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Abstract. In this paper we investigate several properties of indefinite
Kähler manifold of complex dimension n (n > 2) with the Krupka-type
curvature tensor, and present several classes of indefinite complex sub-
manifolds of an indefinite complex space form.
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1 Introduction

In 1990, H. Kitahara, K. Matsuo and J. S. Pak ([6, 7]) defined a new tensor field on
a Hermitian manifold which is conformally invariant and studied several properties
of the new tensor field. This new tensor field is said to be the conformal curvature
tensor for briefness.

In 2006, S. Funabashi, Y.-M. Kim, the first and third authors ([5]) defined traceless
component of the conformal curvature tensor field Ĉ on a Kähler manifold analogous
to the trace decomposition problems of D. Krupka ([8]). Hereafter, this tensor Ĉ is
called the Krupka-type curvature tensor.

In this point of view, we investigate several properties of an indefinite Kähler
manifold of the complex dimension n (n > 2) with the Krupka-type curvature tensor,
and study the relations between the Krupka-type curvature tensor Ĉ, the Bochner
curvature tensor B, the conformal curvature tensor C, the Weyl curvature tensor W
and the concircular curvature tensor Z, and determine several classes of indefinite
complex submanifolds of an indefinite complex space form. Specifically, in Section 2
of this paper we recall a brief summary of the complex version of indefinite Kähler
manifolds and some fundamental formulas of indefinite complex submanifolds of an
indefinite Kähler manifold. Section 3 is devoted to investigate some properties of an
indefinite Kähler manifold with parallel or vanishing Krupka-type curvature tensor,
and study the relations between Ĉ, B, C, W and Z. In section 4 we present several
classes of indefinite complex submanifolds of an indefinite complex space form.
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All manifolds are assumed connected and all manifolds and maps are assumed
smooth(class C∞) unless otherwise stated. Notation and definitions not explicitly
introduced may be found in [11] or [13].

2 Indefinite Kähler manifolds

We adopt the notation and terminology from [11]. We start this section by introducing
some basic formulas concerning indefinite Kähler manifolds. Let M be a complex
n(≥ 2)-dimensional connected indefinite Kähler manifold equipped with Kähler metric
tensor g and almost complex structure J . Then for the indefinite Kähler structure
(g, J), it is known that J is integrable and the index of g is even, say 2s(0 ≤ s ≤ n).

A local unitary frame field {E1, . . . , En} on a neighborhood of M can be chosen.
This is a complex linear frame which is orthonormal with respect to the Kähler metric,
that is, (Ei, Ej) = εiδij , where εi = ±1 and i, j = 1, 2, · · · , n. The dual frame field
{ω1, . . . , ωn} (i, j = 1, 2, · · · , n) of the frame field {Ej} consists of complex-valued
1-forms ωi of type (1, 0) on M such that ωi(Ej) = εiδij and {ω1, . . . , ωn, ω1, . . . , ωn}
is linearly independent. Then we see that the Kähler metric g of M can be expressed
as g = 2

∑
j εjωj ⊗ ωj . Associated with the frame field {Ej}, there exist complex-

valued 1-forms ωij , which are usually connection forms on M such that they satisfy
the structure equations of M :

(2.1)

dωi +
∑

j

εjωij ∧ ωj = 0, ωij + ωji = 0,

dωij +
∑

k

εkωik ∧ ωkj = Ωij ,

Ωij =
∑

k,l

εkεlRijklωk ∧ ωl,

where Ωij(resp. Rijkl) denotes the curvature form (resp. the components of the
Riemannian curvature tensor R) on M . The second equation of (2.1) means the
skew-hermitian symmetry of Ωij , which is equivalent to the symmetric condition

(2.2) Rijkl = Rjilk ,

for i, j, k, l = 1, 2, · · · , n. The Bianchi identity obtained by the exterior derivatives of
(2.1) gives

∑
j εjΩij ∧ ωj = 0, which yields the following further symmetric relations

(2.3) Rijkl = Rikjl = Rljki = Rlkji.

