
Curves with a node in projective spaces

with good postulation

E. Ballico

Abstract. Fix integers d, g, r such that r ≥ 3, g > 0 and d ≥ g +
r. Here we prove the existence of an integral non-special curve C in
an r-dimensional projective space such that deg(C) = d, pa(C) = g, C
has exactly one node and C has maximal rank (i.e. it has the expected
postulation), i.e., the general non-special embedding of a general curve
with a single node has maximal rank.
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1 Introduction

Let X ⊂ Pr be a closed subscheme. We say that X has maximal rank if for all integers
t ≥ 1 the restriction map ρr,X,t : H0(Pr,OPr (t)) → H0(X,OX(t)) has maximal rank,
i.e. it is either injective or surjective. Now assume that X is a reduced and connected
curve of degree d and arithmetic genus g, spanning Pr and with h1(X,OX(1)) = 0.
Riemann-Roch gives d ≥ g+r. If d = r (and hence X is a rational normal curve) then
we say that X has critical value 1 and that 1 is the critical value of the triple (r, 0, r).
Now assume d > r. Let k be the minimal integer ≥ 2 such that

(
r+k

r

) ≥ kd + 1− g.
We say that k is the critical value of X and of the triple (d, g, r). X has maximal
rank if and only if h0(IX(t)) = 0 for all t < k and h1(IX(t)) = 0 for all t ≥ k. Since
k ≥ 2, we have h1(X,OX(k − 1)) = 0. Hence Castelnuovo-Mumford’s lemma says
that if h1(IX(k)) = 0, then h1(IX(t)) = 0 for all t > k. Hence X has maximal rank
if and only if h0(IX(k − 1)) = 0 and h1(IX(k)) = 0.

For all integers d, g, r such that r ≥ 0, g ≥ 0 and d ≥ g + r let H(d, g, r) denote
the open subset of the Hilbert scheme Hilb(Pr) parametrizing the smooth and non-
degenerate curves C ⊂ Pr such that pa(C) = g, deg(C) = d and h1(C,OC(1)) = 0.
The set H(d, g, r) is a smooth and irreducible quasi-projective variety (here we use
in an essential way that we only take non-special embeddings, because the Hilbert
scheme of non-degenerate smooth curves of degree d and genus g may be reducible
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even when d is very near to 2g− 2 ([4], [7], [8] and references therein). Let H(d, g, r)′

denote the closure of H(d, g, r) in Hilb(Pr).
For any integer g ≥ 2 set ∆0(g) := {C ∈Mg : C is irreducible and with a unique

node}. The closure ∆0(g)′ of ∆0(g) in Mg is the irreducible divisor of Mg usually
denoted with ∆0. Hence ∆0(g) is non-empty, quasi-projective, irreducible and of
dimension 3g− 4. Let ∆0(1) denote a set with as its unique element the only integral
nodal curve with arithmetic genus 1. Set H(d, g, r)1 := {C ∈ H(d, g, r)′ : C ∈ ∆0(g)
and h1(C,OC(1)) = 0}. Set H(d, g, r)′1 : {C ∈ H(d, g, r)′ : h1(C,OC(1)) = 0}. Notice
that H(d, g, r)1 is a non-empty and irreducible codimension one algebraic subset of
H(d, g, r)′. In this paper we extend [5], [1], [2], [3] to general non-special embeddings
of a general element of ∆0(g) and prove the following result.

Theorem 1.1. Fix integers r ≥ 3, g ≥ 1 and d ≥ g + r. Let X ⊂ Pr be a general
embedding of degree d of a general element of ∆0(g). Then X has maximal rank.

Theorem 1.1 is equivalent to say that a general element of H(d, g, r)1 has maximal
rank.

2 Preliminaries

For any curve Y ⊂ Pr with only nodes as singularities let NY denote its normal
bundle. The sheaf NY is a rank r − 1 vector bundle on Y and deg(NY ) = (r +
1) deg(Y ) + 2pa(Y ) − 2. For any smooth variety W and any nodal curve T ⊂ W
let NY,W denote the normal bundle of Y in W .NY,W is a rank (dim(W ) − 1) vector
bundle on Y with degree −deg(ωW ) + 2pa(T )− 2.

Fix a reduced curve Y ⊂ Pr. We say that a line D is 1-secant (resp. 2-secant) to
Y if ](Y ∩D) = 1 (resp. ](Y ∩D) = 2), Y is smooth at each point of Y ∩D and D
is not a tangent line of Y at one of the points of Y ∩D.

Lemma 2.1. Let W be a smooth projective variety and F, R smooth and connected
curves in W . Assume that R is a smooth and rational, that R intersects F at a single
point, P , and quasi-transversal. Assume h1(F, NF,W ) = 0 and that NR,W is trivial.
Then h1(F ∪R,NF∪R,W ) = 0 and F ∪R is smoothable in W .

