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Abstract. In this paper, we prove an inequality between the normalized
scalar curvature and the generalized normalized δ-Casorati curvatures for
slant submanifolds of generalized complex space form. Moreover, we char-
acterize those submanifolds for which the equality case holds.
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1 Introduction

The theory of Chen invariants, one of the most interesting research area of differential
geometry is to establish the simple relationships between the main intrinsic invari-
ants and the main extrinsic invariants of the submanifolds started in 1993 by Chen
[6]. In the initial paper Chen established inequalities between the scalar curvature
and the sectional curvature(intrinsic invariants) and the squared norm of the mean
curvature(the main extrinsic invariant) of a submanifold in a real space form. The
same author obtained the inequalities for submanifolds between the k-Ricci curva-
ture, the squared mean curvature and the shape operator in the real space form with
arbitrary codimension [5]. Since then different geometers proved similar inequalities
for different submanifolds and ambient spaces [3, 4, 11, 15, 16].

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian
manifold introduced by Casorati defined as the normalized square length of the sec-
ond fundamental form [2]. The concept of Casorati curvature extends the concept
of the principal direction of a hypersurface of a Riemannian manifold [10]. The ge-
ometrical meaning and the importance of the Casorati curvature discussed by some
distinguished geometers [12, 20, 21, 7, 8]. Therefore it attracts the attention of geome-
ters to obtain the optimal inequalities for the Casorati curvatures of the submanifolds
of different ambient spaces [13, 14, 17].

∗Balkan Journal of Geometry and Its Applications, Vol.22, No.1, 2017, pp. 41-50.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2017.



42 Mehraj Ahmad Lone

The purpose of the present paper is to establish two sharp inequalities for the gen-
eralized normalized δ-Casorati curvature for slant submanifolds of generalized complex
space form.

2 Preliminaries

Let M be an almost Hermitian manifold with an almost complex structure J and a
Riemannian metric g. An almost Hermitian manifold is said to be a nearly Kaehler
manifold if (∇XJ)X = 0 and becomes a Kaehler manifold if ∇J = 0 for all X ∈ TM ,
where ∇ is the Levi-Civita connection of the Riemannian metric g.

Gray [9] introduced the concept of constant type for the nearly Kaehler manifold,
which led to the definition of RK-manifolds. An almost Hermitian manifold for which
the Riemannian curvature tensor R is J-invariant, that is

R(JX, JY, JZ, JW ) = R(X,Y, Z,W ), ∀ X,Y, Z,W ∈ TM

is called an RK-manifold. All nearly Kaehler manifolds belong to the class of RK-
manifolds. An almost Hermitian manifold M is said to have pointwise constant type
if for each p ∈ M and for vector field X,Y, Z ∈ TpM such that

g(X,Y ) = g(X,Z) = g(X, JY ) = g(X, JZ) = 0 and g(Y, Y ) = g(Z,Z) = 1,

we have

R(X,Y,X, Y )−R(X,Y, JX, JY ) = R(X,Z,X,Z)−R(X,Z, JX, JZ).

An RK-manifold M has pointwise constant type if and only if there is a differentiable
function α on M satisfying [19]

R(X,Y,X, Y )−R(X,Y, JX, JY ) = α{g(X,X)g(Y, Y )(2.1)

−g2(X,Y )− g2(X,JY )},

for all X,Y ∈ TM . M has global constant type if and only if (2.1) holds with a
constant function α.

An RK-manifold of constant holomorphic sectional curvature c and constant type
α is denoted by M(c, α). For M(c, α), we have [19]

4R(X,Y )Z = (c+ 3α){g(Y, Z)X − g(X,Z)Y }+ (c− α){g(X,JZ)JY

−g(Y, JZ)JX + 2g(X, JY )JZ},

for all X,Y, Z ∈ TM . If c = α then M(c, α) is a space of constant curvature. A
complex space form M(c) belongs to the class of almost Hermitian manifolds M(c, α)
with constant type zero.

