
Conformal isoparametric spacelike hypersurfaces in

conformal space Qn+1
1

Shichang Shu and Junfeng Chen

Abstract. In this paper, we study the conformal geometry of conformal
isoparametric spacelike hypersurfaces in conformal space Qn+1

1 . We obtain
the classification of the conformal isoparametric spacelike hypersurfaces
in Qn+1

1 with three distinct conformal principal curvatures, one of which
is simple, and the classification of the conformal isoparametric spacelike
hypersurfaces in Q6

1.
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1 Introduction

Let ⟨, ⟩s be the Lorentzian inner product with s negative index of the (n + s)-
dimensional Euclidean space Rn+s; we denote

⟨X,Y ⟩s =
n∑

i=1

xiyi −
n+s∑

i=n+1

xiyi, ∀X = (xi), Y = (yi) ∈ Rn+s.

Let RPn+2 be the (n + 2)-dimensional real projective space. The quadric surface
Qn+1

1 = {[ξ] ∈ RPn+2|⟨ξ, ξ⟩2 = 0} is called conformal space. We denote the Lorentzian
space forms (the Lorentzian space, the de Sitter sphere and the anti-de Sitter sphere),
respectively, as follows:

Rn+1
1 = (Rn+1, ⟨, ⟩1),

Sn+1
1 = {u ∈ Rn+2|⟨u, u⟩1 = 1},

Hn+1
1 = {u ∈ Rn+2|⟨u, u⟩2 = −1}.

We denote as well π = {[x] ∈ Qn+1
1 |x1 = xn+3}, π+ = {[x] ∈ Qn+1

1 |xn+3 = 0} and
π− = {[x] ∈ Qn+1

1 |x1 = 0}. We shall further consider the conformal diffeomorphisms

σ0 : Rn
1 → Qn+1

1 \π, u 7→ [( ⟨u,u⟩−1
2 , u, ⟨u,u⟩+1

2 )];
σ1 : Sn+1

1 → Qn+1
1 \π+, u 7→ [(u, 1)];

σ−1 : Hn+1
1 → Qn+1

1 \π−, u 7→ [(1, u)].
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From [11], we may regard Qn+1
1 as the common compactified space of Rn+1

1 , Sn+1
1 and

Hn+1
1 , while Rn+1

1 , Sn+1
1 and Hn+1

1 are regarded as the subsets of Qn+1
1 .

Let x : M → Qn+1
1 be an n-dimensional immersed conformal regular spacelike

hypersurface in the conformal space Qn+1
1 . From [9], we know that the conformal

metric of the immersion x can be defined by

g =
n

n− 1

∑
i,j

h2
ij − nH2

 ⟨dx, dx⟩ := e2τ ⟨dx, dx⟩,

which is a conformal invariant. Let

Φ =
n∑

i=1

eτCiθi, A =
n∑

i,j=1

e2τAijθi ⊗ θj , B =
n∑

i,j=1

e2τBijθi ⊗ θj ,D = A+ λB,

where λ is a constant. We call Φ, A, B and D the conformal form, the conformal
Blaschke tensor, the conformal second fundamental form and the conformal para-
Blaschke tensor of the immersion x, respectively. It is known that Φ, A, B and D
are conformal invariants.

The conformal geometry of regular hypersurfaces in the conformal space is deter-
mined by the conformal metric. The negative index of the conformal space Qn+1

1 is 1.
If the negative index is degenerate, then we obtain the Möbius geometry in the unit
sphere, which has been studied by many authors (see [1]-[5],[7]-[15]). An eigenvalue of
the conformal second fundamental form B, the conformal Blaschke tensor A and the
conformal para-Blaschke tensor D, are respectively called conformal principal curva-
ture, Blaschke eigenvalue or para-Blaschke eigenvalue of the immersion x. A regular
spacelike hypersurface x : M → Qn+1

1 is called conformal isoparametric spacelike hy-
persurface, if Φ ≡ 0 and the conformal principal curvatures of the immersion x are
constant.

C.X. Nie et al. studied the conformal geometry of conformal isoparametric space-
like hypersurfaces in the conformal space Qn+1

1 and obtained the following (see [11]):

Theorem 1.1. If x : M → Qn+1
1 is a conformal isoparametric spacelike hypersurface

with two distinct principal curvatures, then x is conformally equivalent to an open
part of the following standard embeddings:

(i) the Riemannian product Sm(c)×Hn−m(
√
c2 − r2) in Sn+1

1 (r), c > r; or
(ii) the Riemannian product Rm ×Hn−m(r) in Rn+1

1 ; or
(iii) the Riemannian product Hm(c) × Hn−m(

√
r2 − c2) in Hn+1

1 (r), 0 < c < r;
where r2 = n−1

m(n−m) .

Recently, the first author and Su [14] obtained the classification of conformal
isoparametric spacelike hypersurfaces in Q4

1 and Q5
1. In this paper, we continue to

study the topic of conformal isoparametric spacelike hypersurfaces in Qn+1
1 . We

obtain the classification of the conformal isoparametric spacelike hypersurfaces in
Qn+1

1 with three distinct conformal principal curvatures, one of which is simple, and
the classification of the conformal isoparametric spacelike hypersurfaces in Q6

1.

Theorem 1.2. Let x : M → Qn+1
1 (n ≥ 3) be a conformal isoparametric spacelike

hypersurface in Qn+1
1 with three distinct conformal principal curvatures, one of which
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is simple. Then x is conformally equivalent to an open part of the spacelike hypersur-
face WP (p, q, c) given by Example 3.1, where p, q, c are some constants, p ≥ 1, q ≥ 1,
p+ q < n and qc4 + pd4 = (qc2 + pd2)2, d =

√
c2 − 1.