Now, with respect to the frame field chosen above, the Ricci tensor S of M is
given by

S = 2
∑

i,j

εiεjSijωi ⊗ ωj ,

where Sij =
∑

k εkRkkij = Sji = Sij . Moreover we can express the scalar curvature
r as the identity r = 2

∑
j εjSjj .



64 Hyang Sook Kim, Jung-Hwan Kwon and Jin Suk Pak

The indefinite Kähler manifold M is said to be Einstein if the Ricci tensor S is
given by

(2.4) Sji = αεiδij ,

where α = r
2n .

The components Rijklm and Rijklm (resp. Sjik and Sjik) of the covariant deriva-
tive of the Riemannian curvature tensor R (resp. the Ricci tensor S) are defined by
the following equation (2.5) (resp. (2.6))

(2.5)

∑
m

εm(Rijklmωm + Rijklmωm) = dRijkl

−
∑
m

εm(Rmjklωmi + Rimklωmj + Rijmlωmk + Rijkmωml),

(2.6)
∑

k

εk(Sjikωk + Sjikωk) = dSji −
∑

k

εk(Sjkωki + Skiωkj).

The second Bianchi formula is given by Rijklm = Rijmlk and hence we have

(2.7) Sjik = Sjki =
∑

l

εlRjikll, rj = 2
∑

k

εkSkjk,

where dr =
∑

j εj(rjωj + rjωj). A plane section P of the tangent space TxM of M
at any point x is said to be non-degenerate, provided that gx |TxM is non-degenerate.
It is easily seen that P is non-degenerate if and only if it has a basis {u, v} such
that g(u, u)g(v, v) − g(u, v)2 6= 0, and a holomorphic plane spanned by u and Ju
is non-degenerate if and only if it contains some v with g(v, v) 6= 0. The sectional
curvature of the non-degenerate holomorphic plane P spanned by u and Ju is called
the holomorphic sectional curvature which is denoted by H(P ) = H(u). The indefinite
Kähler manifold M is said to be of constant holomorphic sectional curvature if its
holomorphic sectional curvature H(P ) is constant for all P and for all points of M .
An indefinite Kähler manifold M of constant holomorphic sectional curvature, say c,
is called an indefinite complex space form and is denoted by Mn

s (c) if M is of complex
dimension n and of index 2s.

It is known that the standard models of indefinite complex space forms are the
following ([2, 13]):

(1) indefinite complex Euclidean space Cn
s ,

(2) indefinite complex projective space Pn
s C,

(3) indefinite complex hyperbolic space Hn
s C.

It is shown in [2] and [13] that for any integer s(0 ≤ s ≤ n) the above three
models are the only complete, simply connected and connected indefinite complex
space forms of dimension n and of index 2s, according as c = 0, c > 0 and c < 0
respectively. We also we recall that the Riemannian curvature tensor Rijkl of Mn

s (c)
is given by

(2.8) Rijkl =
c

2
εjεk(δijδkl + δikδjl).
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From now on let M ′ be an (n + p)-dimensional connected indefinite Kähler manifold
of index 2(s + t)(0 ≤ s ≤ n, 0 ≤ t ≤ p) and let M be an n-dimensional connected
indefinite complex submanifold of M ′ of index 2s.

Then M is the indefinite Kähler manifold endowed with the induced metric tensor
g. We choose a local unitary frame field {EA} = {E1, . . . , En+p} on a neighborhood
of M ′ in such a way that restricted to M , E1, . . . , En are tangent to M and the others
are normal to M . Here and in the sequel the following convention on the range of
indices is used unless otherwise stated:

A, B, C, . . . = 1, . . . , n, n + 1, . . . , n + p,

i, j, k, . . . = 1, . . . , n,

x, y, z, . . . = n + 1, . . . , n + p.

With respect to the above frame field {EA}, let {ωA} = {ωi, ωx} be its dual frame
field. Then the Kähler metric tensor g′ of M ′ is given by

g′ = 2
∑

A

εAωA ⊗ ωA.

