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Abstract. Two special Finsler spaces have been introduced and inves-
tigated, namely Rh-recurrent Finsler space and concircularly recurrent
Finsler space. The defining properties of these spaces are formulated in
terms of the first curvature tensor of Cartan connection. The following
three results constitute the main object of the present paper: (i) a con-
circularly flat Finsler manifold is necessarily of constant curvature (Theo-
rem A); (ii) every Rh-recurrent Finsler manifold is concircularly recurrent
with the same recurrence form (Theorem B); (iii) every horizontally in-
tegrable concircularly recurrent Finsler manifold is Rh-recurrent with the
same recurrence form (Theorem C). The whole work is formulated in a
coordinate-free form.
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1 Introduction

In this paper, we present an intrinsic investigation of concircularly recurrent Finsler
manifolds. The paper is organized in the following manner.

In section 1, following the introduction, we give a brief account of the basic con-
cepts, definitions and results that will be needed in the sequel.

In section 2, an important tensor field associated to a Finsler manifold, called
the concircular curvature tensor, is defined. A necessary and sufficient condition for
the vanishing of the concircular curvature tensor is found (Proposition 2.4). We also
prove that a concircularly flat Finsler manifold is necessarily of constant curvature
(Theorem A).

In section 3, two special Finsler spaces have been introduced and investigated,
namely Rh-recurrent Finsler space and concircularly recurrent Finsler space. The
defining properties of these spaces are formulated in terms of the first curvature ten-
sor of Cartan connection. Then, we prove that every Rh-recurrent Finsler manifold is
concircularly recurrent with the same recurrence form (Theorems B). The converse of
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the above result is not true in general. However, it has been recently proved to be true
in Riemannian geometry [4]. For the converse of Theorem B to be true in the Fins-
lerian context, an additional condition is needed, namely the horizontal integrability
condition. We thus prove that every horizontally integrable concircularly recurrent
Finsler manifold is Rh-recurrent with the same recurrence form (Theorem C). This is
the third and most important result of the paper.

Finally, it should be pointed out that the present work is formulated in a coordinate-
free form.

2 Notation and preliminaries

In this section, we give a brief account of the basic concepts of the pullback approach
to intrinsic Finsler geometry necessary for this work. For more details, we refer to
[1], [6] and [7]. We shall use the same notations of [6].

In what follows, we denote by π : TM −→ M the subbundle of nonzero vectors
tangent to M , F(TM) the algebra of C∞ functions on TM , X(π(M)) the F(TM)-
module of differentiable sections of the pullback bundle π−1(TM). The elements of
X(π(M)) will be called π-vector fields and will be denoted by barred letters X. The
tensor fields on π−1(TM) will be called π-tensor fields. The fundamental π-vector
field is the π-vector field η defined by η(u) = (u, u) for all u ∈ TM .

We have the following short exact sequence of vector bundles

0 −→ π−1(TM)
γ−→ T (TM)

ρ−→ π−1(TM) −→ 0,

with the well known definitions of the bundle morphisms ρ and γ. The vector space
Vu(TM) = {X ∈ Tu(TM) : dπ(X) = 0} is the vertical space to M at u.

Let D be a linear connection on the pullback bundle π−1(TM). We associate with
D the map K : TTM −→ π−1(TM) : X 7−→ DXη, called the connection map of D.
The vector space Hu(TM) = {X ∈ Tu(TM) : K(X) = 0} is called the horizontal
space to M at u . The connection D is said to be regular if

Tu(TM) = Vu(TM)⊕Hu(TM) ∀u ∈ TM.

If M is endowed with a regular connection, then the vector bundle maps γ, ρ|H(TM)

and K|V (TM) are vector bundle isomorphisms. The map β := (ρ|H(TM))−1 will be
called the horizontal map of the connection D.