Tricerri and Vanhecke [18] introduced the concept of generalized complex space
form as a generalization of the complex space form. An almost Hermitian manifold M
is called the generalized complex space form, denoted by M(f1, f2), if the Riemannian
curvature tensor R satisfies

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }+ f2{g(X,JZ)JY(2.2)

−g(Y, JZ)JX + 2g(X, JY )JZ},
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for all X,Y, Z ∈ TM . Where f1 and f2 are smooth functions on M(f1, f2).
Let M be an n-dimensional submanifold of a generalized complex space form

M(f1, f2) of dimension m. Let ∇ and ∇ be the Levi-Civita connection on M and M
respectively. The Gauss and Weingarten formulae are defined as

∇XY = ∇XY + h(X,Y ),

∇Xξ = −SξX +∇⊥
XY,

for the vector fields X,Y ∈ TM and ξ ∈ T⊥M , where h, S and ∇⊥ is the second
fundamental form, the shape operator and the normal connection respectively. The
second fundamental form and the shape operator are related by the following equation

g(h(X,Y ), ξ) = g(SξX,Y ),

for vector fields X,Y ∈ TM and ξ ∈ T⊥M .
The equation of Gauss is given by

R(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))(2.3)

−g(h(X,W ), h(Y, Z))

for X,Y, Z,W ∈ TM , where R and R represent the curvature tensor of M(f1, f2) and
M respectively.

Let M be an n-dimensional submanifold of a generalized complex space form
M(f1, f2) of dimension m. For any tangent vector field X ∈ TM , we can write
JX = PX +QX, where P and Q are the tangential and normal components of JX
respectively. If P = 0, the submanifold is said to be an anti-invariant submanifold
and if Q = 0, the submanifold is said to be an invariant submanifold. The squared
norm of P at p ∈ M is defined as

∥P∥2 =
n∑

i,j=1

g2(Jei, ej),(2.4)

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM.
A submanifold M of an almost Hermitian manifold M is said to be a slant sub-

manifold if for any p ∈ M and a non zero vector X ∈ TpM , the angle between JX
and TpM is constant, i.e., the angle does not depend on the choice of p ∈ M and
X ∈ TpM . The angle θ ∈ [0, π

2 ] is called the slant angle of M in M .
The slant submanifolds with slant angle θ = 0 and θ = π

2 respectively are invariant
and anti-invariant submanifolds, and when 0 < θ < π

2 , then the slant submanifold is
called proper slant submanifold.

If M is a θ-slant submanifold in a generalized complex space form M(f1, f2), then

∥P∥2 =

n∑
i,j

g2(Pei, ej) = n cos2 θ.
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Let M be a Riemannian manifold and K(π) denotes the sectional curvature of M of
the plane section π ⊂ TpM at a point p ∈ M . If {e1, . . . , en} and {en+1, . . . , em} be
the orthonormal basis of TpM and T⊥

p M at any p ∈ M , then the scalar curvature τ
at that point is given by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej)

and the normalized scalar curvature ρ is defined as

ρ =
2τ

n(n− 1)
.

The mean curvature vector denoted by H is defined as

H =
1

n

n∑
i,j=1

h(ei, ei)

and also we put

hγ
ij = g(h(ei, ej), eγ), i, j ∈ 1, 2, .., n, γ ∈ {n+ 1, n+ 2, ...,m}.

The norm of the squared mean curvature of the submanifold is defined by

∥H∥2 =
1

n2

m∑
γ=n+1

( n∑
i=1

hγ
ii

)2

and the squared norm of second fundamental form h is denoted by C defined as

C =
1

n

m∑
γ=n+1

n∑
i,j=1

(
hγ
ij

)2
,

known as Casorati curvature of the submanifold.
If we suppose that L is an r-dimensional subspace of TM , r ≥ 2, and {e1, e2, . . . , er}

is an orthonormal basis of L, then the scalar curvature of the r-plane section L is given
as

τ(L) =
∑

1≤γ<β≤r

K(eγ ∧ eβ)

and the Casorati curvature C of the subspace L is as follows

C(L) = 1

r

m∑
γ=n+1

n∑
i,j=1

(
hγ
ij

)2
.

A point p ∈ M is said to be an invariantly quasi-umbilical point if there exist m− n
mutually orthogonal unit normal vectors ξn+1, . . . , ξm such that the shape operators
with respect to all directions ξγ have an eigenvalue of multiplicity n − 1 and that
for each ξγ the distinguished eigendirection is the same. The submanifold is said to
be an invariantly quasi-umbilical submanifold if each of its points is an invariantly
quasi-umbilical point [1].
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The normalized δ-Casorati curvature δc(n− 1) and δ̂c(n− 1) are defined as

[δc(n− 1)]p =
1

2
Cp +

n+ 1

2n
inf{C(L)|L : a hyperplane of TpM}(2.5)

and

[δ̂c(n− 1)]p = 2Cp +
2n− 1

2n
sup{C(L)|L : a hyperplane of TpM}.(2.6)

