(7)]
2. [fo,m] = f([o,7]) = (p(7) (f)) o
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Let L and its dual vector bundle L* be Lie algebroids; on sections of AL, respec-
tively AL*, the Schouten bracket is defined by:

(5.1) [, ], : C® (APL) x C™ (AL) —s C= (APHa1L)

(X1 A AXp, YiA LAY, =

(—1)H (X, Y], AXi A A X, AV AL AY,

(5.2) q

=L

=17
and, for f € C* (M), X € C* (L)
(53) [X’f]L:_[f7X]L:p(X)(f);
respectively, by:

(5.4) [, ]p. : C(APL*) x C° (AIL*) — C* (APTI71LY)

(XA AXEYS A LAY =

(55) P d 1+7 * * * /’L\ * * 7 *
= ;J;(—l) XS Y] L AXTA L AXEAYT AT LAY

and, for f € C*° (M), X € C> (L*)

(5.6) (X, flpe = = [f, X]pe = p(X)(f).

Moreover the exterior derivatives d and d, associated with the Lie algebroid struc-
ture of L and L* are defined respectively by:

(5.7) d:C™ (NPL*) — C* (APFILY)

(do) (o0, ..., 0p) =
(5.8) P

=Y (=) (o)) (Uo, ..;..701,) + 3 (-1)Ha ([O’i, o], o0, ..?..3..,01,)

i=0 i<j

for a € C™° (APL*), 09, ...,0p € C™ (L),

and:

(5.9) d : C™ (A\PL) — C* (APT1L)
(dva) (00, ...,0p) =

(5.10)

= ZZi:o(—l)ip (o) a (JO, A O'p) + 3 (1)« ([O'i,O'j]L* 00,0 Jp)

i<j

for a« € C* (APL), oy, ...,0p € C (L*).
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H X!
_H*
calibrated complex structure on M defined by a pseudo Riemannian metric g and a
g—symmetric operator H of T' (M) such that H? = (=1 — \)I.
Let

(5.11) EC=(T(M)oT*(M))®C

Let M be a smooth manifold and let J = ) be the generalized pseudo

be the complexified generalized tangent bundle. The splitting in +7 eigenspaces of J
is denoted by:

C _ 1,0 0,1
(5.12) E _Ef EBEj
with
0,1 1,0
(5.13) Ef 7Ej .

A direct computation gives:

(5.14)
B’ ={Z —iHZ + g(W +iHW —iZ) +i(-NW | Z,W € C=(T (M) 2 C)},

equivalently E}’O is generated by elements of the following type:
(5.15) Z —iHZ —ig(2)
with Z € C*°(T (M)),

(5.16) —NW + g(W +iHW)
with W € C®(T (M)).

Analogously we have:

(5.17)
EY' ={Z+iHZ + g(W —iHW +iZ) —i(-\)W | Z,W € C*(T (M) @ C)}

and E%’l is generated by elements of the following type:

(5.18) Z +iHZ +ig(Z) with Z € C>®(T (M)),

(5.19) MW + g(W —iHW) with W € C*°(T (M)).
Lemma 5.2. For \ # 0 the map
Y:TM)C—-T(M)®C
defined by:
(5.20) W(2Z)=Z+iHZ
is an isomorphism and

(5.21) W(Z —iHZ) —ig(h(Z)) = —\Z — ig(Z +iHZ) = —i(—NiZ + g(Z +iHZ)).



62 Antonella Nannicini

Proof. We have that ¢ injective if and only if (I +iH) is invertible, or 4 is not

an eigenvalue of H. Moreover a direct computation, by using the condition H?

(=1 = M), gives (5.21).
Corollary 5.3. If A # 0 then:

(5.22) EX ={-\Z—ig(Z+iHZ) | Z € C™(T (M) ®C)},
(5.23) EY ={-\Z+ig(Z —iHZ) | Ze€ C™(T (M)®C)},

Moreover, for any linear connection V, the following holds:

~

Lemma 5.4. E}’O and Egﬁl are [, |g —involutive if and only if NV (J) = 0.

Proof. Let P, : E¢ — E}’O and P_: EC — E%’l be the projection operators:

~

(5.24) Py — %(1; i7),

for all o, 7 € C°°(E®) we have:

(5.25) R o )
= —é(NV(J) (o,7) £iJNV(J) (0,7)) = —%P:F (NV(J) (o, T)) ,

and the proof is complete.

H X!
g —H°

Theorem 5.4. Let J =

]

O

) be the pseudo calibrated generalized complex

structure on M defined by a pseudo Riemannian metric g and a g—symmetric operator
H of T (M) such that H?> = (=1 — \)I with X\ # 0, let V be a linear connection on

~

M, if J is V—integrable then E}’O and E%’l are complex Lie algebroids.
Proof. The anchor

(5.26) p: B - T(M)®C

is defined by

(5.27) p(=\Z —ig(Z +iHZ)) = —\Z.