The horizontal ((h)h-) and mixed ((h)hv-) torsion tensors of D, denoted by Q and
T respectively, are defined by

Q(X, Y ) = T(βXβY ), T (X, Y ) = T(γX, βY ) ∀X, Y ∈ X(π(M)),

where T is the (classical) torsion tensor field associated with D.
The horizontal (h-), mixed (hv-) and vertical (v-) curvature tensors of D, denoted

by R, P and S respectively, are defined by

R(X, Y )Z = K(βXβY )Z, P (X, Y )Z = K(βX, γY )Z, S(X, Y )Z = K(γX, γY )Z,

where K is the (classical) curvature tensor field associated with D.
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The contracted curvature tensors of D, denoted by R̂, P̂ and Ŝ respectively, known
also as the (v)h-, (v)hv- and (v)v-torsion tensors, are defined by

R̂(X, Y ) = R(X, Y )η, P̂ (X, Y ) = P (X, Y )η, Ŝ(X, Y ) = S(X, Y )η.

If M is endowed with a metric g on π−1(TM), we write

(2.1) R(X, Y , Z, W ) := g(R(X, Y )Z, W ), · · · , S(X, Y , Z, W ) := g(S(X, Y )Z,W )

The following result is of extreme importance.

Theorem 2.1. [7] Let (M, L) be a Finsler manifold and g the Finsler metric defined
by L. There exists a unique regular connection ∇ on π−1(TM) such that

(a) ∇ is metric : ∇g = 0,

(b) The (h)h-torsion of ∇ vanishes : Q = 0,

(c) The (h)hv-torsion T of ∇ satisfies : g(T (X, Y ), Z) = g(T (X, Z), Y ).

Such a connection is called the Cartan connection associated with the Finsler man-
ifold (M, L).

On a Finsler manifold there are other important linear connections. However, the
only linear connection we treat in this paper is the Cartan connection. For a Finsler
manifold (M,L), we define the following geometric objects:

` := L−1iη g,

~ := g − `⊗ ` : the angular metric tensor,
φ : the vector π-form associated with ~; iφ(X) g := iX ~,
h

∇ : the h-covariant derivatives associated with the Cartan connection,
v

∇ : the v-covariant derivatives associated with the Cartan connection,

T : the Cartan tensor; T (X, Y , Z) := g(T (X, Y ), Z),

H := iη R̂ : the deviation tensor,
Ric : the horizontal Ricci tensor of Cartan connection,

r : the horizontal scalar curvature of Cartan connection.

3 Concircularly flat Finsler manifold

Definition 3.1. [6], [2] A Finsler manifold (M, L) of dimension n ≥ 3 is said to be
h-isotropic if there exists a scalar function ko 6= 0 such that the horizontal curvature
tensor R has the form:

R = ko G,

where G is the π-tensor field defined by

(3.1) G(X, Y )Z := g(X, Z)Y − g(Y , Z)X.
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Definition 3.2. [6], [3] A Finsler manifold (M, L) of dimension n ≥ 3 is said to be
of scalar curvature if the deviation tensor H := iη R̂ satisfies

H = εL2φ,

where ε is a scalar function on TM , positively homogenous of degree zero in y.
In particular, if the scalar function ε is constant, then (M,L) is said to be of

constant curvature.

Let us now introduce the notion of concircular curvature.

Definition 3.3. Let (M, L) be a Finsler manifold of dimension n ≥ 3. The π-tensor
field C defined by

C := R− r

n(n− 1)
G

will be called the concircular curvature tensor, G being the π-tensor field defined by
(3.1).

If the concircular curvature tensor C vanishes, then (M, L) is said to be concircu-
larly flat.

It should be noted that the concircular curvature tensor in Riemannian geom-
etry has been thoroughly investigated by many authors. The above definition is a
generalization to Finsler geometry of that tensor field.

Proposition 3.1. A Finsler manifold (M, L) is concircularly flat if, and only if,
(M, L) is h-isotropic.

Proof. It is clear that if (M, L) is concircularly flat, then it is h-isotropic (with ko =
r

n(n−1) in Definition 3.1).
Conversely, suppose that (M, L) be h-isotropic. Then, by Definition 3.1, we have

(3.2) R(X, Y )Z = ko

{
g(X, Z)Y − g(Y , Z)X

}

Taking the trace with respect to Y of the above relation, we get

Ric(X, Z) = ko

{
ng(X, Z)− g(X, Z)

}
.

This equation, again, by taking the trace with respect to the pair of arguments X
and Z, reduces to

ko =
r

n(n− 1)
.