Proof. Set r := dim(W ). The vector bundle NF∪R,W |F is obtained from NF,W

making a positive elementary transformation supported by P ([6], §2). Hence we have
h1(F, NF∪R,W |F ) = 0. The vector bundle NF∪R,W |R is obtained from NR,W making
a positive elementary transformation supported by P ([6], §2). Hence NF∪R,W |R is
a direct sum of a line bundle of degree 1 and r − 2 line bundles of degree 0. Hence
h1(R, NF∪R,W |R(−P )) = 0. Hence h1(F ∪R,NF∪R,W ) = 0 and F ∪R is smoothable
in W ([6], Theorem 4.1 and its proof). ¤

Lemma 2.2. Let Y ⊂ Pr be a nodal curve. Set g := pa(Y ) and d := deg(Y ).
Then NY is a rank r − 1 vector bundle on Y and deg(Y ) = (r + 1)d + 2g − 2. If
h1(Y,OY (1)) = 0, then h1(Y,NY ) = 0.

Proof. Look at the Euler’s sequence of TPr

(2.1) 0 → OPr → O⊕(r+1)
Pr (1) → TPr → 0.
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Since Y is a curve, we have h2(Y,OY ) = 0. Restricting (2.1) to Y we get h1(Y, TPr|Y ) =
0. There is a morphism η : TPr|Y → NY whose cokernel is supported by Sing(Y ).
Since Y is a curve, we have h2(Y, Ker(η)) = 0. Since h1(T,Pr|Y ) = 0, the exact
sequence

0 → Ker(η) → TPr|Y → Im(η) → 0

gives h1(Y, Im(η)) = 0. Since Coker(η) is supported by a finite set, we obtain that
h1(Y, Coker(η)) = 0. Hence the exact sequence

0 → Im(η) → NY → Coker(η) → 0

gives h1(Y, NY ) = 0. ¤

Lemma 2.3. Let C ⊂ Pr, r ≥ 3, be a smooth and non-degenerate curve such that
h1(C,OC(1)) = 0. Fix a line D ⊂ Pr such that ](D ∩C) = 2 and D is not tangent to
C. Fix O ∈ D ∩ C. Set Y := C ∪D. Then h1(Y, NY ) = 0, Y ∈ H(d, g, r)′1 and Y is
a flat limit of a flat family of elements of H(d, g, r)1 whose singular point goes to O
at the limit.

Proof. By [6], Remark 4.1.1 and Corollary 4.2, or [9], Theorem 5.2, we have h1(Y, NY )
and Y ∈ H(d, g, r)′. Since C is smooth, NC is a quotient of TPr|C. Hence NC is
spanned. Hence h0(C, NC(−O)) = h0(C,NC) − rank(NC). Since h1(C, NC) = 0,
Riemann-Roch gives h1(C,NC(−O)) = 0. Let π : Π → Pr be the blowing up of O
and Y ′ (resp. C ′, resp. D′) the strict transform of Y (resp. C, resp. D). Since C
and D are smooth, the morphism π induces u : C ′ → C and D′ ∼= D. Y ′ is nodal
and we call P its unique singular point. Since NY |C is obtained from NC making two
positive elementary transformations, NY ′ |C is obtained from u∗(NC(−O)) making
some positive elementary transformations. By assumption h1(C, NC) = 0. Hence
h1(NY ′ |C) = 0. Since ND is a direct sum of r−1 line bundles of degree 1, ND(−O) is
trivial. Hence NY ′ |D′ is obtained from a trivial vector bundle making some positive
elementary transformation. Hence h1(D′, ND′(−P )) = 0. Hence Y ′ is smoothable in
Π ([6], Theorem 4.1.1 and its proof) . ¤

Remark 2.1. Fix integers r ≥ 3, g > 0 and d ≥ g+r. It is easy to prove the existence
of a non-degenerate curve X ⊂ Pr such that h1(X,OX(1)) = 0, X is irreducible and
X has an ordinary node as its unique singularity. Since X is non-degenerate, we have
h0(IX(1)) = 0. Applying Riemann-Roch on X we get h1(IX(1)) = d− g − r. Hence
if d = g + r, then h1(IX(1)) = 0.

Lemma 2.4. Fix integers d, g, r such that r ≥ 3, g > 0, d ≥ g + r and 2d + 1− g ≤(
r+2
2

)
. Then there is X ∈ H(d, g, r)1 such that h0(IX(1)) = 0 and h1(IX(t)) = 0 for

all t ≥ 2.