Theorem 1.3. Let x : M → Q6
1 be a conformal isoparametric spacelike hypersurface

in Q6
1. Then

a) x is conformally equivalent to an open part of the standard embeddings:

(i) the Riemannian product Sm(c)×H5−m(
√
c2 − r2) in S61(r), c > r, m = 1, 2, 3, 4,

or
(ii) the Riemannian product Rm ×H5−m(r) in R6

1, m = 1, 2, 3, 4, or
(iii) the Riemannian product Hm(c) × H5−m(

√
r2 − c2) in H6

1(r), 0 < c < r,
m = 1, 2, 3, 4, where r2 = 4

m(5−m) ; or

(iv) the spacelike hypersurface WP (p, q, c) given by Example 3.1, where p, q, c are
some constants, p ≥ 1, q ≥ 1, p+ q < 5 and qc4 + pd4 = (qc2 + pd2)2, d =

√
c2 − 1;

b) x is locally a Riemannian product Mm
1 ×M5−m

2 , m = 3, 4, where M5−m
2 is a

constant curvature Riemannian manifold.

2 Fundamental formulas on conformal geometry

We firstly review the fundamental formulas on conformal geometry of spacelike hy-
persurfaces in Qn+1

1 , and use the following range of indices throughout this paper:
1 ≤ i, j, k, l,m ≤ n (for more details, see [11] or [14]).

Let x : M → Qn+1
1 be an n-dimensional conformal regular spacelike hypersurface

with Φ ≡ 0 in Qn+1
1 . From the structure equations on M (see [11]), we have

ωij + ωji = 0, dωi =
∑
j

ωij ∧ ωj ,(2.1)

e2τCi = Hτi −Hi −
∑
j

hijτj , eτBij = hij −HIij ,(2.2)

e2τAij = τiτj − τi,j −Hhij −
1

2

(∑
k

τkτk −H2 − ϵ

)
Iij ,(2.3)

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl,(2.4)

∑
i

Bii = 0,
∑
i,j

B2
ij =

n− 1

n
, trA =

1

2n
(n2κ− 1),(2.5)

Aij,k −Aik,j = BijCk −BikCj , Bij,k −Bik,j = δijCk − δikCj ,(2.6)

Ci,j − Cj,i =
∑
k

(BikAkj −BkjAki),(2.7)

Rijkl = −(BikBjl −BilBjk) + δikAjl + δjlAik − δilAjk − δjkAil,(2.8)
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where Rijkl denotes the curvature tensor with respect to the conformal metric g on
M . Since the conformal form Φ ≡ 0, we have for all indices i, j, k

Aij,k = Aik,j , Bij,k = Bik,j ,
∑
k

BikAkj =
∑
k

BkjAki.(2.9)

The conformal (0, 2) para-Blaschke tensor is denoted by D =
∑

i,j Dijωi ⊗ ωj ,

Dij = Lij + λBij , 1 ≤ i, j ≤ n,(2.10)

where λ is a constant. From (2.9) and (2.10), we have for all indices i, j, k that
Dij,k = Dik,j .

3 Some results and examples

From Nie and Wu [10], Shu and Su [14], Nomizu [13], Li and Xie [6], we have the
following:

Theorem 3.1. (see [10]). If x : M → Qn+1
1 is a conformal regular spacelike hypersur-

face in Qn+1
1 with parallel conformal second fundamental form, then x is conformally

equivalent to an open part of these standard embeddings:
(i) the Riemannian product Sm(a)×Hn−m(

√
a2 − r2) in Sn+1

1 (r), a > r; or
(ii) the Riemannian product Rm ×Hn−m(r) in Rn+1

1 ; or
(iii) the Riemannian product Hm(a) × Hn−m(

√
r2 − a2) in Hn+1

1 (r), 0 < a < r,
where r2 = n−1

m(n−m) ; or

(iv) the spacelike hypersurface x = σ0◦u : Sp(c)×R+×Rn−p−q−1×Hq(d) → Qn+1
1

with d =
√
c2 − 1, p ≥ 1, q ≥ 1, p+ q < n, where

u : Sp(c)×R+×Rn−p−q−1×Hq(d) → Rn+2
1 ⊂ Rn+1

1 , u(u′, t, u′′, u′′′) = (tu′, u′′, tu′′′),

for all u′ ∈ Sp(c), t ∈ R+, u′′ ∈ Rn−p−q−1, u′′′ ∈ Hq(d).

Proposition 3.2. (see [14]) Let x : M → Qn+1
1 be an n-dimensional conformal

isoparametric spacelike hypersurface in Qn+1
1 with constant normalized conformal

scalar curvature κ and κ ̸= 1. Then x is an n-dimensional Euclidean isoparamet-
ric spacelike hypersurface.

Proposition 3.3. (see [13], [6]). Let x be a Euclidean isoparametric spacelike hy-
persurface in Lorentzian space form. Then x can have at most two distinct Euclidean
principal curvatures.

Example 3.1. (see [10]). For any natural number p, q, p + q < n and real number
c ∈ (1,+∞) and d =

√
c2 − 1, consider the immersed hypersurface u : Sp(c) × R+ ×

Rn−p−q−1 × Hq(d) → Rn+2
1 ⊂ Rn+1

1 : u(u′, t, u′′, u′′′) = (tu′, u′′, tu′′′), u′ ∈ Sp(c),
t ∈ R+, u′′ ∈ Rn−p−q−1, u′′′ ∈ Hq(d), then x = σ0 ◦ u : Sp(c) × R+ × Rn−p−q−1 ×
Hq(d) → Qn+1

1 is a conformal regular spacelike hypersurface in Qn+1
1 , which is de-

noted by WP (p, q, c) = x(Sp(c) × R+ × Rn−p−q−1 × Hq(d)). From [10], by a direct
calculation, we know that WP (p, q, c) has three distinct constant conformal princi-
pal curvatures and the conformal second fundamental form is parallel. We may also
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calculate that WP (p, q, c) is of parallel conformal Blaschke tensor. Thus, the con-
formal Blaschke eigenvalues are constants, from (2.5), we know that the normalized
conformal scalar curvature κ is constant. If κ ̸= 1, from Proposition 3.2 and (2.2), we
see that WP (p, q, c) is of three distinct constant Euclidean principal curvatures, this
contradicts Proposition 3.3. If κ = 1, we know that the normalized Euclidean scalar
curvature R = κ = 1. From Gaussian equation n(n−1)(R−1) =

∑
i,j h

2
ij−n2H2, we

see that
∑

i,j h
2
ij = n2H2, this is equivalent to qc4 + pd4 = (qc2 + pd2)2 (see Example

2.1 of [10]).