Conditions 1. and 2. of the definition are trivially satisfied then we need to prove the

the Jacobi identity holds.
Let o,7,v € E}’07 we denote Jacobiator with Jac, that is:

(5.28) Jac([o, Ty ,’U]v =[lo, 7]y ,U]V + [[7,v]g a]v +[[v,0]¢ ,T}V .
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We may assume, without loss of generality, that:
o=-\ —ig(Z+iHZ)
(5.29) T =AW —ig(W +iHW)
v=-\U —ig(U+iHU),
with Z,W,U € C*(T(M) ® C) and use integrability conditions.
We compute
Jac[[-\Z —ig(Z +iHZ), - AW —ig(W +iHW)l|g , =AU —ig(U +iHU)] .
As well, we have
(—A\Z —ig(Z +iHZ), =AW —ig(W +iHW)|g
= N [Z,W]+iXVzg(W +iHW) — iAVwg(Z +iHZ)
= —iMN—NZ,W] = (Vzg9) W +iHW) + (Vwyg) (Z +iHZ)} +
+iX{g(Vz(W +iHW)) —g(Vw(Z+iHZ))}
= —iM—iN[Z,W]—-g([Z,W]—iH[Z,W])} +
—(dVg) (Z,W) —iH*(d" 9)(Z,W
= —iM=iNZ, W] +g([Z,W]+iH [Z,W])},
and then
Jac[[-\Z —ig(Z +iHZ), =AW —ig(W +iHW)|g , =AU —ig(U +iHU)]|
= —iX{—iNac[[Z, W], U]+ g(Jac|[Z,W], U] +iHJac|[Z,W],U])} = O,

or,
Jacl[o, 7]y ,v]g = O.

A similar computation for E%’l gives the statement, and the proof is complete. ([l
We remark that in the case A = 0, V—integrability of J is not sufficient to have
the Jacobi identity on E}’O and E%l. Namely, in this case, we get the following:

Proposition 5.5. %[20]) Let (M, H,g) be a complex Norden manifold, the Jacobi
identity holds on E} and E%’l if and only if the following conditions are satisfied:

(5.30) RP(HY,HZ) - HRP(HY,Z) -~ HRP(Y,HZ) - R”(Y,Z) = O

4 (RP(HX,Y)+ RP(X,HY))Z+ (RP(HZ,X)+ RP(Z,HX)) Y+
(30 +(RP(Y,HZ) + RP(HY, Z)) X = O

for all X,Y,Z € C*°(T(M)), where RP denotes the curvature operator of the natural
canonical connection D on M,

(5.32) RP(X,Y) = DxDy — DyDx — Dix y].
In particular we have the following, [20]:

Theorem 5.6. Let (M, H,g) be a Kihler Norden manifold then E}’O and E%’l are
complex Lie algebroids.
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6 The generalized Ej—operator

The following holds:

. -1
Proposition 6.1. Let M be a smooth manifold and let J = I; igH* ) be the

generalized pseudo calibrated complex structure on M defined by a pseudo Riemannian
metric g and a g—symmetric operator H of T (M) such that H*> = (=1 — \)I. The
natural symplectic structure on E defines a canonical isomorphism between E%’l and

1,0 1,0\ *
the dual bundle of E.? , (Ej ) .

Proof. We define

0,1 1,0\*
(6.1) 0 EY (Ej )
by:
(6.2)

(p(Z+iHZ + g(W —iHW +iZ) + iAW)
(X —iHX +g(Y +iHY —iX) —i\Y) =
=(Z+iHZ +g(W —iHW +iZ) + iAW, X —iHX + g(Y +iHY —iX) —i\Y),

for all X|Y,Z, W € C(T (M) ® C) and we extend by linearity.
A direct computation gives:

(p(Z+iHZ + gW —iHW +iZ) + iAW)
(6.3) (X —iHX 4+ g(Y +iHY —iX) —i\Y) =
=9(Y,2) —g(W, X) +i(g(W,HX) +g(Y,HZ) — g(X, Z)) .
We have immediately that ¢ is injective and furthermore ¢ is an isomorphism. O

The canonical isomorphism ¢ between E%l and the dual bundle (Elf’o) allows

us to define the 5'77 operator associated to the complex structure J. , and to the fixed
linear connection V on M, as in the following:

let f € C®(M) and let df € C(T* (M)) — C*(T (M) ®& T* (M)), we pose
(6.4) D =2(df)™" = df +iJdf,
or,

d+f = df —iJ* (df)

6.5
(02) =df —i(df)J;

moreover, we define:

(6.6) 950> (Ef;l) BNoL (/\2 (Ef;l))
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via the natural isomorphism

(6.7) EOT L (E}O)

69 0= ((E5)) = 0= (2 (55°))
(6.9) (070) (0,7) = p(0) a(7) — p() (o) — a(lo,T]g),
for a € C* ((E}’O *>, o,7€C™® (E}’O)

In general:

(6.10) gj: o> (/\p (E}’O)*) L oo (Ap+l (E}’0>*>

is defined by:

(050) (00, ..., 0p) =
(6.11) P : ~ L ~ =
= 2 (-p(ea (70,50 ) + PRI (los,05]g 00,5700 )
for a € C*° (/\p (E;O)*>, 00y -.0y0p € C™ (E}’O) .
Definition 6.2. 5; is called generalized O — operator of (M, .J,g,V) or generalized
07 — operator.
We get the following:
Proposition 6.3. If E}’O and E%l are complex Lie algebroids then (5;)2 =0 and
(af)Q =0.