Proof. In all cases we construct a certain non-degenerate irreducible curve X ⊂ Pr.
Hence the curve X we will construct will also have h0(IX(1)) = 0. By Castelnuovo-
Mumford’s lemma it is sufficient to find X ∈ H(d, g, r)1 such that h1(OX(2)) = 0.
Fix a general C ∈ H(d − 1, g − 1, r). Since C has maximal rank ([1], [2], [3]) and
2(d − 1) + 1 − (g − 1) <

(
r+2
2

)
, we have h0(C, IC(1)) = 0 and h1(IC(2)) > 0. Let

Q ⊂ Pr be any quadric hypersurface containing C. Let D ⊂ Pr be a general 2-
secant line of C. Since C is non-degenerate and the singular locus of a quadric is a
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linear space, Q is smooth at a general P ∈ C. Since D is general, we may assume
that P ∈ C ∩ D is a smooth point of Q. Since C is non-degenerate and Q is not a
cone with vertex containing P , D * Q. Hence h0(IC∪D(2)) < h0(C, IC(2)). Since
h0(C ∪ D,OC∪D(2)) = h0(C,OC(2)) + 1, we get h1(IC∪D(2)) = 0. Apply Lemma
2.3. ¤

Remark 2.2. Fix a closed subscheme W ⊂ Pr and an effective Cartier divisor D of
Pr. Set a := deg(D). We will take as D a hyperplane if r ≥ 4 and a smooth quadric
surface if r = 3. Let ResD(W ) be the residual scheme of W with respect to H, i.e.
the closed subscheme of Pr with IW : ID as its ideal sheaf. If W is reduced, then
ResD(W ) is the union of the irreducible components of W not contained in H. For
any t ∈ Z we have the following exact sequence of coherent sheaves

(2.2) 0 → IResD(W )(t− a) → IW (t) → IW∩D,D(t) → 0.

From (2.2) we get

hi(IW (t)) ≤ hi(IResD(W )(t− a)) + hi(D, IW∩D,D(t)),

for all i ≥ 0 and all t ∈ Z.

Remark 2.3. Fix a flat family {Yλ}λ∈∆ of curves Yλ ⊂ Pr, where ∆ is a connected
affine curve. Call u : Y → ∆ the corresponding family. Fix o ∈ ∆ and take a line
D ⊂ Pr which is 2-secant to Yo. Taking a finite covering of ∆ if necessary, we may
assume that u has two disjoint section s1, s2 with {s1(o), s2(o)} = Y ∩ D. For any
t ∈ ∆ let Dt be the line spanned by s1(t) and s2(t). There is an open neighborhood
∆′ of o in ∆ instead of ∆ we reduce to the case in which ](Yt ∩Dt) = 2 for all t and
Dt is 2-secant to Yt for all t ∈ ∆′ .

3 Proof of Theorem 1.1

For all integers m ≥ 3 and t ≥ 2 define the integers am,t and bm,t by the relations

(3.1) (t− 1) · am,t + 1 + tr + bm,t =
(

m + t

m

)
, 0 ≤ bm,t ≤ t− 2.

Set am,0 = am,1 = m and bm,0 = bm,1 = 0. Fix integers d, g, r such that r ≥ 3, g > 0
and d ≥ g + r. Let k be the critical value of the triple (d, g, r). By the semicontinuity
theorem for cohomology to be of maximal rank is an open condition among non-special
embeddings of curves. Recall that H(d, g, r)′1 is irreducible. Hence it is sufficient to
prove the existence of Xi ∈ H(d, g, r)′1, i = 1, 2, such that h1(IX1(k)) = 0 and
h0(IX2(k− 1)) = 0. Notice that if kd + 1− g =

(
r+k

r

)
, then any X1 as above satisfies

h0(IX1(k)) = 0 and hence in this particular case we do not need to check the existence
of X2. For the case k = 1 see Remark 2.1. The case k = 2 is true by Lemma 2.4. From
now on we assume k ≥ 3. In the case r ≥ 4 we only write the proof of the existence
of X1, since the proof of the existence of X2 is similar (and trivial for k = 2). In the
case r = 3 we only write the proof of the existence of X2.
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Define the integers ur,y,g−1 and vr,y,g−1 by the relations

(3.2) y · ur,y,g−1 + 1− (g − 1) + vr,y,g−1 =
(

r + y

r

)
, 0 ≤ vr,y,g−1 ≤ y − 1.

Claim 1: To prove the existence of X1 (resp. X2) it is sufficient to find Y ∈
H(d − 1, g − 1, r)′ and a line D 2-secant to Y such that h1(IY ∪D(k)) = 0 (resp.
h0(IY ∪D(k − 1)) = 0).

Proof of Claim 1: By semicontinuity it is sufficient to prove that Y ∪ D ∈
H(d, g, r)′1. Take a smoothing of Y inside Pr, say {Yt}t∈∆, o ∈ ∆, and Yt ∈ H(d −
1, g − 1, r) for all t ∈ ∆, and call u : Y → ∆ the corresponding family. Taking
a finite covering of ∆ if necessary, we may assume that u has two disjoint sections
s1, s2 with {s1(o), s2(o)} = Y ∩ D. For any t ∈ ∆ let Dt be the line spanned by
s1(t) and s2(t). Taking an open neighborhood of o in ∆ instead of ∆ we reduce to
the case in which ](Yt ∩ Dt) = 2 for all t and Yt ∪ Dt is nodal. Use the flat family
{Yt ∪Dt}t∈∆ ⊂ H(d, g, r)′ and apply Lemma 2.3.