Example 3.2. (see [14]). Spacelike hypersurface x : Sm(c) × Hn−m(
√
c2 − r2) →

Sn+1
1 (r), r < c. Let x = (x1, x2) ∈ Sm(c) × Hn−m

(√
c2 − r2

)
⊂ Rm+1

1 × Rn−m+1
1 ,

⟨x1, x1⟩ = c2, ⟨x2, x2⟩ = −
(
c2 − r2

)
. By a direct calculation, we see that x has

two distinct principal curvatures d
r and 1

rd with multiplicities m and n −m and the

conformal second fundamental form of x is parallel, where d =
√
c2−r2

c .

Example 3.3. (see [14]). Spacelike hypersurface x : Rm×Hn−m(r) → Rn+1
1 . Let x =

(x1, x2), x1 ∈ Rm, x2 ∈ Hn−m(r) ⊂ Rn−m+1
1 , ⟨x2, x2⟩ = −r2. By a direct calculation,

we see that x has two distinct principal curvatures 0 and −1
r with multiplicities m

and n−m and the conformal second fundamental form of x is parallel.

Example 3.4. (see [14]). Spacelike hypersurface x : Hm(c) × Hn−m(
√
r2 − c2) →

Hn+1
1 (r), 0 < c < r. Let x = (x1, x2) ∈ Hm(c)×Hn−m

(√
r2 − c2

)
⊂ Rm+1

1 ×Rn−m+1
1 ,

⟨x1, x1⟩ = −c2, ⟨x2, x2⟩ = −
(
r2 − c2

)
. By a direct calculation, we see that x has two

distinct principal curvatures d
r and − 1

rd with multiplicities m and n − m and the

conformal second fundamental form of x is parallel, where d =
√
r2−c2

c .

4 Proof of theorem 1.2

Throughout this section, we shall make the following convention on the ranges of
indices: 1 ≤ a, b ≤ m1, m1+1 ≤ p, q ≤ m1+m2, m1+m2+1 ≤ α, β ≤ m1+m2+m3 =
n, 1 ≤ i, j, k ≤ n. Let A, B and D denote the n × n-symmetric matrices (Aij),
(Bij) and (Dij), respectively. From (2.9) and (2.10), we know that BA = AB,
DA = AD and BD = DB. Thus, we may always choose a local orthonormal basis
{E1, E2, . . . , En} such that

(4.1) Aij = Aiδij , Bij = Biδij , Dij = Diδij ,

where Ai, Bi and Di are the conformal Blaschke eigenvalues, the conformal principal
curvatures and the conformal para-Blaschke eigenvalues of the immersion x.

Proof of Theorem 1.2. If the conformal second fundamental form of x is parallel, since
x has three distinct conformal principal curvatures, from Theorem 3.1, Example 3.1–
Example 3.4, we know that x is conformally equivalent to an open part of the spacelike
hypersurface WP (p, q, c) for some constants p, q, c given by Example 3.1.

If the conformal second fundamental form of x is not parallel, denote by B1, B2 and
B3 the three distinct constant conformal principal curvatures of x with multiplicities
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m1, m2 and m3, from the definition of the covariant derivative of Bij (see (2.7) of
[14]), we have

(4.2)
∑
k

Bij,kωk = (Bi −Bj)ωij , Bij,k = Γj
ik(Bi −Bj),

where Γj
ik is the Levi-Civita connection for the conformal metric g given by ωij =∑

k

Γj
ikωk, Γj

ik = −Γi
jk. By (4.2), it follows that for any a, b, p, q, α, β, k

(4.3) Bab,k = Bpq,k = Bαβ,k = 0.

Since the conformal second fundamental form is not parallel, we see that the only
possible non-zero elements in {Bij,k} are of the form {Bap,α}. Since n ≥ 3, without
loss of generality, we may assume that m3 = 1, m1 ≥ 1 and m2 ≥ 1.

From (2.4) and (2.1), the curvature tensor of x may be given by (see [8])

Rijkl =El(Γ
j
ik)− Ek(Γ

j
il) +

∑
m

(Γj
imΓm

lk − Γj
imΓm

kl + Γm
ikΓ

j
ml − Γm

il Γ
j
mk).(4.4)

Thus, from (4.2) and (4.3), we have

Γp
ab = Γα

ab = 0, Γa
pq = Γα

pq = 0, Γa
αβ = Γp

αβ = 0,(4.5)

Γp
aα =

Bap,α

B1 −B2
, Γa

αp =
Bαa,p

B3 −B1
, Γα

pa =
Bpα,a

B2 −B3
.(4.6)

From (4.5) and (4.6), we have

Γa
nn = Γp

nn = 0, Γn
aa = Γn

pp = 0,(4.7)

Γp
an =

Bap,n

B1 −B2
, Γp

nb =
Bbp,n

B3 −B2
, Γn

bq =
Bbq,n

B1 −B3
, Γn

qb =
Bbq,n

B2 −B3
.(4.8)

Thus, from (4.4), we have

Rapbq = Γp
anΓ

n
qb − Γp

anΓ
n
bq − Γn

aqΓ
p
nb =

Bap,nBbq,n +Baq,nBbp,n

(B1 −B3)(B2 −B3)
.(4.9)

On the other hand, from (2.8), we have

Rapbq =(−BaBp +Aa +Ap)δabδpq.(4.10)

It follows from (4.9) and (4.10) that

Bap,nBbq,n +Baq,nBbp,n

(B1 −B3)(B2 −B3)
= (−BaBp +Aa +Ap)δabδpq,(4.11)

2Bap,nBaq,n

(B1 −B3)(B2 −B3)
= (−B1B2 +Aa +Ap)δpq, if a = b,(4.12)

2Bap,nBbp,n

(B1 −B3)(B2 −B3)
= (−B1B2 +Aa +Ap)δab, if p = q,(4.13)

2B1p,nB1q,n

(B1 −B3)(B2 −B3)
= (−B1B2 +A1 +Ap)δpq, if m1 = 1.(4.14)
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Since the conformal second fundamental form is not parallel, we may prove that there
exists exactly one p, such that B1p,n ̸= 0. In fact, if there exist at least two p1, p2,
(p1 ̸= p2) such that B1p1,n ̸= 0, B1p2,n ̸= 0, from (4.14), we have B1p1,nB1p2,n = 0,
this follows that B1p1,n = 0, or B1p2,n = 0, a contradiction. Thus, we know that there
exists exactly one p, such that B1p,n ̸= 0.

