Curvatures of left invariant Randers metrics on
the five-dimensional Heisenberg group
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Abstract. A left invariant Z-Randers metric on the five-dimensional
Heisenberg group is a left invariant Randers metric with deformation vec-
tor from the center of the Heisenberg algebra. In this note we prove that
for every left invariant Z-Randers metric on the five-dimensional Heisen-
berg group there exist flags of strictly negative and there exist flags of
strictly positive curvatures.
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1 Introduction

The geometry of any Lie group N with left invariant Riemann metric reflects strongly
the algebraic structure of its Lie algebra A'. Many of the results in [3] illustrate this
principle. We mention here just two well-known theorems:

Theorem 1.1 (Milnor [6]). If Z belongs to the center of the Lie algebra N, then for
any left invariant metric the inequality for the sectional curvature K(Z,X) > 0 is
satisfied for all X.

Theorem 1.2 (Wolf [10]). Any nonabelian nilpotent Lie group with left invariant
metric must admit both positive and negative sectional curvatures.

The purpose of this paper is to develop the above results for a special type of
five-dimensional Randers spaces. A general study of Berwald-type Randers metric
on two-step homogeneous nilmanifolds of dimension five can be found in [7], where
the author shows that the only space which admits left-invariant Randers metric of
Berwald type has three-dimensional center. In that case the author gives explicit
formula for the flag curvature, and the sign of the flag curvature is studied. In
the present paper we study strictly non-Berwald Randers metrics on the two-step
nilmanifold with one-dimensional center (usually called Heisenberg manifold). The
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three-dimensional case is treated in [5]. We use basically a local calculus. In [5]
we use the Berwald-Moér frame for the computations (see e.g. [8]), while here the
Homolya-Kowalski basis is used (see [4]).

2 Preliminaries

Through this paper we use [2] as a basic reference for foundations of Finsler geometry.
A Finsler manifold (N, F) is a differentiable manifold N equipped with a Finsler
metric F': TN — R. The Finsler geometry counterpart of the Riemannian sectional
curvature is the flag curvature, which can be introduced by considering the osculating
Riemannian metric

1o
© 20s0t|,

(2.1) (X,Y)w F2(W 4 sX +tY),

=t=0

where X, Y € T, N, and W € T, N \ {0}. A flag o(W, X) consists of the flag pole W
and a two-dimensional subspace spanned by W and a nonzero transverse vector X.
The flag curvature for X € T, N is defined by

(R (X, W)W, X)w
W5 [1X 11 — (X W%,

(2.2) K(e(W, X)) = KW, X) =

where
RY(X,Y)Z =VYVWZ-VYVYZ -V Z

is the curvature of the Chern-Rund connection V' for F'. The Chern-Rund connec-
tion for the nowhere vanishing vector field W is the torsion free, almost metric affine
connection VW: X(N) x X(N) — X(N), defined by the generalized Koszul formula

(2.3) VXY, Z)w = XY, Z)w + Y(Z, X)w — Z(X,Y)w+
+ <[Xv Y]a Z>W - <[Y, Z]’X>W + <[Z’ X]7Y>W_

where
93
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F2(W 47X +sY +t2)

r,s8,t=0

is the (0, 3)-type Cartan tensor ([9]). ‘Almost metric’ here means
X(Y, Z)w = (VXY Z)w + (Y, VX Z)w + 2(VXW.Y, Z)w.

Hereafter let N be the five-dimensional Heisenberg group, which is up to isomor-
phism, the only two-step nilpotent Lie group with a 1-dimensional center ([4]). Let N
denote the five-dimensional real Lie algebra of N, with center Z = span Z, spanned
by the element Z. We assume that A is equipped with the Euclidean scalar product
(,), and suppose that || Z]| = 1.

For Xy € N with property || Xo|| < 1 the function

(2.4) [N =R, X f(X)=(X,X)+ (Xp,X)
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defines a Minkowski functional on N; therefore, it can be extended to a left-invariant
Randers type Finsler metric F on the Lie group N of A/ by left translations. From
now on elements of N are regarded as left invariant vector fields on N. For left
invariant vector fields the first three terms of the right hand side of (2.3) vanish.