Let m be the maximal integer x ≥ 0 such that ar,x ≤ g − 1. Since d ≥ g + r,
we have m ≤ k. r > 3. Consider the following assertion: Er,x, r ≥ 3, x ≥ 2. Fix
integers u, q such that xu + 1 − q + 2x ≤ (

r+x
r

)
. Then there exists (C, D) such that

C ∈ H(u, q, r), D is a line, ](C ∩D) = 1, C ∪D is nodal and h1(IC∪D(x)) = 0.

Lemma 3.1. Er,x is true for all integers r ≥ 3 and x ≥ 2.

Proof. Let e be the critical value of (u + 2, q, r). By assumption we have e ≤ x.
Notice that e ≥ 2. Castelnuovo-Mumford’s lemma shows that it is sufficient to find
(C,D) such that C ∈ H(u, q, r), D is a line, ](C ∩ D) = 1, C ∪ D is nodal and
h1(IC∪D(e)) = 0. We follow the proofs in [1], [2] and [3] for the genus g := q and
the integer d := u + 1, but we need to modify the very last step of the proofs in the
quoted papers.

(a) First assume r = 3. In this case we take the proof of [2], Lemma V.2, for the
critical value e, i.e. starting with a certain curve, Y , with hi(IY (e− 2)) = 0, i = 0, 1.
In the quadric surface Q one of the added lines, D′, is linked to the remaining lines or
to C only at one point. We get (Y ′, D′) with Y ′ ∈ H(u, q, 3)′, ](Y ′ ∩D′) = 1, Y ′ ∪D′

nodal and with h1(IY ′∪D′(e)) = 0; here contrary to [2], Lemma V.2, we don’t need to
distinguish several subcases, because h0(Y ′ ∪D′,OY ′∪D′(e)) = (u + 1)e + 1 − q and
our numerical assumptions give

(
e+3
3

)− (u + 1)e− 1 + q ≥ e. We smooth Y ′ to some
Y ∈ H(u, q, 3), say {Yλ} and follow this deformation with a family of lines {Dλ} with
Dλ 1-secant line of Yλ (Remark 2.3).

(b) From now on we assume r ≥ 4. Let H ⊂ Pr be a hyperplane. Assume for
the moment r ≥ 5, but also assume that the lemma is true in Pr−1. We follow [3], §5,
(with j := e) but in the last step we add in a hyperplane H a curve Y1∪D1 ⊂ H with
D1 1-secant to Y1. Let ρ be the maximal integer t such that ar,t ≤ q (ρ is called r in
[3], §2). To see that this construction is possible, we need to check in each subcase
(b1), (b2) and (b3) the numerical obstructions stated in [3]. Set a := deg(Y1) and
y := pa(Y1). We have y ≤ q and (e− 1)a + 1− y =

(
r+e−1

r

)
.

(b1) First assume e = ρ. Since e(ar,e + r) + 1− ar,e + br,e =
(
r+e

e

)
, br,e ≤ e− 2,

q ≥ ar,e, u− q ≥ q − ar,e and eu + 1− q + 2e ≤ (
r+e

r

)
, this case is impossible.
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(b2) Now assume e = ρ + 1. Take W ∈ H(ar,e−1 + r, ar,e−1, r) with maximal
rank. Hence h1(IW (e − 1)) = 0 and h0(IW (e − 1)) = vr,e−1,q ≤ e − 2. First assume
q ≥ ar,e−1+r−1. Take a general smooth curve U ⊂ H such that deg(U) = u−ar,e−1,
](U∩W ) = r and pa(W ) = q−ar,e−1−(r−1). Let T ⊂ H be a general line meeting T .
Hence W∪U ∈ H(u, q, r)′ and T is 1-secant to W∪U . Hence (moving if necessary T as
in Remark 2.3) it is sufficient to prove h1(IW∪U∪T (e)) = 0. Since h1(IW (e− 1)) = 0,
it is sufficient to prove h1(H, IU∪T∪(W∩H),H(e)) = 0. Since ar,e−1 ≤ e− 2 ≤ (

r+e
r

)−
e(u + 1) − 1 + q, we have ](W ∩ H) − ](W ∩ U) + h0(U ∪ T,OU∪T (e)) ≤ (

r+e−1
r−1

)
.

By the inductive assumption in Pr−1 we have h1(H, IU∪T,H(e)) = 0. Hence it is
sufficient to prove that the points in W ∩ (H \ U) give independent conditions to
H0(H, IU∪T,H(e)). We want to apply [3], Lemma 1.6, with e = 0, i.e. s = r, g′′ ≥ 0
and hence (s− r− 2− (d′′− g′′− r +1)) < 0 ≤ g′′. Now assume q ≤ ar,e−1 + r− 2. In
this case we may take U ⊂ H smooth and rational and meeting W at q + 1− ar,e−1

points.
(b3) Now assume e ≥ ρ + 2. Take W ∈ H(ur,e−1,q, q, r) with maximal rank.