If m2 = 1, it follows that
2Bam1+1,nBbm1+1,n

(B1−B3)(B2−B3)
= (−B1B2 + Aa + Am1+1)δab. The

same reason implies that there exists exactly one a, such that Bam1+1,n ̸= 0.
If m1 ≥ 2 and m2 ≥ 2, we may prove that there exists exactly one a and exactly

one p such that Bap,n ̸= 0. In fact, if there exist at least two a1, a2, (a1 ̸= a2) such
that Ba1p,n ̸= 0, Ba2p,n ̸= 0, from (4.13), we see that Ba1p,nBa2p,n = 0, this follows
that Ba1p,n = 0, or Ba2p,n = 0, a contradiction. Thus, we know that there exists
exactly one a, such that Bap,n ̸= 0. By the same reason, we may prove that there
exists exactly one p, such that Bap,n ̸= 0.

Combining the above three cases, we see that if m1 ≥ 1 and m2 ≥ 1, there exists
exactly one a and exactly one p, say a1 and p1, such that

Ba1p1,n ̸= 0, Bap,n = 0, for a ̸= a1, ∀p, or for ∀a, p ̸= p1.(4.15)

By (4.10), (4.12) and (4.15), we get

Ra1p1a1p1 = −B1B2 +Aa1 +Ap1 =
2B2

a1p1,n

(B1 −B3)(B2 −B3)
,(4.16)

Rapap = −B1B2 +Aa +Ap = 0, a ̸= a1, p ̸= p1,(4.17)

Rap1ap1 = −B1B2 +Aa +Ap1 = 0, a ̸= a1,(4.18)

Ra1pa1p = −B1B2 +Aa1 +Ap = 0, p ̸= p1.(4.19)

From (4.2), (4.3), (4.4), (2.8), (4.10) and for the reason above, we get

Ra1na1n = −B1B2 +Aa1 +An =
2B2

a1p1,n

(B1 −B2)(B3 −B2)
,(4.20)

Ranan = −B1B2 +Aa +An = 0, a ̸= a1,(4.21)

Rp1np1n = −B1B2 +Ap1 +An =
2B2

a1p1,n

(B2 −B1)(B3 −B1)
,(4.22)

Rpnpn = −B1B2 +Ap +An = 0, p ̸= p1.(4.23)

Thus, from (4.16)–(4.23), we see that the normalized conformal scalar curvature
κ = 1

n(n−1)

∑
i ̸=j Rijij = 0 ̸= 1. Since (2.2) implies that the matrix (Bij) and (hij)

are commutative, we can choose a local orthonormal basis such that Bij = Biδij and
hij = λiδij , where λi are the Euclidean principal curvatures of x. From (2.2) and
Proposition 3.2, we know that x is an n-dimensional Euclidean isoparametric space-
like hypersurface with three distinct Euclidean principal curvatures, this contradicts
Proposition 3.3. Thus, the case that the conformal second fundamental form of x is
not parallel does not occur. This completes the proof of Theorem 1.2. �

5 Proof of theorem 1.3

Proposition 5.1. (see [12]). Two regular spacelike hypersurface x : M → Qn+1
1

and x̃ : M̃ → Qn+1
1 in Qn+1

1 (n ≥ 3) are conformally equivalent if and only if there
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exists a diffeomorphism f : M → M̃ which preserves the conformal metric g and the
conformal second fundamental form B.

From [12], we also know the definition that a spacelike hypersurface with vanishing
conformal form is called a conformal para-isotropic spacelike hypersurface if there is
a function µ such that A+ λB+ µg ≡ 0. We have the following:

Proposition 5.2. (see [12]). A conformal para-isotropic spacelike hypersurface in
Qn+1

1 is conformally equivalent to one of the spacelike hypersurfaces with constant
mean curvature and constant scalar curvature in Lorentzian space form.

Proof of Theorem 1.3. From (2.5), we see that the number γ of distinct conformal
principal curvatures can only take the values γ = 2, 3, 4, 5.

(1) If γ = 2, from Theorem 1.1, we know that Theorem 1.3 is true.
(2) If γ = 3, we see that at least one of the conformal principal curvatures is

simple. From Theorem 1.2, we know that Theorem 1.3 is true.
(3) If γ = 4, from Theorem 3.1, Example 3.1–Example 3.4, we know that the

conformal second fundamental form of x is not parallel. Let B1, B2, B3, B4 B5 be
the constant conformal principal curvatures of x. Without loss of generality, we may
assume that B1 ̸= B2 ̸= B3 ̸= B4 = B5. From (4.2), we have

(5.1) Bii,k = 0, B45,k = 0, for all i, k, ωij =
∑
k

Bij,k

Bi −Bj
ωk, for Bi ̸= Bj .

By the similar method in [4], we have the following Lemmas (see Lemma 3.1 and
Lemma 3.2 in [4]):

Lemma 5.3. Under the assumptions above, we have

B12,4B12,5

(B1 −B2)(B4 −B2)
=

B13,4B13,5

(B1 −B3)(B3 −B4)
,(5.2)

B12,4B12,5

(B2 −B1)(B4 −B1)
=

B23,4B23,5

(B2 −B3)(B3 −B4)
.(5.3)

Lemma 5.4. Let i, j, k be the three distinct elements of {1, 2, 3} with arbitrarily given
order. Then

Rijij =
2B2

12,3

(Bk −Bi)(Bk −Bj)
+

2(B2
ij,4 +B2

ij,5)

(B4 −Bi)(B4 −Bj)
,(5.4)

Ri4i4 =
2B2

ij,4

(Bj −Bi)(Bj −B4)
+

2B2
ik,4

(Bk −Bi)(Bk −B4)
,(5.5)