The connection forms on M ′ are denoted by ωAB . The canonical forms ωA and
the connection forms ωAB of the ambient space satisfy the structure equations (2.1).

Restricting these forms to the submanifold M , we have ωx = 0 and the induced
indefinite Kähler metric tensor g of index 2s of M is given by g = 2

∑
j εjωj ⊗ ωj .

Then {Ej} is a local unitary frame field with respect to this metric and {ωj} is a
local dual frame field due to {Ej} which consists of complex-valued 1-forms of type
(1, 0) on M . Moreover {ω1, · · · , ωn, ω1, · · · , ωn} is linearly independent and they are
canonical forms on M . It follows from ωx = 0 and the Cartan lemma that the exterior
derivatives of ωx = 0 give rise to

(2.9) ωxi =
∑

j

εjh
x
ijωj , hx

ij = hx
ji.

The quadratic form
∑

i,j,x εiεjεxhx
ijωi ⊗ ωj ⊗Ex with values in the normal bundle is

called the second fundamental form of the submanifold M ([1]). From the structure
equations of M ′ it follows that the structure equations of M are similarly given by
(2.1). Moreover the following relationships are defined:

(2.10)

dωxy +
∑

z

εzωxz ∧ ωzy = Ωxy,

Ωxy =
∑

k,l

εkεlRxyklωk ∧ ωl,

where Ωxy is called the normal curvature form of M .
For the Riemannian curvature tensors R and R′ of M and M ′ respectively, it

follows from the third equation of (2.1) and (2.9) that the Gauss equation

(2.11) Rijkl = R′
ijkl

−
∑

x

εxhx
jkh

x

il
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holds and by means of (2.2), (2.9) and (2.10) we can see that

Rxykl = R′
xykl

+
∑

j

εjh
x
kjh

y

jl.

It is easy to compute that the components of the Ricci tensor S and the scalar
curvature r of M satisfy the identities, respectively

(2.12) Sji =
∑

k

εkR′
kkij

− (hji)
2,

(2.13) r = 2
∑

j,k

εjεkR′
jjkk

− 2h2,

where (hji)
2 =

∑
r,x εrεxhx

irh
x

rj and h2 =
∑

i εi(hii)
2.

Hereafter, let the ambient space be an indefinite complex space form M ′ =
Mn+p

s+t (c′). Then from (2.8) and (2.11)-(2.13), we say that

(2.14) Rijkl =
c′

2
εjεk(δijδkl + δikδjl)−

∑
x

εxhx
jkh

x

il,

(2.15) Sji =
(n + 1)c′

2
εiδij − (hji)

2,

(2.16) r = n(n + 1)c′ − 2h2.

3 Several results on an indefinite Kähler manifold

Let M be a complex n(> 2)-dimensional indefinite Kähler manifold. The Krupka-type
curvature tensor Ĉ with components Ĉijkl of M is given by

Ĉijkl = Rijkl −
1
n

(εjδijSkl + εkSijδkl)− 2(n− 2)
n(2n− 1)

εjδjlSik

+
(n + 2)r

2n2(n + 1)
εjεkδijδkl − (n + 4)r

2n2(n + 1)(2n− 1)
εjεkδikδjl,

(3.1)

which may be found in [5]. Let Ŝ denote the Ricci contraction of Ĉ, that is,

(3.2) Ŝkl =
∑

i

εiĈiikl.

From (3.1) and (3.2), it is clear that

(3.3) Ŝkl = − 2(n− 2)
n(2n− 1)

(Skl −
r

2n
εkδkl).
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Summing up the equation (3.3) for k and l and taking account of r = 2
∑

k εkSkk, we
obtain

(3.4)
∑

k

εkŜkk = 0.

If the Ricci contraction Ŝ vanishes everywhere i.e., Ŝkl = 0 and n > 2, then we obtain
Skl = r

2nεkδkl because of (3.3). Since this equation represents the first Chern class,
it follows that r is constant. Thus M is Einstein by means of (2.4). Conversely, if M
is Einstein, then we see that Ŝkl = 0 with the aid of (2.4) and (3.3).