Hence h1(IW (e − 1)) = 0 and h0(IW (e − 1)) = vr,e−1,q ≤ e − 2. Let U ⊂ H be
a general smooth rational curve of degree u − ur,e−1,q and T a general line meeting
W at exactly one point and with T ∩W ∈ H. Since W ∪ T ∈ H(u, q, r)′, to prove
the lemma in this case it is sufficient to prove h1(IW∪U∪T (e)) = 0 for general (U, T ).
Since h1(IW (e − 1)) = 0, it is sufficient to prove h1(H, IU∪T∪(W∩H,H(e)) = 0. We
have ](W ∩H) = ur,e−1,q ≥ e+1, because, q ≤ ur,e−1,q−r and hence (e−1)ur,e−1,q ≥(
r+e−1

r

)
+r−(e−1). By the case q = 0 in Pr−1 there is a pair (U, T ) in Pr−1 such that

h1(H, IU∪T,H(e)) = 0. Since
(
r+e1
r−1

)− e(u + 1)− 1 + q ≥ 2e > h0(IW (e− 1)), we have
](W ∩H)− 1 ≤ (

r+e−1
e−1

)−h0(H, IU∪T,H(e)). To get h1(H, IU∪T∪(W∩H),H(e)) = 0 we
want to apply [3], Lemma 1.6, with S a single point (a case even easier than the one
in [3], Lemma 1.6, where ](S) ≥ r).

(c) Now assume r = 4. Here the situation is simpler, because to control the
postulation of T ∩H, T ⊂ P4 a sufficiently general curve and H a hyperplane, we may
use [1], Lemma 1.4, to control T ∩H and hence we could even prove Lemma 3.1 by
induction on e starting with a pair (Ye−1, D) for the critical value e− 1 and arriving
to the pair (Ye, D) for the critical value e. ¤

3.1 Case r = 3 of Theorem 1.1

In this subsection we conclude the proof of Theorem 1.1 in the case r = 3. We fixed
the integer g > 0 and called m the maximal integer such that a3,m ≤ g − 1. For any
P ∈ P3 let χ(P ) denote the first infinitesimal neighborhood of P in P3, i.e. the closed
subscheme of P3 with (IP )2 as its ideal sheaf. The scheme χ(P ) has dimension zero,
deg(χ(P )) = 3 and χ(P )red = {P}. We call χ(P ) the nilpotent with P as its support.

We only prove the existence of X2, i.e. of a pair (C, D) with C ∈ H(d−1, g−1, 3),
D a 2-secant line of C and h0(IC∪D(k − 1)) = 0. The triple (d − 1, g, 3) has either
critical value k or critical value k − 1.

(a) In this step we assume that (d−1, g, 3) has critical value k−1. Since (d, g, 3)
has not critical value k − 1, we have

(3.3)
(

k + 2
3

)
< kd + 1− g ≤

(
k + 2

3

)
+ k.
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(a1) First assume k ≥ m + 3 and d − 2 − u3,k−3,g−1 ≥ v3,k−3,g−1 (by the first
inequality in (3.3) it is sufficient to assume u3,k−1,g−1 − u3,k−3,g−1 ≥ v3,k−3,g−1). As
in [2], Lemma VI.4, take (Y, Q,D, D′, S, S′) satisfying R(k − 1) for the genus g − 1
with respect to the integer x = 0. Hence Y ∈ H(u3,k−3,g−1, g − 1, 3), Q is a smooth
quadric surface intersecting transversally Y , D and D′ are disjoint 1-secant lines of
Y contained in Y , S′ = f¡ , ](S) = v3,k−3,g−1, S ⊂ D \ Y ∩D. Deforming Y we may
also assume that no line of Q is 2-secant to Y . Let Ei, 0 ≤ i ≤ d− 1− u3,k−1,g−1, be
lines of Q intersecting D, not containing the point D ∩ Y and such that Ei ∩ Y 6= 0
if and only if 0 ≤ i ≤ v3,k−3,g−1. Let Z be the union of Y , D, the lines Ei, 1 ≤ i ≤
d−1−u3,k−1,g−1 and the v3,k−3,g−1 nilpotents χ(P ), P ∈ D∩Ei, 1 ≤ i ≤ v3,k−3,g−1.
We have Z ∈ H(d − 1, g − 1, 3)′ ([2], Corollary 1.4) and E0 is a 2-secant line of
Z. The scheme ResQ(Z ∪ E0) is the union of Y and the points P , P ∈ D ∩ Ei,
1 ≤ i ≤ v3,k−3,g−1. Since ](Y ∩ (Q \D)) > k + 1, we see as in [2], lines 12–16 of the
proof of Lemma VI.1) that h0(IResQ(Z∪E0)

(k−1))) = 0. Hence it is sufficient to prove
h0(Q, IG(k−1, d−1−u3,k+1,g−1)) = 0, where G := Y ∩(Q\(D∪E0∪· · ·Ev(3,k+1,g−1)).
We apply [2], Lemma VIII.8.