Ri5i5 =
2B2

ij,5

(Bj −Bi)(Bj −B5)
+

2B2
ik,5

(Bk −Bi)(Bk −B5)
.(5.6)

Lemma 5.5. Under the assumptions above, we have
(i) for any distinct i, j ∈ {1, 2, 3} and any distinct α, β ∈ {4, 5}, if B12,3Bij,α ̸= 0,

then B12,β = B13,β = B23,β = 0;
(ii) B12,4B12,5 = B13,4B13,5 = B23,4B23,5 = 0.
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Proof. (i) Without loss of generality, we may only prove that for any distinct i, j ∈
{1, 2, 3}, if B12,3Bij,4 ̸= 0, then B12,5 = B13,5 = B23,5 = 0. In fact, if B12,5 ̸= 0, from
the definition of the covariant derivative of Lij and Bij (see (2.6) and (2.7) of [14]),
we have

(5.7) Aij,k = Ek(Ai)δij + Γj
ik(Ai −Aj), Bij,k = Ek(Bi)δij + Γj

ik(Bi −Bj).

Thus, from (5.7), we see that for any distinct i, j ∈ {1, 2, 3}, A12,3

B12,3
= A1−A2

B1−B2
=

A1−A3

B1−B3
= A2−A3

B2−B3
,

Aij,4

Bij,4
=

Ai−Aj

Bi−Bj
= Ai−A4

Bi−B4
=

Aj−A4

Bj−B4
,

A12,5

B12,5
= A1−A2

B1−B2
= A1−A5

B1−B5
=

A2−A5

B2−B5
. If i = 2, j = 3, we see that there is a function λ such that

A1 −A2

B1 −B2
=

A1 −A3

B1 −B3
=

A2 −A4

B2 −B4
=

A1 −A5

B1 −B5
= −λ.(5.8)

Thus, from (5.8), we also see that there is another function µ such that

A1 + λB1 = A2 + λB2 = A3 + λB3 = A4 + λB4 = A5 + λB5 = −µ.(5.9)

Thus, we see that x is a conformal para-isotropic spacelike hypersurface, and from
[12], we know that λ and µ are constant. From Proposition 5.2, we know that x
is conformally equivalent to one of the spacelike hypersurfaces with constant mean
curvature and constant scalar curvature in Lorentzian space form, which, from [12],
is also a conformal para-isotropic spacelike hypersurface denoted by x̃. From Propo-
sition 5.1, we know that x̃ also has four distinct constant conformal principal cur-
vatures B̃i(i = 1, 2, 3, 4). Since x̃ has constant mean curvature and constant scalar
curvature, from Gaussian equation and eτ̃ B̃i = λ̃i − H̃, we see that x̃ is a Euclidean
isoparametric spacelike hypersurface with four distinct Euclidean principal curvatures
λ̃i(i = 1, 2, 3, 4) in Lorentzian space form, this contradicts Proposition 3.3. Thus, we
must have B12,5 = 0. By the similar reason, we may prove that B13,5 = 0 and
B23,5 = 0.

(ii) Suppose that B12,4B12,5 ̸= 0, by Lemma 5.3, we have B13,4B13,5 ̸= 0 and
B23,4B23,5 ̸= 0. By the similar method in the proof of (i), we shall conclude. �

Now, we return to consider the case γ = 4, since the conformal second fundamental
form is not parallel, from (5.1), we should notice that the possible nonzero elements
of Bij,k, 1 ≤ i, j, k ≤ 5, may be {B12,3, B12,4, B12,5, B13,4, B13,5, B23,4, B23,5}.

We may consider two cases: B12,3 = 0 and B12,3 ̸= 0.

Case (i). If B12,3 = 0, since B is not parallel, we know that there is at least one
nonzero element in {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5}, without loss of generality,
we may assume that B12,4 ̸= 0. By Lemma 5.5, we have B12,5 = 0 and there are at
most two nonzero elements in {B13,4, B13,5, B23,4, B23,5}.

Subcase (i). If B13,4 = B13,5 = B23,4 = B23,5 = 0, since B12,4 ̸= 0, B12,3 = 0 and
B12,5 = 0, from (5.4), (5.6) and (2.8), we have

A2 +A5 −B2B5 = 0, A3 +A5 −B3B5 = 0,(5.10)

A2 +A4 −B2B4 =
2B2

12,4

(B1 −B2)(B1 −B4)
, A3 +A4 −B3B4 = 0.(5.11)
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From (5.10) and (5.11), we have A2−A3− (B2−B3)B4 =
2B2

12,4

(B1−B2)(B1−B4)
, A2−A3−

(B2 −B3)B5 = 0. Since B4 = B5, we see that
2B2

12,4

(B1−B2)(B1−B4)
= 0, that is B12,4 = 0,

a contradiction. Thus, subcase (i) does not occur.

Subcase (ii). If exactly one of {B13,4, B13,5, B23,4, B23,5} is nonzero, the symmetry
of indices 1 and 2 implies that we need only to consider two cases: B23,4 ̸= 0 with
B13,4 = B13,5 = B23,5 = 0, or B23,5 ̸= 0 with B13,4 = B13,5 = B23,4 = 0.

If B23,4 ̸= 0 with B13,4 = B13,5 = B23,5 = 0, since B12,4 ̸= 0 , B12,3 = B12,5 = 0,
from Lemma 5.4, we have

R1212 =
2B2

12,4

(B4 −B1)(B4 −B2)
, R1414 =

2B2
12,4

(B2 −B1)(B2 −B4)
,(5.12)

R1313 = 0, R1515 = 0, R2323 =
2B2

23,4

(B4 −B2)(B4 −B3)
,(5.13)

R2424 =
2B2

12,4

(B1 −B2)(B1 −B4)
+

2B2
23,4

(B3 −B2)(B3 −B4)
, R2525 = 0,(5.14)

R3434 =
2B2

23,4

(B2 −B3)(B2 −B4)
, R3535 = 0.(5.15)

From (5.1), we have ω15 = ω25 = ω35 = 0. From (2.8), we know that if three of
{i, j, k, l} are either the same or distinct, then

Rijkl = 0.(5.16)

By (2.4), (5.16), ωij =
∑
k

Γj
ikωk, ω15 = ω25 = ω35 = 0 andR1515 = R2525 = R3535 = 0,

we obtain 0 = dω15 −
∑

k ω1k ∧ ωk5 = −ω14 ∧ ω45 = −Γ1
24ω2 ∧ ω45, 0 = −ω24 ∧ ω45 =

−(Γ2
14ω1 + Γ2

34ω3) ∧ ω45, 0 = −ω34 ∧ ω45 = −Γ3
24ω2 ∧ ω45, this follows that ω45 = 0.