Thus we get the following lemma.

Lemma 3.1. Let M be an indefinite Kähler manifold of complex dimension n(n > 2).
Then the Ricci contraction Ŝ of the Krupka-type curvature tensor Ĉ of M vanishes
everywhere if and only if M is Einstein.

Remark 3.1. The real version of lemma 3.1 was proved by S. Funabashi, Y.-M. Kim,
the first and third authors ([4]).

The Bochner curvature tensor B with components Bijkl of the indefinite Kähler
manifold is given by

Bijkl = Rijkl

− 1
n + 2

(εjδijSkl + εkSijδkl + εkδikSjl + εjSikδjl)

+
r

2(n + 1)(n + 2)
εjεk(δijδkl + δikδjl),

(3.5)

which was introduced by S. Bochner ([3]). Thus, from (3.1) and (3.5), we know that

Ĉijkl = Bijkl −
2(n− 2)
n(2n− 1)

εjδjlSik

+
1

n + 2
{εkδikSjl + εjSikδjl − (n2 − n + 4)r

n2(2n− 1)
εjεkδikδjl}

− 2
n(n + 2)

(εjδijSkl + εkSijδkl − r

n
εjεkδijδkl).

(3.6)

If n > 2, then by means of (3.3) and the last equation (3.6), we obtain

Ĉijkl = Bijkl + εjδjlŜik

− n(2n− 1)
2(n + 2)(n− 2)

(εkδikŜjl + εjŜikδjl)

+
2n− 1

(n + 2)(n− 2)
(εjδijŜkl + εkŜijδkl).

(3.7)

Assume that Ĉ = B and n > 2. Then the equation (3.7) reduces to

n(εkδikŜjl + εjŜikδjl)− 2(εjδijŜkl + εkŜijδkl)

− 2(n + 2)(n− 2)
2n− 1

εjδjlŜik = 0.
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Summing up the above equation for i and k and making use of (3.4), we get Ŝjl = 0.
Conversely, if Ŝjl = 0 and n > 2, then the equation (3.7) implies Ĉ = B.

Furthermore owing to Lemma 3.1, we can have

Proposition 3.2. Let M be an indefinite Kähler manifold of complex dimension
n(n > 2). Then the Krupka-type curvature tensor is equal to the Bochner curvature
tensor on M if and only if M is Einstein.

The conformal curvature tensor C with components Cijkl of M is given by

Cijkl = Rijkl −
1
n

(εjδijSlk + εkSijδkl)

+
(n + 2)r

2n2(n + 1)
εjεkδijδkl − r

2n(n + 1)
εjεkδikδjl,

(3.8)

which was introduced in [6].
The last equation (3.8) combined with (3.1) yields

(3.9) Ĉijkl = Cijkl −
2(n− 2)
n(2n− 1)

(Sik −
r

2n
εkδik)εjδjl.

Assume that Ĉ = C and n > 2. Then the equation (3.9) gives Sik = r
2nεkδik.

Conversely, if Sik = r
2nεkδik, then we say that Ĉ = C by means of (3.9).

Thus we obtain

Proposition 3.3. Let M be an indefinite Kähler manifold of complex dimension
n(n > 2). Then the Krupka-type curvature tensor is equal to the conformal curvature
tensor on M if and only if M is Einstein.

Remark 3.2. Let M be an indefinite Kähler manifold of complex dimension 2. Then
the Krupka-type curvature tensor is equal to the conformal curvature tensor on M .

Remark 3.3. Making use of the Proposition 3.2 in [10], we can also prove the above
Proposition 3.3.

Remark 3.4. Let M be an indefinite Kähler manifold of complex dimension n(n > 2).
The Weyl curvature tensor W with components Wijkl is defined by

Wijkl = Rijkl −
1

n + 1
(εjδijSkl + εkδikSjl).