From which, taking into account (3.2) and Definition 3.3, (M, L) is therefore concir-
cularly flat. ¤

The following theorem is one of the main results of the present paper.

Theorem A. A concircularly flat Finsler manifold is necessarily of constant
curvature.

To prove this theorem we need the following three lemmas.

Lemma 3.2. For a Finsler manifold (M, L), we have:
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(a)
h

∇ L = 0,
v

∇ L = `.

(b)
h

∇ ` = 0,
v

∇ ` = L−1~.

(c) iη ` = L, iη~ = 0.

(d) φ = I − L−1`⊗ η.

Lemma 3.3. For a concircularly flat Finsler manifold (M, L), we have

SX,Y ,ZR(X, Y )Z = 0.

Proof. Let (M, L) be concircularly flat. Then, by Definition 3.3 and the fact that
iη g = L`, we have

(3.3) R̂(X, Y ) = kL(`(X)Y − `(Y )X),

where k(x, y) := r
n(n−1) , necessarily homogenous of degree 0 in y.

From (3.3), taking into account the fact that the (h)hv-torsion T is symmetric, we
obtain

SX,Y ,ZT (R̂(X, Y ), Z) = kL
{
`(X)T (Y , Z)− `(Y )T (X, Z)

}

+kL
{
`(Y )T (Z, X)− `(Z)T (Y , X)

}

+kL
{
`(Z)T (X, Y )− `(X)T (Z, Y )

}

= 0.(3.4)

On the other hand, we have [8]

(3.5) SX,Y ,ZR(X, Y )Z = SX,Y ,ZT (R̂(X, Y ), Z).

Hence, the result follows from (3.5) and (3.4). ¤

Lemma 3.4. For a π-tensor field ω of type (1, 1) on a Finsler manifold (M,L), we
have

(
v

∇
h

∇ ω)(X,Y , Z) − (
h

∇
v

∇ ω)(Y , X, Z) = −(P (X, Y )ω)(Z)(3.6)

+(
v

∇ ω)(P̂ (X, Y ), Z) + (
h

∇ ω)(T (Y , X), Z).(3.7)

In particular, for a scalar function f(x, y), we have

v

∇
h

∇ f =
h

∇
v

∇ f.

Proof of Theorem A: Let (M,L) be a concircularly flat Finsler manifold, then the
(v)h-torsion tensor R̂ satisfies Equation (3.3). As a consequence of Lemma 3.2, (3.3)
reduces to

(3.8) H = kL2φ
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If k is constant, then the result follows from (3.8) and Definition 3.2. Now, we will

show that
v

∇ k =
h

∇ k = 0.
We have [8]

(∇γXR)(Y , Z, W ) + (∇βY P )(Z, X, W )− (∇βZP )(Y , X, W )

−P (Z, P̂ (Y , X))W + R(T (X, Y ), Z)W − S(R̂(Y , Z), X)W

+P (Y , P̂ (Z,X))W −R(T (X, Z), Y )W = 0.

Setting W = η into the above relation, noting that K ◦ γ = idX(π(M)), K ◦ β = 0 and
Ŝ = 0, it follows that

(∇γXR̂)(Y , Z)−R(Y , Z)X + (∇βY P̂ )(Z, X)− (∇βZ P̂ )(Y , X)

−P̂ (Z, P̂ (Y , X)) + P̂ (Y , P̂ (Z, X)) + R̂(T (X, Y ), Z)− R̂(T (X, Z), Y ) = 0.

Applying the cyclic sum SX,Y ,Z on the above equation, taking Lemma 3.3 into ac-
count, we get

(3.9) SX,Y ,Z(∇γXR̂)(Y , Z) = 0.

Substituting (3.3) into (3.9), using (∇γX`)(Y ) = L−1~(X, Y ) (Lemma 3.2(b)), we
have

L(∇γZk)
{
(`(X)Y − `(Y )X)

}
+ L(∇γY k)

{
(`(Z)X − `(X)Z)

}

+L(∇γXk)
{
(`(Y )Z − `(Z)Y )

}
+ k`(Z)

{
(`(X)Y − `(Y )X)

}

+k`(Y )
{
(`(Z)X − `(X)Z)

}
+ k`(X)

{
(`(Y )Z − `(Z)Y )

}

+kL
{
(~(X, Z)Y − ~(Y , Z)X)

}
+ kL

{
(~(Z, Y )X − ~(X, Y )Z)

}

+kL
{
(~(Y , X)Z − ~(Z, X)Y )

}
= 0.