Combining ω15 = ω25 = ω35 = 0, we obtain R4545 = 0. From (5.12)–(5.15) and
R4545 = 0, we have κ = 1

20

∑
i ̸=j Rijij =

1
20{R1212 +R1313 +R1414 +R1515 +R2323 +

R2424 + R2525 + R3434 + R3535 + R4545} = 0 ̸= 1. From (2.2) and Proposition 3.2,
we know that x is a Euclidean isoparametric spacelike hypersurface with four distinct
Euclidean principal curvatures, this contradicts Proposition 3.3.

If B23,5 ̸= 0 with B13,4 = B13,5 = B23,4 = 0, since B12,4 ̸= 0 , B12,3 = B12,5 = 0,
from Lemma 5.4, we have R3434 = 0. By (5.1), we have ω13 = ω15 = ω34 = 0. Thus,
from (2.4), ωij =

∑
k

Γj
ikωk, (5.16) and R3434 = 0, we obtain 0 = −ω32 ∧ ω24 − ω35 ∧

ω54 = −Γ2
35Γ

4
21ω5 ∧ω1 −Γ5

32ω2 ∧ω54, this implies that Γ2
35Γ

4
21 =

B32,5B24,1

(B3−B2)(B2−B4)
= 0,

a contradiction. Thus, subcase (ii) does not occur.

Subcase (iii). If exactly two of {B13,4, B13,5, B23,4, B23,5} are nonzero, the sym-
metry of indices 1 and 2 and (ii) of Lemma 5.5 imply that we need only to consider
three cases: B23,4 ̸= 0, B13,4 ̸= 0 with B13,5 = B23,5 = 0, or B23,4 ̸= 0, B13,5 ̸= 0
with B13,4 = B23,5 = 0, or B23,5 ̸= 0, B13,5 ̸= 0 with B13,4 = B23,4 = 0.

If B23,4 ̸= 0, B13,4 ̸= 0 with B13,5 = B23,5 = 0, since B12,4 ̸= 0 , B12,3 = B12,5 = 0,

from (5.1), we see that ω12 =
B12,4

B1−B2
ω4, ω13 =

B13,4

B1−B3
ω4, ω14 =

B12,4

B1−B4
ω2 +

B13,4

B1−B4
ω3,

ω15 = 0, ω23 =
B23,4

B2−B3
ω4, ω24 =

B12,4

B2−B4
ω1 +

B23,4

B2−B4
ω3,ω25 = 0, ω34 =

B13,4

B3−B4
ω1 +
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B23,4

B3−B4
ω2, ω35 = 0. From (2.4) and (2.1), we have

−R2323ω2 ∧ ω3 = −1

2

∑
k,l

R23klωk ∧ ωl = dω23 −
∑
k

ω2k ∧ ωk3(5.17)

=
B23,4

B2 −B3
dω4 +

dB23,4

B2 −B3
∧ ω4 − ω21 ∧ ω13 − ω24 ∧ ω43

=
B23,4

B2 −B3
ω1 ∧

( B12,4

B1 −B4
ω2 +

B13,4

B1 −B4
ω3

)
+

B23,4

B2 −B3
ω2 ∧

( B12,4

B2 −B4
ω1 +

B23,4

B2 −B4
ω3

)
+

B23,4

B2 −B3
ω3 ∧

( B13,4

B3 −B4
ω1 +

B23,4

B3 −B4
ω2

)
+

B23,4

B2 −B3
ω5 ∧ ω54 +

dB23,4

B2 −B3
∧ ω4

+
{ B12,4

B2 −B4
ω1 +

B23,4

B2 −B4
ω3

}
∧
{ B13,4

B3 −B4
ω1 +

B23,4

B3 −B4
ω2

}
.

Comparing the coefficients of ω1∧ω2 and ω1∧ω3 on both sides of the above equation,
we obtain 1

(B2−B3)(B1−B4)
− 1

(B2−B3)(B2−B4)
+ 1

(B2−B4)(B3−B4)
= 0, 1

(B2−B3)(B1−B4)
−

1
(B2−B3)(B3−B4)

− 1
(B2−B4)(B3−B4)

= 0, this implies 3
(B2−B4)(B3−B4)

= 0, a contradic-
tion.

If B23,4 ̸= 0, B13,5 ̸= 0 with B13,4 = B23,5 = 0, since B12,4 ̸= 0 , B12,3 = B12,5 = 0,
from (5.7) and for the reason in the proof of Lemma 5.5, we see that (5.9) holds for
λ and µ, that is, x is a conformal para-isotropic spacelike hypersurface. By reasoning
as in the proof of Lemma 5.5 again, we have a contradiction.

If B23,5 ̸= 0, B13,5 ̸= 0 with B13,4 = B23,4 = 0, since B12,4 ̸= 0 , B12,3 = B12,5 = 0,
by reasoning as in the proof of Lemma 5.5, we see that x is a conformal para-isotropic
spacelike hypersurface and we also have a contradiction. Thus, subcase (iii) does not
occur.

To sum up, we know that case (i) does not occur.

Case (ii). If B12,3 ̸= 0, by Lemma 5.3 and Lemma 5.5, we see that there are at
most three nonzero elements in {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5}.