(a2) Now assume k ≥ m + 3 and d − 2 − u3,k−3,g−1 < v3,k−3,g−1. Take
(Y, Q, D, D′, S, S′) satisfying R(k − 3) for the genus g − 1 with respect to the in-
teger x := v3,k−3,g−1 − (d − 3 − u3,k+1,g−1). Here we use [2], Lemma VII.2, which
says that 0 ≤ 2x ≤ v3,k−3,g−1. Deforming Y we may assume that Y is transversal
to Q and that Q contains no 2-secant line of Y . Fix d − 2 − u3,k+1,g−1 lines Ei,
0 ≤ i ≤ d− 3− u3,k+1,g−1, in the linear system of lines in Q intersecting D with the
only condition that Ei intersects Y ∩ (Q \ (D ∪D′)) if and only if 1 ≤ i ≤ x. Let Z
be the union of Y , D, D′, the lines Ei, i 6= 0, and the nilpotents χ(P ), P ∈ D ∩ Ei,
1 ≤ i ≤ v3,k+1,g−1 − x, and P ∈ D′ ∩Ei, 1 ≤ i ≤ x. We have Z ∈ H(d− 1, g − 1, 3)′,
E0 is a 2-secant line of Z (it intersects D and D′, but not Y ) and Z∪E0 ∈ H(d, g, 3)′1
(Lemma 2.3).

(a3). Now assume k ≤ m + 2, i.e. k ∈ {m, m + 1, m + 2}. We use the assertion
H(k − 3) of [2] instead of the assertion R(k − 3). Here need to distinguish four
subcases. In every subcase we start with a solution (Y, Q,D, S) of Hk−3. Let (1, 0)
be the system of lines on Q containing D. Deforming if necessary Y we may assume
that Q is transversal to Y and that D is the only 2-secant line of Y contained in Q.

(a3.1) Assume g − 1 = a3,k−3 (it implies k = m + 2). Since b3,k−3 ≤ (k − 3)/3
([2], III.1), we have b3,k−3 ≤ d − 2 − a3,k−3. Take a line D′ of type (1, 0) on Q and
1-secant to Y . Let Ei, 0 ≤ i ≤ d − 2 − a3,k, be lines of type (0, 1) on Q such that
D′ ∩ Y /∈ Ei for any i and Ei ∩ Y 6= f¡ if and only if 0 ≤≤ b3,k−3. Let Z be the
union of Y , D′, Ei, i ≥ 1, and the nilpotents χ(D′′ ∩ Ei), 1 ≤ i ≤ b3,k−3. We have
Z ∈ H(d− 1, g − 1, 3)′ and E0 is a 2-secant line of Z.

(a3.2) Assume g− 1 ≥ a3,k−3 + 1 and b3,k−3 ≤ d− 2− a3,k−3 − (g− 2). Let Ei,
0 ≤ i ≤ d − 2 − a3,k−3, be lines of type (0, 1) on Q such that D ∩ Y /∈ Ei for any i

and Ei ∩ Y 6= f¡ if and only if 0 ≤ i ≤ g − 2 − a3,k−3 + b3,k−3. Let Z be the union
of Y , D, Ei, i ≥ 1, and χ(Ej ∩D), 1 ≤ i ≤ b3,k−3. We have Z ∈ H(d − 1, g − 1, 3)′

and E0 is a 2-secant line of Z.
(a3.3) Assume b3,k−3 ≥ d + 1 − a3,k−3 − g and b3,k−3 + (g − 3 − a3,k−3) ≤

3(d − 3 − a3,k−3). Since b3,k−3 ≤ (k − 3)/3 ([2], III.1) and g − 1 > a3,k−1, we have
g − 1 ≥ a3,k−3 + 2. Let D′ be a general 2-secant line of Y . Instead of Q we take
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a general quadric surface Q′ containing D ∪ D′, say as lines of type (1, 0). Let Ei,
0 ≤ i ≤ d− 3− a3,k−3 be lines of type (0, 1) on Q′, not intersecting Y ∩ (D ∪D′) and
with Ei ∩Di 6= f¡ if and only if 0 ≤ i ≤ g − 3− a3,k−3 + b3,k−3 − 2(d− 3− a3,k−3).
Let Z be the union of Y , D, D′, the lines Li, i ≥ 1, the nilpotents χ(D ∩ Ei), i ≥ 1,
and the nilpotents χ(D′ ∩ Ei), 1 ≤ i ≤ x. we have Z ∈ H(d − 1, g − 1, e)′ and E0 is
2-secant to Z.

(a3.4) Assume b3,k−3 ≥ d + 1 − b3,k−3 − g and b3,k−3 + (g − 3 − a3,k−3) >
3(d − 3 − a3,k−3). Since b3,k−3 ≤ (k − 3)/3 ([2], III.1), d − 1 ≥ a3,k−1 + 3 and
a3,k−1 − a3,k−3 > 2(k − 1) ([2], III.1), this case cannot occur.