Setting Z = η into the above relation, noting that iη` = L, iη~ = 0 (Lemma 3.2(c))
and ∇γηk = 0, we conclude that

(3.10) L2
{

φ(Y )∇γXk − φ(X)∇γY k
}

= 0.

Taking the trace of both sides of (3.10) with respect to Y , noting that Tr(φ) = n− 1
[6], it follows that

(n− 2)∇γXk = 0.

Consequently, as n ≥ 3,

(3.11)
v

∇ k = 0.

Now, from (3.3) and the fact that the (v)hv-torsion P̂ is symmetric [8], we get

SX,Y ,Z P̂ (R̂(X, Y ), Z) = 0.(3.12)

On the other hand, we have [8]

SX,Y ,Z {(∇βXR)(Y , Z, W ) + P (R̂(X, Y ), Z)W} = 0.
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From which, together with (3.12), it follows that

(3.13) SX,Y ,Z (∇βXR̂)(Y , Z) = 0.

Again from (3.3), noting that ∇βX` = 0 (Lemma 3.2(b)), (3.13) reads

L(∇βXk)
{
`(Y )Z − `(Z)Y

}
+ L(∇βY k)

{
`(Z)X − `(X)Z

}

+L(∇βZk)
{
`(X)Y − `(Y )X

}
= 0.

Setting Z = η into the above equation, noting that `(η) = L (Lemma 3.2(c)), we
obtain

L(∇βXk)
{
`(Y )η − LY

}
+ L(∇βY k)

{
LX − `(X)η

}

+L(∇βηk)
{
`(X)Y − `(Y )X

}
= 0.

Taking the trace of both sides with respect to Y , it follows that

(3.14) ∇βXk = L−1(∇βηk)`(X).

Applying the v-covariant derivative with respect to Y on both sides of (3.14), yields

`(Y )∇βXk + L(
v

∇
h

∇ k)(X, Y ) = L−1~(X, Y )(∇βηk) + `(X)(
v

∇
h

∇ k)(η, Y ).

Since,
v

∇
h

∇ k =
h

∇
v

∇ k = 0, by Lemma 3.4 and (3.11), the above relation reduces to

`(Y )∇βXk = L−1~(X, Y )(∇βηk).

Setting Y = η into the above equation, taking Lemma 3.2 into account, it follows
that ∇βXk = 0. Consequently,

(3.15)
h

∇ k = 0.

Now, (3.11) and (3.15) imply that ∇k = 0. Hence, k is constant and the theorem
is proved. ¤

4 Concircularly recurrent Finsler manifold

We first introduce the following two special Finsler spaces which will be the object of
our study in this section.

Definition 4.1. A Finsler manifold (M, L) of dimension n ≥ 3 is called Rh-recurrent
if its h-curvature tensor R is horizontally recurrent:

(4.1)
h

∇ R = λ⊗R and R 6= 0,

where λ is a scalar π-form, positively homogenous of degree zero in y, called the
recurrence form.

In particular, if
h

∇ R = 0, then (M, L) is called Rh-symmetric.
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Definition 4.2. A Finsler manifold (M,L) of dimension n ≥ 3 is called concircularly
recurrent if its concircular curvature tensor C is horizontally recurrent:

(4.2)
h

∇ C = α⊗ C and C 6= 0,

where α is a scalar π-form, positively homogenous of degree zero in y, called the
recurrence form.

In particular, if
h

∇ C = 0, then (M, L) is called concircularly symmetric.

The following theorem is the second main result of the present paper.

Theorem B. Every Rh-recurrent Finsler manifold is concircularly recurrent with the
same recurrence form.

Proof. Let (M,L) be an Rh-recurrent Finsler manifold with recurrence form λ. Then
(4.1) is satisfied. Consequently,

(4.3)
h

∇ r = λ⊗ r.