Some authors use the coefficient n+1
2n(n−1) instead of 2n−1

2n in the equation(2.6). It was

pointed out that the coefficient n+1
2n(n−1) is not suitable and therefore modified by the

coefficient 2n−1
2n . For a positive real number t ̸= n(n− 1), put

a(t) =
1

nt
(n− 1)(n+ t)(n2 − nt),(2.7)

then the generalized normalized δ-Casorati curvatures δc(t;n− 1) and δ̂c(t;n− 1) are
given as

[δc(t;n− 1)]p = tCp + a(t)inf{C(L)|L : a hyperplane of TpM},

if 0 < t < n2 − n, and

[δ̂c(t;n− 1)]p = rCp + a(t)sup{C(L)|L : a hyperplane of TpM},

if t > n2 − n.

3 The main Theorem

Theorem 3.1. Let M be a n-dimensional θ-slant submanifold of a generalized com-
plex space form M(f1, f2) of dimension m. Then

(i) The generalized normalized δ-Casorati curvature δc(t;n− 1) satisfies

ρ ≤ δc(t;n− 1)

n(n− 1)
+ f1 +

3f2
(n− 1)

cos2 θ(3.1)

for any real number t such that 0 < t < n(n− 1).

(ii) The generalized normalized δ-Casorati curvature δ̂c(t;n− 1) satisfies

ρ ≤ δ̂c(t;n− 1)

n(n− 1)
+ f1 +

3f2
(n− 1)

cos2 θ(3.2)

for any real number t > n(n− 1). Moreover, the equality holds in (3.1) and (3.2) iff
M is an invariantly quasi-umbilical submanifold with trivial normal connection in M ,
such that with respect to suitable tangent orthonormal frame {e1, . . . , en} and normal
orthonormal frame {en+1, . . . , em}, the shape operator Sr ≡ Ser , r ∈ {n+ 1, . . . ,m},
take the following form

(3.3) Sn+1 =


a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...
...
...
...

...
...

0 0 0 ... a 0

0 0 0 ... 0
n(n−1)

t a

 , Sn+2 = · · · = Sm = 0.
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Proof. Let {e1, . . . , en} and {en+1, . . . , em} be the orthonormal basis of TpM and
T⊥
p M respectively at any point p ∈ M . Putting X = W = ei, Y = Z = ej , i ̸= j

from (2.2), we have

R(ei, ej , ej , ei) = f1{g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)}(3.4)

+f2{g(ei, Jej)g(Jej , ei)− g(ej , Jej)g(Jei, ei) + 2g(ei, Jej)g(Jej , ei)}.

From Gauss equation and (3.4), we infer

f1{g(ej , ej)g(ei, ei) + 3f2{g(ei, Jej)g(Jej , ei)} = R(ei, ej , ej , ei)(3.5)

+g(h(ei, ej), h(ej , ei))− g(h(ei, ei), h(ej , ej)).

By taking summation 1 ≤ i, j ≤ n and using (2.4) and (3.5), we get

2τ = n2∥H∥2 − nC + n(n− 1)f1 + 3ncos2θf2.(3.6)

Define the following function, denoted by Q, a quadratic polynomial in the compo-
nents of the second fundamental form

Q = tC + a(t)C(L)− 2τ + n(n− 1)f1 + 3ncos2θf2,(3.7)

where L is the hyperplane of TpM . Without loss of generality, we suppose that L is
spanned by e1, . . . , en−1, it follows from (3.7) that

Q =
n+ t

n

m∑
γ=n+1

n∑
i,j=1

(hγ
ij)

2 +
a(t)

n− 1

m∑
γ=n+1

n−1∑
i,j=1

(hγ
ij)

2 −
m∑

γ=n+1

( n∑
i=1

hγ
ii

)2

,

which can be easily written as

Q =
m∑

γ=n+1

n−1∑
i=1

[(
n+ t

n
+

a(t)

n− 1

)
(hγ

ii)
2 +

2(n+ t)

n
(hγ

in)
2

]
(3.8)

+
m∑

n+1

[
2

(
n+ t

n
+

a(t)

n− 1

) n∑
(i<j)=1

(hγ
ij)

2 − 2
n∑

(i<j)=1

hγ
iih

γ
jj +

t

n
(hγ

nn)
2

]
.