Excluding the case Xy = 0, the remaining Randers metrics are non-Riemannian
[2, p. 283]. In this paper Xy = £Z for a real number 0 < ¢ < 1. This choice gives
a geometric relationship between the Lie algebra and the Randers metric, and we
call such type of Randers metric Z-Randers metric. Moreover, the condition Z € Z
guarantees that the Randers metric is not Berwald. Namely, the Randers metric
based on (2.4) is Berwald if and only if X is parallel with respect to the Levi-Civita
connection of (,) (see e.g. [1, Theorem 3.1.4.1.]). The Levi-Civita connection has the
form

2<VXY’ Z> = <[X5Y]7Z> - <[Y72]7X> + <[Z5X]aY>a X, Y, Z eEN.
Thus, for all U € N': VyXo =0 if and only if

YU € N WV € N : ([U,V], Xo) = 0.

Consequently, if Xy € Z, then the Randers metric is not Berwald.
The osculating scalar product can be calculated from the Euclidean scalar product
by

(2.5) (U V)w = (U, V) + (Xo,U)(Xo, V) — (Xo, W)W, U)(W, V)

+ (Xo, UY(W, V) + (X0, W){U, V) + (Xo, V)W, U),
where W € N and (W, W) = 1; moreover, the (0, 3)-type symmetric Cartan tensor is
(2.6) WV, Xw =3 S {(Xo,W)(W,U) (W, V)W, X)

[U,V,X]
- <X07W><X7 V><Ua W> - <X07X><VV7 V><W’ U> + <X07U><X7 V>},

see [5].

3 The main theorem

Theorem 3.1. For every left invariant Z-Randers metric on the five-dimensional
Heisenberg group there exist flags of strictly negative and there exist flags of strictly
positive curvatures.

Proof. Table 1 outlines the proof, where we summarized the flag curvature of the
Z-Randers metric for special flags (W, X). In Table 1 we use the Homolya—Kowalski
basis. In [4] the authors construct an orthonormal basis (e, ez, e3,¢e4, Z) in N such
that

(3.1) le1,e2] = —lea,e1] = AZ, [e3,eq] = —[ea,e3] = uZ, A > p >0,

and all the other Lie brackets are zero. The inner product here is the Euclidean scalar
product {,).
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flag pole W transverse vector X K (X, W)
(X #W)

(1.1) WeZz X € span(e, e2) %2 >0

(1.2) X € span(es, ey) “72 >0

(2.1) W espan(er,ea) X €Z %)\2 >0
(2.2) X € span(er, e2) €532
(2.3) X € span(es, e4) ”2%3‘252 <0
(3.1) W espan(es,eq) X €Z %uz >0
(3.2) X € span(e, e2) #52 >0
(3.3) X € span(es, ey) 5?7_3,112 <0

Table 1: Flag curvatures for special flags

We calculate the Chern—Rund connection from the metric using method described
in [9, Theorem 3.10] directly. Also, this method is used in [5] for the three-dimensional
case. In that paper a more detailed description of the algorithm can be found. We
record in Tables 2-6 the explicit formulze for the Chern—Rund connection, restricted
to the demand of the proof.

Cases (1.1) and (1.2) If W € Z then (2.6) gives (U,V,X)z =0for al U, V, X,
and from (2.5) we get

(U, V)z=Q1+&WU,V), U,VeV
(U VY,=0,U€eV, VeZ
U VY =1+ (U V) +E2Z,UNZ, V), UV € Z.

The generalized Koszul formula (2.3) simplifies to
(3.2) 2<V5V, X)z=(UV], X)z = (V. X],U)z +([X,U],V)z.