(b) Now assume that (d − 1, g, 3) has critical value k. Let x be the maximal
integer x > 0 such that (x, g, 3) has critical value ≤ k − 1. It is easy to check
that x ≥ g + 3 and that x < d. We proved the existence of a pair (C, D) such that
C ∈ H(x, g−1, 3), D is a 2-secant line of C, Let E ⊂ P3 be any smooth rational curve
such that deg(E) = d−x, ](C ∩E) = 1, E∩D = f¡ and E meets quasi-transversally
C (e.g., take as E a general smooth rational curve of degree d − x intersecting C).
Set X2 := (C ∪ E) ∪D.

3.2 End of the proof of Theorem 1.1 for r ≥ 4

From now on we assume r ≥ 4. We define the following assertions Hr,x, x ≥ 1,
Rr,y,g−1, y ≥ m, and R′r,m+1,g−1 (only if r ≥ 5 and g − 1 ≥ vr,m,g−1).

Hr,x: A general C ∈ H(ar,x + r, ar,x − br,x, r) satisfies hi(IC(x)) = 0, i = 0, 1.
Rr,x,g−1, x ≥ m: There exists a triple (X, Z, T ) such that

(i) X = Z ∪ T , Z ∩ T = f¡ and hi(IX(x)) = 0, i = 0, 1;

(ii) Z ∈ H(ur,x,g−1 − vr,x,g−1, g − 1, r) and T is a union of vr,x,g−1 disjoint lines.

R′r,m+1,g−1 (under the assumptions r ≥ 5 and g − 1 ≥ vr,m,g−1): There is Y ∈
H(ur,m+1,g−1, g − 1− vr,m+1,g−1, r) such that hi(IY (m + 1)) = 0, i = 0, 1.

Of course, to see that Hr,x (resp. Rr,x,g−1) makes sense for x ≥ 1 (resp. x ≥ m)
we need to check that ar,x ≥ br,x for all x ≥ 1 (resp. ur,x,g−1 − vr,x,g−1 ≥ g − 1 + r
for all x ≥ m). These inequalities are true for the following reasons. A stronger
form of the inequality a4,x ≥ b4,x + 4 is [1], Lemma 2, plus that b4,1 = 0. We have
u4,m,g−1 − v4,m,g−1 ≥ g − 1 + 4 by [1], Lemma 9. We have u4,x,g−1 − v4,x,g−1 ≥
g − 1 + 4 for all x > m by [1], Lemma 5, and the inequality v4,x,g−1 ≤ x − 1. More
restrictive inequalities are proved in [3], §5, for the case r ≥ 5. Granted this, for
any C ∈ H(ar,x + r, ar,x − br,x, r)′ we have h1(IC(x)) = h0(IC(x)) by the equation
in (3.2). The equation in (3.1) gives h1(IZtT (x)) = h0(IZtT (x)) for any Z t T
with Z ∈ H(ur,x,g−1 − vr,x,g−1, g − 1, r) and T a union of vr,x,g−1 disjoint lines such
that Z ∩ T = f¡ . Similarly, if g − 1 ≥ vr,m+1,g−1 and Y ∈ H(ur,m+1,g−1, g − 1 −
vr,m+1,g−1, r)′, then h1(IY (m+1)) = h0(IY (m+1)). To prove one of these assertions
Hr,x, Rr,x,g−1 or R′r,m+1,g−1 it is sufficient to find a “ solution ” which is smoothable
(by semicontinuity). For instance, to prove Hr,x it is sufficient to prove the existence
of C ∈ H(ar,x + r, ar,x − br,x, r)′ such that h1(IC(x)) = 0. The assertion Hr,x, r ≥ 5
and x ≥ 1, are true by [3], Lemma 1. If R′r,m+1,g−1 is defined and r ≥ 5, then
R′r,m+1,g−1 is true ([3], Lemma 3.2). For y ≥ m + 1 Rr,y,g−1 implies Rr,y+1,g−1 ([1],
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Lemma 8, for r = 4, [3], Lemma 3.6, for r ≥ 5. If r ≥ 5 and R′r,m+1,g−1 is not defined,
then Rr,m+1,g−1 is true ([3], Lemma 3.3). R4,m+1,g−1 is true ([1], Lemma 10). If
r ≥ 5 and R′r,m+1,g−1 is defined, then Rr,m+2,g−1 is true ([3], Lemma 3.5). Hence we
may use all Hr,x and all Rr,y,g−1, except Rr,y+1,g−1 when r ≥ 5 and R′r,m+1,g−1 is
defined. In the latter case we may use R′r,m+1,g−1. Fix a hyperplane H of Pr.