From(3.8), we can see that the critical points

hc = (hn+1
11 , hn+1

12 , . . . , hn+1
nn , . . . , hm

11, . . . , h
m
nn)

of Q are the solutions of the following system of homogenous equations:

∂Q
∂hγ

ii
= 2

(
n+t
n + a(t)

n−1

)
(hγ

ii)− 2
∑n

k=1 h
γ
kk = 0

∂Q
∂hγ

nn
= 2t

n hγ
nn − 2

∑n−1
k=1 h

γ
kk = 0

∂Q
∂hγ

ij
= 4

(
n+t
n + a(t)

n−1

)
(hγ

ij) = 0

∂Q
∂hγ

in
= 4(n+t

n (hγ
in) = 0,

(3.9)
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where i, j = {1, 2, . . . , n− 1}, i ̸= j, and γ ∈ {n+ 1, n+ 2, . . . ,m}.
Hence, every solution hc has hγ

ij = 0 for i ̸= j and the corresponding determinant
to the first two equations of the above system is zero. Moreover, the Hessian matrix
of Q is of the following form

H(Q) =

 H1 O O
O H2 O
O O H3

 ,

where

H1 =



2

(
n+t
n

+
a(t)
n−1

)
−2 −2 ... −2 −2

−2 2

(
n+t
n

+
a(t)
n−1

)
−2 ... −2 −2

...
...

...
...

...

−2 −2 ... 2

(
n+t
n

+
a(t)
n−1

)
−2 −2

−2 −2 ... −2 2t
n


,

H2 and H3 are the diagonal matrices and O is the null matrix of the respective
dimensions. H2 and H3 are respectively given as

H2 = diag

(
4

(
n+ t

n
+

a(t)

n− 1

)
, 4

(
n+ t

n
+

a(t)

n− 1

)
, . . . , 4

(
n+ t

n
+

a(t)

n− 1

))
,

and

H3 = diag

(
4(n+ t)

n
,
4(n+ t)

n
, . . . ,

4(n+ t)

n

)
.

Hence, we find that H(Q) has the following eigenvalues

λ11 = 0, λ22 = 2

(
2t

n
+

a(t)

n− 1

)
, λ33 = · · · = λnn = 2

(
n+ t

n
+

a(t)

n− 1

)
,

λij = 4

(
n+ t

n
+

a(t)

n− 1

)
, λin =

4(n+ t)

n
, ∀ i, j ∈ {1, 2, . . . , n− 1}, i ̸= j.

Thus, Q is parabolic and reaches a minimum Q(hc) = 0 for the solution hc of the
system (3.9). Hence Q ≥ 0 and

2τ ≤ tC + a(t)C(L) + n(n− 1)f1 + 3n cos2 θf2,

whereby we obtain

ρ ≤ t

n(n− 1)
C +

a(t)

n(n− 1)
C(L) + f1 +

3f2
(n− 1)

cos2θ
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for every tangent hyperplane L of M . If we take the infimum over all tangent hyper-
planes L, the result trivially follows. Moreover the equality sign holds iff

hγ
ij = 0, ∀ i, j ∈ {1, . . . , n}, i ̸= j and γ ∈ {n+ 1, . . . ,m}(3.10)

and

hγ
nn =

n(n− 1)

t
hγ
11 = · · · = n(n− 1)

t
hγ
n−1n−1, ∀γ ∈ {n+ 1, . . . ,m}.(3.11)

From (3.10) and (3.11), we obtain that the equality holds if and only if the sub-
manifold is invariantly quasi-umbilical with normal connections in M , such that the
shape operator takes the form (3.3) with respect to the orthonormal tangent and
orthonormal normal frames. In the same way, we can prove (ii). �

Corollary 3.2. Let M be a n-dimensional θ-slant submanifold of a generalized com-
plex space form M . Then

(i) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) + f1 +
3f2

(n− 1)
cos2θ.

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submani-
fold with trivial normal connection in M , such that with respect to suitable tangent
orthonormal frame {e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the
shape operator Sr ≡ Ser , r ∈ {n+ 1, . . . ,m}, take the following form

Sn+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 2a


, Sn+2 = · · · = Sm = 0.

(ii) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) + f1 +
3f2

(n− 1)
cos2θ.

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold
with trivial normal connection in M , such that with respect to suitable tangent or-
thonormal frame {e1, . . . , en} a and normal orthonormal frame {en+1, . . . , em}, the
shape operator Sr ≡ Ser , r ∈ {n+ 1, . . . ,m}, take the following form

Sn+1 =



2a 0 0 . . . 0 0
0 2a 0 . . . 0 0
0 0 2a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2a 0
0 0 0 . . . 0 a


, Sn+2 = · · · = Sm = 0.
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