From (3.2) it is easy to determine the components of the Chern-Rund connection in
the basis (e1, ez, e3,eq4,65 = Z/(£ + 1)), see Table 2. Substituting expressions from
Table 2 into (2.2) we get
22 22 2 12
K(Z =—, K(Z =—, K(Z =—, K(Z = —
( 761) 47 ( ,62) 4a ( 763) 47 ( 764) 4;
which gives cases (1.1) and (1.2).
In what follows, W = wyeq +waes +wses +wgaeq € V, ie. W is from the Euclidean
orthogonal complement of the center.
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€1 €2 €3 €4 €5
Ve, 0 37 0 0 —3e
Ve, —%Z 0 0  3e
Ve, 0 %Z —%6’4
Ve4 0 0 —%Z 0 %63
Ves —562 %61 —%64 %63 0

Table 2: Local components of the Chern—-Rund connection, W = Z

From (2.5) we get in this case

(3.3)  (X,Y)w = (X,V)+£XZ, X)(Z,Y) (X,Y € Z), spec. (Z, Z)w =1+ &
(34) (X,)Y)w=(X)Y) (X,Y €V), spec. (W, W)y =1
(35) (X,)Y)w =&Z, Y)W, X) (X eV, Y € Z), spec. (Z,W)w =¢&.

Moreover, for the Cartan tensor we have

(36)  OVXhw=y 3 (X0 X)W V)W) + (X0, U)X, V)}.
U,v,X]

Applying the Gram—Schmidt process we get that
(37) (61762763764765 = Z_SW)

is an orthonormal basis w.r.t. the osculating scalar product (, )w .
Let

(3.8) W = Awser — Awies + pwaes — pwsey.
For W+ we have
(3.9) (W, W) = (W, WH)w =0.

Moreover, the generalized Koszul formula (2.3) becomes

2ws N, =1
—28wi A, 1=2
AVWW . edw = 2{[es, W], W)w = 26(Z, [e;, W]) = fwn _
2€w4u’) 1=3
—28wsp, 1 =4.

Using (2.3) once more
2V W, es)w = 2(les, W], W)w = 0,
hence

(3.10) VW =W,
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w W z
viv EW —3A2(EW + Z) iwt
VW AN Z—w) —LENWE AN (P -2)W - £2)
vy Wt I ((E2-2)W —£2) 1wt

Table 3: W € span(es, e3)

W wt

v —%,ufe4 —ig)\2€3

€3

VZ‘: %ufeg —i§A264

Table 4: W € span(eq, e2)

Case (2.1). Using Table 3 we get

1
R(Z,WYW =VY VW -V VYW = ¢VIWE — 5v%wL
2

=@ - Ew-2).

It follows that
(R(Z, W)W, Z)w
KW, Z) =
W2 = W 12w = 2. W7,
)\2 52 -1 2

A
:Z'W(SQ*(1+EQ)): 1

(1-¢%).

Case (2.2). While o(W, X) = (W, W) in this case, there is no loss of generality
in choosing W+ as the transverse edge. The required components of the Chern—
Rund connection are computed from the generalized Koszul formula, and they are in
Table 3.

RY(WH W)W = Vi Vg W — VgVt W — Vi W
1 1
= Vi W = SN (Vg Z — Vg W) = NVZW = — W,
hence Lo
W=l

1
KWW = PX€ = e wie,

_} 2062
-2 = 2 - 9).

Case (2.3). Since [e3, W] = 0 in this case,
R (es, W)W = V¥ VW — Viy VI W

1 1
=V WS+ SEuVives = 1€ (1" = N)es.
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w wt Z
Vi Wt —3p2(EW + Z) Wt
Viv.e  uA(Z —EW) — 1w 1 (2 -2)W - £2)
vy Wt L2 (2 -2)Ww —¢2) 1wt

Table 5: W € span(es, e4)

w wt

vv —%)\562 —i{/ﬂel

€1

A IXer —1&pPer

Table 6: W € span(es, €4)

Consequently,

<RW(€3aW)VV>€3>W 1.4, 5 2
K(W,e5) = _Leage
(Wees) = T W — (e, Wyw — 35 W~

Analogously, RY (eq, W)W = 1&%(u? — A?)eq and K (W, e4) = 1€2(u? — A?). Hence,
for all X € span(es, e4) we have K (W, X) = 1£2(u? — A?).

Proof of statements in the rows (3.1), (3.2) and (3.3) of Table 1 are completely

analogous, and we give only the form of the Chern—Rund connection, see Tables 5

and 6. (]
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