(a) Here we assume m = k. Since k ≥ 3, g ≥ ar,m, d ≥ g + r and kd + 1− g ≤(
m+r

r

)
, we get g = ar,m and d = ar,m + r. Take a solution C of Hr,k−1. Hence

C ∈ H(ar,k−1 + r, ar,k−1 − br,k−1, r) and hi(IC(k − 1)) = 0, i = 0, 1. First assume
d ≥ ar,k−1+r+(g−ar,k−1+br,k−1). Since (m−2)ar,m−1+r(m−1)+m−3 ≥ (

r+m−1
r

)
,

we have ar,m−1 − 2 ≥ 2m. Hence Lemma 3.1 gives the existence of (U, T ) with
U ∪ T ⊂ H, U ∈ H(d− ar,k−1, g − 1, r − 1), ](U ∩ C) =, T a 2-secant line of W ∪ U
and with h1(H, IU∪T,H(e)) = 0. By Remark 2.2 to prove the existence of X1 it is
sufficient to prove h1(H, IU∪T∪(C∩H),H(m)) = 0. Since kd + 1− g ≤ (

r+k
r

)
, the case

t = k − 1 of (3.1) gives

h0(U ∪ T,OU∪T (k)) ≤
(

r + k − 1
r − 1

)
− ](C ∩H) + ](C ∩ (U ∪ T )).

The curve U ⊂ H is general in H(d−ar,k−1, g−1, r−1) by [3], Lemmas 1.5 applied to
the integer r−1. Hence Lemma 3.1 and the generality of U∪T gives h1(H, IU∪T (k)) =
0. Apply [3], Lemma 1.6.

(b) Now assume k = m+1. First assume kd+1−g >
(
r+k

k

)− br,m. In this case
the proof of the case m = k works verbatim, even without knowing the exact values of
d and g. Now assume kd+1−g ≤ (

r+k
r

)−br,m and d ≥ ar,m +2r+1. Since d ≥ g+r,
we have d−ar,m− r ≥ g−ar,m. Take a general C ∈ H(ar,m + r, ar,m, r). Since C has
maximal rank ([1], [3]), we have h1(IC(k − 1)) = 0 and h0(IC(k − 1)) = br,k−1. We
may assume that C is transversal to H. We claim the existence U ∪T ⊂ H such that
(U, T ) satisfies the thesis of Lemma 3.1 and with U ∈ H(d−1−ar,k, g−1−ar,k, r−1),
](U ∩C) = 1 and T 2-secant to C ∪U . To check the claim it is sufficient to note that
ar,m−1 + r− 1 ≥ 2(m+1). Now assume d ≤ ar,m +2r. Since d ≥ g + r ≥ ar,m + r, we
get d ≤ g + 2r and kd + 1− g ≤ (

r+k
r

)− 2k. We start with a general C ′ ∈ H(ar,m +
r − 1, ar,m − 1, r) and add U ′ ∪ T ⊂ H with U ′ ∈ H(d− ar,m, d− ar,m − r + 1, r − 1)
with ](U ′ ∩ C ′) = 1 + (g − ar,m).

(c) Now assume k ≥ m + 2. First assume d ≥ ur,k−1,g−1 + vr,k−1,g−1 + 1.
Take (C, A) satisfying Rr,k−1,g−1. Let U ⊂ H be a general rational normal curve
containing exactly one point of each connected component of C ∪ A, i.e. containing
the set A ∩ H and exactly one point of C ∩ H (C exists, because we assumed d ≥
ur,k−1,g−1 + vr,k−1,g−1 + 1). Fix P ∈ C ∩ H with P /∈ U and take a general line T
through P and intersecting C. For general C, A and U we may assume that T is a 2-
secant line of C∪A∪U . By Lemma 2.3 it is sufficient to prove h1(IC∪A∪U∪T (k)) = 0,
i.e. h1(H, IU∪T∪(C∩H)(k)) = 0. Since (d, g, r) has critical value k, we have

h0(C ∪ T,OC∪T (k)) + ](C ∩H)− ](C ∩ U)− ](C ∩ T ) ≤
(

r + k − 1
r − 1

)
.

Further, we have ](C ∩ H) − ](C ∩ U) ≥ 2k, because ur,k−1,g−1 ≥ 3k by (3.2).
Hence Lemma 3.1 implies h1(H, IU∪T (k)) = 0 Apply [3], Lemma 1.6. Now assume
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d ≤ ur,k−1,g−1 + vr,k−1,g−1. Take Y ∈ H(ur,k−1,g−1, g − 1, r) with maximal rank.
Hence h1(IY (k − 1)) = 0. First assume d ≥ ur,k−1,g−1 + 2. We add in H the curve
E ∪ D, where E is a smooth rational curve intersecting Y quasi-transversally and
exactly one point and D is a 1-secant line of E passing through one of the points
of Y ∩ (H \ E). By Lemma 3.1 we may assume h1(H, IE∪D(k)) = 0. Since D is
a 2-secant line of Y ∪ E, it is sufficient to apply Lemma 2.3 and Remark 2.3. Now
assume d ≤ ur,k−1,g−1 + 1. In this case we have kd + 1 − g ≤ (

r+k
r

) − 2k. Take
Y ′ ∈ H(ur,k−1,g−1 − 1, g − 1, r) with maximal rank and add E ∪ D ⊂ H with E
smooth and rational and ](E ∩ Y ′) = 1. ¤
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