Proof. Tt follows from the fact that Jacobi identity holds on E;’O and (E;’O) . O

It turns out that Ej_ operator is the exterior derivative, dr,, of the Lie algebroid
L = E}’O. Moreover the exterior derivative dp- of L* = (E}’O) is given by the
operator d7 defined by:

(612 071 0= (w (1)) - 0 (w+ (1)

(950) (a5, - ap) =

p R ~ L -~ =
— S (=1)ip(al) o (ag, ap) + S (1) e ([a;,a;}v az, ,,z..J..,a;)
i=0 i<y
for 0 € 0 (A7 (EX?)), ag,oap € 0= ((B)).
In particular <C°° (/\' (E}O)) ,/\,5‘7’, [, ]v) is a differential Gerstenhaber alge-
bra, where A denotes the Schouten bracket, [13], [28].

(6.13)
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7 Generalized holomorphic sections

Definition 7.1. o € C* (/\p (E}’O) ) is called generalized holomorphic section if
(7.1) gjoz =0.

We remark that for all f € C*°(M) we have gjf = 0 if and only if df = 0, so
the generalized holomorphic condition for functions gives only constant functions on
connected components of M.

The following holds:
. H X!
Proposition 7.2. Let J = 7 ) be the pseudo calibrated generalized com-
g -
plex structure on M defined by a pseudo Riemannian metric g and a g—symmetric
operator H of T (M), assume that H*> = (=1 — A\)I with X # 0. Let V be a lin-
ear connection on M such that J is V—integrable, let W € C*°(T(M)) and let
o==-AW+igW —iHW) € E%l, then 950 = 0 if and only if g(W) is a Lagrangian
submanifold of T*(M) with respect to the standard symplectic structure.

Proof. Let X, Y € C(T(M)), direct computations give:
(050) (-AX —ig(X +iHX),—AY —ig(Y +iHY)) =
= - AX(—2iAg W, Y)) + AY (—2iAg(X, W))+
—a([AX,AY] 4+ ig(X +iHY,\Y) —ig)\X,Y +iHY))
=20 {Xg(W,Y) - Yg(W. X) — g([X,Y],W)}.

(7.2)

In particular we have (5fo) = 0 if and only if:
(7.3) (dg(W))(X,Y) =0,

and then, by using a classical result in symplectic geometry, [15], we have that o =
=AW +ig(W — iHW) is a generalized holomorphic section of E%l if and only if
g(W) is a Lagrangian submanifold of T*(M) with respect to the standard symplectic
structure. ]

Examples of generalized holomorphic sections can be obtained naturally in the
field of Hessian geometry, [24], [26]. The concept of Hessian manifold was inspired
by the Bergmann metric on bounded domains in C* and now is a very interesting
topic, related to many other fields in mathematics and theoretical physics: Ké&hler
and symplectic geometry, affine differential geometry, special manifolds, string theory
and mirror symmetry, [6], [7], [8], [14], [26], [27].

Definition 7.3. Let (M, g) be a pseudo Riemannian manifold, g is called of Hessian
type if there exists u € C°°(M) such that g = Hess(u) = V2u, where V is the Levi
Civita connection of g. (M, g) is called Hessian pseudo Riemannian manifold if g is
of Hessian type.
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Proposition 7.4. Let (M, H, g) be a Hessian pseudo Riemannian manifold such that
H is a g—symmetric operator and H> = (=1 — \)I, A # 0. Let V be the Levi Civita

- H X!
connection of g, assume J = = is V—integrable. Let {x1,...,2,} be
g _ *
local coordinates on M, let {88, veny 0} be local frames for T(M), if the curvature
X1 Ln

tensor of V, RV, vanishes, then for all k = 1,...,n the local section

B 0 0 0 0o {101
= Aaxk+1g<axk ZH@xk)GC (Ej)

18 5(77 closed.
Proof. Let g = V?u, then:

0%u " ou
= — re, ==
9ik Oz j0xy, ; * oz,

where {ng} are Christoffel’s symbols of g. In particular g ( 3
Tk

6) is d closed if and
only if for all i, 5,k =1,...,n

83u - ar]k ou "
(%cjamkaxz Z ox; O Z: Jka:vlaa:
ot ou K, 0u
7 |
axlaxkaxj Z Ox; 8xl Z:; ik 0,02

i o%u n ou
! _ T
Z<F <8z18x TZP“a ) k(@xl&ci ;P”axr»

=1

= 0
or:
n 61—\1 n au
]k l r
Il — 15 It —
z(a% 3 )
- Z: R”k 3901

and thus, by using Proposition 7.2., we have the statement. O

The holomorphic sections in the case A = 0 have been studied in [20].
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