It is easy to know that the Weyl curvature tensor is equal to the Bochner curvature
tensor if and only if M is Einstein.

Remark 3.5. Let M be an indefinite Kähler manifold of complex dimension n(n > 2)
and let Z be a concircular curvature tensor is defined in [12]. Then the concircular
curvature tensor is equal to the Weyl curvature tensor if and only if M is Einstein.

Remark 3.6. Let M be an indefinite Kähler manifold of complex dimension n(n > 2).
Then any two tensors among B, C, Ĉ, W and Z are equal to each other if and only
if M is Einstein. In fact, with the help of Proposition 3.2, 3.3, Remark 3.4 and 3.5,
we can see that our assertion is true.
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The components Ŝijk and Ŝijk of the covariant derivative of the Ricci contraction
Ŝ of the Krupka-type curvature tensor Ĉ are defined by

(3.10)
∑

k

εk(Ŝijkωk + Ŝijkωk) = dŜij −
∑

k

εk(Ŝkjωki + Ŝikωkj).

Since we see that dr =
∑

j εj(rjωj + rjωj), taking account of (2.1), (2.6), (3.3) and
(3.10), we get

∑

k

εk(Ŝijkωk + Ŝijkωk)

= − 2(n− 2)
n(2n− 1)

∑

k

εk{Sijkωk + Sijkωk − 1
2n

εjδij(rkωk + rkωk)}

so that

Ŝijk = − n(n− 2)
n(2n− 1)

(Sijk −
1
2n

εjδijrk),

Ŝijk = − n(n− 2)
n(2n− 1)

(Sijk −
1
2n

εjδijrk).
(3.11)

Assume that the Ricci contraction Ŝ is parallel, i.e., Ŝijk = 0 and Ŝijk = 0. If
n > 2, then from (3.11) it turns out to be

(3.12) Sijk =
1
2n

εjδijrk, Sijk =
1
2n

εjδijrk.

Then the last equation (3.12) coupled with (2.7) reduces to rk = 0 and rk = 0.
Substituting these equations into (3.12), we obtain Sijk = 0 and Sijk = 0, that is, the
Ricci tensor is parallel.

Conversely, if the Ricci tensor is parallel, then rk = 0 and rk = 0, and consequently
Ŝijk = 0 and Ŝijk = 0 with the help of (3.11).

Thus we established the following

Proposition 3.4. Let M be an indefinite Kähler manifold of complex dimension
n(n > 2). Then the Ricci contraction of the Krupka-type curvature tensor is parallel
if and only if the Ricci tensor is parallel.

Remark 3.7. The real version of proposition 3.4 was proved by S. Funabashi, Y.-M.
Kim, the first and third authors ([4]).

Owing to Proposition 3.4 and Theorem due to the second author ([9]), the following
result is immediate

Corollary 3.5. Let M be an indefinite Kaehlerian manifold of complex dimension
n(n > 2). Then the following assertions are equivalent to each other:

(1) the Ricci contraction of the Krupka-type curvature tensor of M is parallel,
(2) M has harmonic curvature,
(3) the Ricci tensor of M is cyclic-parallel.



70 Hyang Sook Kim, Jung-Hwan Kwon and Jin Suk Pak

Let M be an indefinite Kähler manifold of complex dimension n(n > 2). The com-
ponents Ĉijklm and Ĉijklm of the covariant derivative of the Krupka-type curvature
tensor Ĉ are defined by

∑
m

εm(Ĉijklmωm + Ĉijklmωm) = dĈijkl −
∑
m

εm(Ĉijklωmi

+ Ĉimklωmj + Ĉijmlωmk + Ĉijkmωml).
(3.13)

Since dr =
∑

j εj(rjωj +rjωj), it follows from (2.1), (2.5), (2.6), (3.1) and (3.13) that

Ĉijklm = Rijklm − 1
n

(εjδijSklm + εkSijmδkl)

− 2(n− 2)
n(2n− 1)

εjδjlSikm +
(n + 2)rm

2n2(n + 1)
εjεkδijδkl

− (n + 4)rm

2n2(n + 1)(2n− 1)
εjεkδikδjl,

(3.14)

Ĉijklm = Rijklm − 1
n

(εjδijSlkm + εkSijmδkl)

− 2(n− 2)
n(2n− 1)

εjδjlSikm +
(n + 2)rm

2n2(n + 1)
εjεkδijδkl

− (n + 4)rm

2n2(n + 1)(2n− 1)
εjεkδikδjl.