Now, from Definition 4.2, (4.1) and (4.3), we get

h

∇ C =
h

∇
{

R− r

n(n− 1)
G

}
=

h

∇ R− 1
n(n− 1)

h

∇ r ⊗G

= λ⊗
{

R− r

n(n− 1)
G

}
= λ⊗ C.

Therefore, (M, L) is concircularly recurrent with the same recurrence form λ. ¤

Remark 4.3. The converse of the above theorem is not true in general. However, it
has been recently proved to be true in Riemannian geometry [4].

For the converse of Theorem B to be true in the Finslerian context, an additional
condition is needed, namely the horizontal integrability condition. A Finsler manifold
is said to be horizontally integrable if its horizonal distribution is completely integrable
(or, equivalently, R̂ = 0).

Now, we are in a position to announce our third main and most important result.

Theorem C. Every horizontally integrable concircularly recurrent Finsler manifold
is Rh-recurrent with the same recurrence form.

To prove this theorem we need the following three lemmas.

Lemma 4.1. For a concircularly recurrent Finsler manifold with recurrence form α,
we have

h

∇ R = α⊗R + µ⊗G,

where µ is a π-scalar form defined by

µ :=
1

n(n− 1)

{
h

∇ r − rα

}
.
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Proof. Let (M, L) be a concircularly recurrent Finsler manifold with recurrence form
α. Then, by Definitions 4.2 and 3.3, we have

h

∇
{

R− r

n(n− 1)
G

}
= α⊗

{
R− r

n(n− 1)
G

}
.

From which, together with the the fact that
h

∇ G = 0, we get

h

∇ R−
h

∇ r

n(n− 1)
⊗ G = α⊗

{
R− r

n(n− 1)
G

}
.

Hence, the result follows. ¤

Lemma 4.2. For a horizontally integrable Finsler manifold, we have

(a) SX,Y ,ZR(X, Y )Z = 0.

(b) R(X, Y , Z,W ) = R(Z, W, X, Y ).

(c) The horizontal Ricci tensors Ric is symmetric.

(d) SU,V ; W,X; Y ,Z

{
(R(U, V )R)(W, X, Y , Z)

}
= 0 1

(e) (
h

∇
h

∇ ω)(Y , X, Z)− (
h

∇
h

∇ ω)(X, Y , Z) = (R(X, Y )ω)(Z),
where ω is a π-tensor field of type (1, 1).

Proof. (a) Follows from (3.5) and the horizontal integrability condition (R̂ = 0).
(b) Follows from (a) and the two identities [8]:

(4.4) R(X, Y , Z, W ) = −R(Y , X, Z,W ),

(4.5) R(X, Y , Z, W ) = −R(X, Y , W, Z).

(c) Follows from (b).
(d) We have:

(R(U, V )R)(W, X, Y , Z) = −R(R(U, V )W, X, Y , Z)−R(W,R(U, V )X, Y , Z)
−R(W, X,R(U, V )Y , Z)−R(W, X, Y , R(U, V )Z)

(R(W, X)R)(Y , Z, U, V ) = −R(R(W, X)Y , Z, U, V )−R(Y , R(W, X)Z, U, V )
−R(Y , Z, R(W, X)U, V )−R(Y , Z, U,R(W, X)V )

(R(Y , Z)R)(U, V , W, X) = −R(R(Y , Z)U, V , W, X)−R(U,R(Y , Z)V , W, X)
−R(U, V , R(Y , Z)W, X)−R(U, V , W,R(Y , Z)X).

Adding the above three equations, making use of (4.4), (4.5) and (b), the result
follows.
(e) One can show that for the Cartan connection, we have:

(
h

∇
h

∇ ω)(X, Y , Z)− (
h

∇
h

∇ ω)(Y , X, Z) = ω(R(X, Y )Z)−R(X, Y )ω(Z)

+(
v

∇ ω)(R̂(X, Y ), Z).
1SU,V ; W,X; Y ,Z denotes the cyclic sum over the three pairs of arguments U, V ; W, X and Y , Z.
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From which, together with the assumption of horizontal integrability, the result fol-
lows. ¤

Lemma 4.2(d) and the next lemma are the global Finslerian versions of Walker’s
lemmas [5], proved locally in Riemannian geometry.