Subcase (i). If B12,4 = B12,5 = B13,4 = B13,5 = B23,4 = B23,5 = 0, since
B12,3 ̸= 0, from Lemma 5.4 and (2.8), we have

A1 +A2 −B1B2 =
2B2

12,3

(B3 −B1)(B3 −B2)
,(5.18)

A1 +A3 −B1B3 =
2B2

12,3

(B2 −B1)(B2 −B3)
,(5.19)

A2 +A3 −B2B3 =
2B2

12,3

(B1 −B2)(B1 −B3)
,(5.20)

A1 +A4 −B1B4 = 0, A2 +A4 −B2B4 = 0, A3 +A4 −B3B4 = 0,(5.21)

A1 +A5 −B1B5 = 0, A2 +A5 −B2B5 = 0, A3 +A5 −B3B5 = 0.(5.22)
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Since B4 = B5, from (5.21) and (5.22), we get A4 = A5. From (5.18)–(5.21) we obtain

(B1 −B2)(B3 −B4) =
2(B1 +B2 − 2B3)B

2
12,3

(B2 −B1)(B2 −B3)(B1 −B3)
,(5.23)

2A1 −B1B2 −B1B3 +B2B3 =
4B2

12,3

(B3 −B1)(B1 −B2)
.(5.24)

From (5.23), we see that B12,3 is constant. Thus, from (5.24), (5.18)–(5.22), we
know that A1, A2, A3, A4, A5 are constants. By (5.21), we see that A1 − B4B1 =
A2 − B4B2 = A3 − B4B3 = −A4. On the other hand, we have A4 − B4B4 =
A5 − B4B5 = constant =: ν. We may prove that ν ̸= −A4. In fact, if ν = −A4,
denote by D = A + (−B4)B the conformal para-Blaschke tensor of the immersion
x, we see that x is a conformal para-isotropic spacelike hypersurface. By reasoning
as in the proof of Lemma 5.5, we have a contradiction. Thus, we know that x must
be a conformal spacelike hypersurface with two distinct constant conformal para-
Blaschke eigenvalues. Let ζ and η be the two distinct constant conformal para-
Blaschke eigenvalues of x with multiplicities m and 5 − m respectively. From the
definition of the covariant derivative of Dij , we have

∑
k Dij,kωk = (Di − Dj)ωij .

Thus Dij,k = 0 for 1 ≤ i, j ≤ m, or m + 1 ≤ i, j ≤ 5. From the symmetry of Dij,k,
we see that Dij,k = 0 for all i, j, k, that is, the conformal para-Blaschke tensor of
x is parallel. Thus, we have ωij = 0, for 1 ≤ i ≤ m, m + 1 ≤ j ≤ 5. Hence, we
know that the distributions of the eigenspaces with respect to ζ and η are integrable.
Since the number of distinct conformal para-Blaschke eigenvalues of x is two, we see
that x is locally a Riemannian product Mm

1 ×M5−m
2 , where Mm

1 and M5−m
2 are the

Riemannian integrable manifold corresponding to ζ and η respectively. Since ωij = 0,
for 1 ≤ i ≤ m, m+1 ≤ j ≤ 5, we have Rijij = 0 for 1 ≤ i ≤ m, m+1 ≤ j ≤ 5. Thus,
from (2.8) and D = A+(−B4)B, we have (Bi −B4)(Bj −B4)− (ζ + η)−B2

4 = 0 for
1 ≤ i ≤ m, m+ 1 ≤ j ≤ 5.

If m = 1, we have (B1 − B4)(Bj1 − Bj2) = 0 for 2 ≤ j1, j2 ≤ 5, j1 ̸= j2. Since
B1 ̸= B4, we obtain that B2 = B3 = B4 = B5, a contradiction.

If m = 2, we have (Bi1 −Bi2)(Bj −B4) = 0 for 1 ≤ i1, i2 ≤ 2, i1 ̸= i2, 3 ≤ j ≤ 5.
Since B1 ̸= B2, we obtain that B3 = B4 = B5, a contradiction. Thus, we must have
m ≥ 3. From (2.8), we may easily obtain that Rijkl = (2η + B2

4)(δikδjl − δilδjk) for
m+ 1 ≤ i, j, k, l ≤ 5, that is, M5−m

2 is a constant curvature Riemannian manifold.

Subcase (ii). If exactly one of {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5} is nonzero,
without loss of generality, we may assume that B12,4 ̸= 0. Since B12,3 ̸= 0, B12,5 =
B13,4 = B13,5 = B23,4 = B23,5 = 0, from (5.5), (5.6) and (2.8), we have A2 + A4 −
B2B4 =

2B2
12,4

(B1−B2)(B1−B4)
, A2+A5−B2B5 = 0, A3+A4−B3B4 = 0, A3+A5−B3B5 = 0,

this implies that
2B2

12,4

(B1−B2)(B1−B4)
= 0 and B12,4 = 0, a contradiction. Thus, subcase

(ii) does not occur.

Subcase (iii). If exactly two of {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5} are
nonzero, without loss of generality, we may assume that B12,4 ̸= 0. By Lemma 5.5,
we have B12,5 = B13,5 = B23,5 = 0. Thus exactly one of {B13,4, B23,4} is nonzero,
without loss of generality, we may assume that B13,4 ̸= 0, B23,4 = 0. From (5.1),



Conformal isoparametric spacelike hypersurfaces 69

(2.4), (2.1) and for the reason above, we see that

−R2323ω2 ∧ ω3 = −1

2

∑
k,l

R23klωk ∧ ωl = dω23 −
∑
k

ω2k ∧ ωk3(5.25)

=
dB12,3

B2 −B3
∧ ω1 +

B12,3

B2 −B3

( B12,3

B1 −B2
ω3 +

B12,4

B1 −B2
ω4

)
∧ ω2

+
B12,3

B2 −B3

( B12,3

B1 −B3
ω2 +

B13,4

B1 −B3
ω4

)
∧ ω3

+
B12,3

B2 −B3

( B12,4

B1 −B4
ω2 +

B13,4

B1 −B4
ω3

)
∧ ω4

+
( B12,3

B1 −B2
ω3 +

B12,4

B1 −B2
ω4

)
∧
( B12,3

B1 −B3
ω2 +

B13,4

B1 −B3
ω4

)
.