(3.15)

If the Krupka-type curvature tensor of M is parallel, then we kkow that Ŝjlm = 0
and Ŝjlm = 0, that is, the Ricci contraction Ŝ is parallel. Thus, making use of
Proposition 3.4, we say that the Ricci tensor is parallel, provided n > 2, which
together with (3.11) yields rm = 0 = rm. Hence using (3.14) and (3.15), we obtain
Rijklm = 0 and Rijklm = 0, that is, M is locally symmetric. Conversely, if M is
locally symmetric, then we get Sjlm = 0, Sjlm = 0, rm = 0 and rm = 0. Thus, from
(3.14) and (3.15), we can see that the Krupka-type curvature tensor of M is parallel.

Hence we have proved

Theorem 3.6. Let M be an indefinite Kähler manifold of complex dimension n(n >
2). Then M is locally symmetric if and only if the Krupka-type curvature tensor of
M is parallel.

Moreover from Theorem 3.6 and Theorem in [10], we conclude

Theorem 3.7. Let M be an indefinite Kähler manifold of complex dimension n(n >
2). Then the conformal curvature tensor of M is parallel if and only if the Krupka-type
curvature tensor of M is parallel.

4 Indefinite complex submanifolds

This section is concerned with indefinite complex submanifold of an indefinite complex
space form.
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Let M ′ = Mn+p
s+t (c′) be an indefinite complex space form of index 2(s + t) (0 ≤

s ≤ n, 0 ≤ t ≤ p). Then we can easily see that the Krupka-type curvature tensor on
M ′ vanishes.

In this discussion we introduce a theorem (Theorem 3.6 in [10]).

Theorem A. Let M ′ be an (n + 1)-dimensional indefinite Käehler manifold of
index 2(s + t), t = 0 or 1, and with vanishing conformal curvature tensor, and let M
be an indefinite complex hypersurface of index 2s of M ′ (n > 2). Then the following
assertions are equivalent to each other:

(1) M has the vanishing conformal curvature tensor,
(2) M is totally geodesic.

Consequently, owing to the above Theorem A and Proposition 3.3, we are ready to
prove the following

Theorem 4.1. Let M ′ be an (n + 1)-dimensional indefinite complex space form of
index 2(s + t), t = 0 or 1, and let M be an indefinite complex hypersurface of index
2s of M ′ (n > 2). Then the following assertions are equivalent to each other :

(1) M has the vanishing Krupka-type curvature tensor,
(2) M is totally geodesic.

Proof. Since the Krupka-type curvature tensor on M ′ vanishes, we know that M ′

is Einstein by Lemma 3.1 and so the Krupka-type curvature tensor is equal to the
conformal curvature tensor on M ′ by Proposition 3.3. Hence the conformal curvature
tensor on M ′ vanishes.

Assume that M has the vanishing Krupka-type curvature tensor. Then M is
Einstein due to Lemma 3.1, which impliesthat the Krupka-type curvature tensor is
equal to the conformal curvature tensor on M because of Proposition 3.3. Hence the
conformal curvature tensor on M vanishes. From Theorem A, we have M is totally
geodesic.

Conversely, assume that M is totally geodesic, then the conformal curvature tensor
on M vanishes by means of Theorem A, and so we have M is Einstein using the lemma
in [10]. Thus Proposition 3.3 implies that the Krupka-type curvature tensor is equal
to the conformal curvature tensor field on M . Therefore M has the vanishing Krupka-
type curvature tensor. ¤
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