Lemma 4.3. Let A be a symmetric scalar π-form and B a scalar π-form. If for all
X, Y , Z ∈ X(π(M)),

(4.6) SX,Y ,Z

{
A(X, Y )B(Z)

}
= 0,

then A = 0 or B = 0.
In particular, for a horizontally integrable non-flat (non-concircularly flat) Finsler

manifold, if one of the following relations holds

SU,V ; W,X; Y ,Z

{
ω(U, V )R(W, X, Y , Z)

}
= 0,

SU,V ; W,X; Y ,Z

{
ω(U, V )C(W, X, Y , Z)

}
= 0,

then the scalar π-form ω vanishes, where

C(X, Y , Z, W ) := g(C(X, Y )Z, W ).

Proof. Let A be a symmetric scalar π-form and B a scalar π-form which satisfy
Relation (4.6). If B vanishes, the result follows. If B dose not vanish, then from
(4.6), we have

3A(X, X)B(X) = 0 ∀X ∈ X(π(M))
=⇒ A(X, X) = 0, ∀X ∈ X(π(M))
=⇒ A(X + Y , X + Y ) = 0, ∀X, Y ∈ X(π(M))
=⇒ 2A(X, Y ) = 0, ∀X, Y ∈ X(π(M)).

Hence, the scalr π-form A vanishes.
The second part of this lemma follows from the first part, taking into account the

assumption that R 6= 0 (C 6= 0), together with Lemma 4.2(b). ¤

Proof of Theorem C : Let (M, L) be a horizontally integrable concircularly
recurrent Finsler manifold with recurrence form α. The proof is achieved in three
steps:

First step: The h-covariant derivative of the recurrence form α is symmetric:

The concircular recurrence condition (4.2) gives

h

∇ C = α⊗C
h

∇
h

∇ C = (
h

∇ α)⊗C + α⊗ h

∇ C

= (
h

∇ α + α⊗ α)⊗C.
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From this, taking into account Lemma 4.2, we obtain

(R(U, V )C)(W, X, Y , Z) = (
h

∇
h

∇ C)(V , U,W, X, Y , Z)− (
h

∇
h

∇ C)(U, V , W, X, Y , Z)

=
{

(
h

∇ α)(V , U)− (
h

∇ α)(U, V )
}

C(W, X, Y , Z)

= −(d̄α)(U, V )C(W, X, Y , Z),(4.7)

where

(4.8) (d̄α)(U, V ) := (
h

∇ α)(U, V )− (
h

∇ α)(V , U).

On the other hand, in view of Definition 3.3, we have

(4.9) C := R− r

n(n− 1)
G,

where G is the π-tensor field defined by

G(X, Y , Z,W ) := g(G(X, Y )Z, W ).

Using (4.9) and the identities R(U, V )r = 0 = R(U, V )G, we get

(4.10) (R(U, V )C)(W, X, Y , Z) = (R(U, V )R)(W, X, Y , Z.)

Now, from (4.7) and (4.10), taking Lemma 4.2(d) into account, it follows that

d̄α(U, V )C(W, X, Y , Z) + d̄α(W, X)C(Y , Z, U, V ) + d̄α(Y , Z)C(U, V , W, X) = 0.

From this, together with Lemma 4.3, we conclude that d̄α = 0. Hence the result
follows from (4.8).
Second step: (M,L) has the property that R(X, Y )R = 0:
We have, by Lemma 4.1,

h

∇ R = α⊗R + µ⊗G
h

∇
h

∇ R = (
h

∇ α)⊗R + α⊗ h

∇ R + (
h

∇ µ)⊗G

= (
h

∇ α)⊗R + α⊗ (α⊗R + µ⊗G) + (
h

∇ µ)⊗G

= (
h

∇ α + α⊗ α)⊗R + (
h

∇ µ + α⊗ µ)⊗G.

The above equation together with Lemma 4.2(e) and (4.8) imply that

(R(U, V )R)(W, X, Y , Z) = −(d̄α)(U, V )R(W, X, Y , Z)
−(d̄µ + α ∧ µ)(U, V )G(W, X, Y , Z).