Comparing the coefficients of ω2∧ω4 and ω3∧ω4 on both sides of the above equation,
we obtain 1

(B2−B3)(B1−B2)
− 1

(B2−B3)(B1−B4)
+ 1

(B1−B2)(B1−B3)
= 0, 1

(B2−B3)(B1−B3)
−

1
(B2−B3)(B1−B4)

− 1
(B1−B2)(B1−B3)

= 0, this implies 3
(B1−B2)(B1−B3)

= 0, a contradic-

tion. Thus, subcase (iii) does not occur.

Subcase (iv). If exactly three of {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5} are
nonzero, we may consider the following cases:

If all of B12,5, B13,5, B23,5 are zero, then it must have B12,4 ̸= 0, B13,4 ̸= 0,
B23,4 ̸= 0. From (5.1) , Lemma 5.4 and (2.8), we have ω15 = ω25 = ω35 = 0
and R1515 = 0, R2525 = 0, R3535 = 0. Therefore, from (2.4) and (4.3), we obtain
0 = dω15 −

∑
k ω1k ∧ ωk5 = −ω14 ∧ ω45 = −(Γ1

24ω2 +Γ1
34ω3) ∧ ω45, 0 = −ω24 ∧ ω45 =

−(Γ2
14ω1 +Γ2

34ω3) ∧ ω45, 0 = −ω34 ∧ ω45 = −(Γ3
14ω1 +Γ3

24ω2) ∧ ω45, this follows that
ω45 = 0. Combining ω15 = ω25 = ω35 = 0, we obtain R4545 = 0. From (5.4), (5.5)
and Ri5i5 = 0, i = 1, 2, 3, 4, we get κ = 1

20

∑
i̸=j Rijij = 0 ̸= 1. From (2.2) and

Proposition 3.2, we know that x is a Euclidean isoparametric spacelike hypersurface
with four distinct Euclidean principal curvatures, this contradicts Proposition 3.3.

If two of {B12,5, B13,5, B23,5} are zero, without loss of generality, we may assume
that B12,5 = B13,5 = 0 and B23,5 ̸= 0. From (ii) of Lemma 5.5, we must have
B23,4 = 0. Thus, it must follow that B12,4 ̸= 0, B13,4 ̸= 0. From (5.7) and for the
reason in the proof of Lemma 5.5, we see that x is a conformal para-isotropic spacelike
hypersurface and we have a contradiction.

If one of {B12,5, B13,5, B23,5} is zero, without loss of generality, we may assume
that B12,5 = 0, B13,5 ̸= 0 and B23,5 ̸= 0. From (ii) of Lemma 5.5, we must have
B13,4 = B23,4 = 0. Thus, it must follow that B12,4 ̸= 0. By reasoning as in the proof
of Lemma 5.5, we see that x is a conformal para-isotropic spacelike hypersurface and
we have a contradiction.

To sum up, we know that case (ii) does not occur.

(4) If γ = 5, from Theorem 3.1, Example 3.1–Example 3.4, we know that B
is not parallel. Without loss of generality, we may assume that B12,3 ̸= 0. Since
B1 ̸= B2 ̸= B3 ̸= B4 ̸= B5, from (4.2), we have Bii,k = 0 for all i, k.

By a similar method as in the proof of [4], we have the following (see Lemma 4.1
in [4]):

Lemma 5.6. Let B1, B2, B3, B4, B5 be the constant conformal principal curvatures
of x : M → Q6

1 with B1 ̸= B2 ̸= B3 ̸= B4 ̸= B5 and i, j, k, l, s be the five distinct
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elements of {1, 2, 3, 4, 5} with arbitrarily given order. Then

Rijij =
2B2

ij,k

(Bk −Bi)(Bk −Bj)
+

2B2
ij,l

(Bl −Bi)(Bl −Bj)
+

2B2
ij,s

(Bs −Bi)(Bs −Bj)
.(5.26)

Now, we return to consider the case γ = 5, since B is not parallel, we may consider
the following two cases:

Case (i). If B12,3 ̸= 0 and all of {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5} are
zero, in this case, we may prove that at most one of {B14,5, B24,5, B34,5} is zero.
In fact, without loss of generality, if B14,5 = B24,5 = 0, by Lemma 5.6, we obtain
κ = 1

20

∑
i ̸=j Rijij = 0 ̸= 1. From (2.2) and Proposition 3.2, we know that x is a

Euclidean isoparametric spacelike hypersurface with five distinct Euclidean principal
curvatures, this contradicts Proposition 3.3.

We now assume that B24,5 ̸= 0, B34,5 ̸= 0. Since B12,3 ̸= 0, by the similar
method as in the proof of Lemma 5.5, we see that there exist λ and ν such that
A2 + λB2 = A3 + λB3 = A4 + λB4 = A5 + λB5, A1 + νB1 = A2 + νB2 = A3 + νB3,
this implies that λ = ν and

A1 + λB1 = A2 + λB2 = A3 + λB3 = A4 + λB4 = A5 + λB5.(5.27)

From (5.27), we see that x is a conformal para-isotropic spacelike hypersurface. By
reasoning as in the proof of Lemma 5.5, we have a contradiction.

Case (ii). If B12,3 ̸= 0 and at least one of {B12,4, B12,5, B13,4, B13,5, B23,4, B23,5}
is nonzero, without loss of generality, we may assume that B12,4 ̸= 0. We consider
the following two subcases:

Subcase (i). If all of {B12,5, B13,5, B23,5, B14,5, B24,5, B34,5} are zero, since B12,3 ̸=
0 and B12,4 ̸= 0, by Lemma 5.6, we obtain κ = 1

20

∑
i̸=j Rijij = 0 ̸= 1. From (2.2) and

Proposition 3.2, we know that x is a Euclidean isoparametric spacelike hypersurface
with five distinct Euclidean principal curvatures, this contradicts Proposition 3.3.

Subcase (ii). If at least one of {B12,5, B13,5, B23,5, B14,5, B24,5, B34,5} is nonzero,
without loss of generality, we may assume that B12,5 ̸= 0. Since B12,3 ̸= 0 and
B12,4 ̸= 0, by the similar method as in the proof of Lemma 5.5, we see that x is a
conformal para-isotropic spacelike hypersurface and we have a contradiction. This
completes the proof of Theorem 1.3. �
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