Now, taking into account the fact that d̄α = 0 (First step), the above equation reduces
to

(R(U, V )R)(W, X, Y , Z) = −(d̄µ + α ∧ µ)(U, V )G(W, X, Y , Z).(4.11)



112 Nabil L. Youssef and A. Soleiman

From which, taking Lemma 4.2 into account, we obtain

(d̄µ + α ∧ µ)(U, V )G(W, X, Y , Z) + (d̄µ + α ∧ µ)(W, X)G(Y , Z, U, V )
+(d̄µ + α ∧ µ)(Y , Z)G(U, V , W, X) = 0.

Applying Lemma 4.3, the above relation implies that

d̄µ + α ∧ µ = 0.

Consequently, in view of (4.11), we conclude that R(U, V )R = 0.

Third step: (M,L) is Rh-recurrent with the same recurrence form α:

We have, from the second step,

R(R(U, V )W, X, Y , Z) + R(W,R(U, V )X, Y , Z)
+R(W, X, R(U, V )Y , Z) + R(W, X, Y , R(U, V )Z) = 0.(4.12)

Differentiating h-covariantly both sides of the above relation with respect to ξ, we get

(∇βξR)(R(U, V )W, X, Y , Z) + R((∇βξR)(U, V )W, X, Y , Z)

+(∇βξR)(W, R(U, V )X, Y , Z) + R(W, (∇βξR)(U, V )X, Y , Z)

+(∇βξR)(W, X, R(U, V )Y , Z) + R(W, X, (∇βξR)(U, V )Y , Z)

+(∇βξR)(W, X, Y , R(U, V )Z) + R(W, X, Y , (∇βξR)(U, V )Z) = 0.

Applying Lemma 4.1, we find

(α(ξ)R + µ(ξ)G)(R(U, V )W, X, Y , Z) + R((α(ξ)R + µ(ξ)G)(U, V )W, X, Y , Z)
+(α(ξ)R + µ(ξ)G)(W, R(U, V )X, Y , Z) + R(W, (α(ξ)R + µ(ξ)G)(U, V )X, Y , Z)
+(α(ξ)R + µ(ξ)G)(W, X, R(U, V )Y , Z) + R(W, X, (α(ξ)R + µ(ξ)G)(U, V )Y , Z)
+(α(ξ)R + µ(ξ)G)(W, X, Y , R(U, V )Z) + R(W, X, Y , (α(ξ)R + µ(ξ)G)(U, V )Z) = 0.

Now, let us assume that µ 6= 0 at a certain point of TM . At this point, using
(4.12), the above equation reduces to

G(R(U, V )W, X, Y , Z) + R(G(U, V )W, X, Y , Z)
+G(W, R(U, V )X, Y , Z) + R(W,G(U, V )X, Y , Z)
+G(W, X,R(U, V )Y , Z) + R(W, X, G(U, V )Y , Z)
+G(W, X, Y , R(U, V )Z) + R(W, X, Y ,G(U, V )Z) = 0.

Using the definition of G and G, the last equality takes the form

g(V , W )R(U, X, Y , Z)− g(U,W )R(V , X, Y , Z)

+g(V , X)R(W, U, Y , Z)− g(U, X)R(W, V , Y , Z)

+g(V , Y )R(W, X, U, Z)− g(U, Y )R(W, X, V , Z)

+g(V , Z)R(W, X, Y , U)− g(U, Z)R(W, X, Y , V ) = 0.
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Taking the trace of the above equation with respect to the pair of arguments (V , W ),
we obtain

(n− 2)R(U, X, Y , Z) + R(Y , X, U, Z) + R(Z, X, Y , U)
−g(U, Y )Ric(X, Z) + g(U, Z)Ric(X, Y ) = 0.

This equation, using Lemma 4.2(a), reduces to

(4.13) (n− 1)R(U,X, Y , Z)− g(U, Y )Ric(X, Z) + g(U, Z)Ric(X, Y ) = 0.

Again, taking the trace of the above equation with respect to the pair of arguments
X and Z, we get Ric = r

n g, which when inserted to (4.13), gives

R =
r

n(n− 1)
G.

Hence, the concircular curvature C vanishes, which contradicts our assumption. There-
fore, µ = 0 at every point on TM . Consequently, by lemma 4.1, (M, L) is Rh-recurrent
with the same recurrence form α. ¤
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