Curves with a node in projective spaces with good postulation

E. Ballico

Abstract

Fix integers d, g, r such that $r \geq 3, g>0$ and $d \geq g+$ r. Here we prove the existence of an integral non-special curve C in an r-dimensional projective space such that $\operatorname{deg}(C)=d, p_{a}(C)=g, C$ has exactly one node and C has maximal rank (i.e. it has the expected postulation), i.e., the general non-special embedding of a general curve with a single node has maximal rank.

M.S.C. 2010: 14H51, 4N05.

Key words: nodal curve; postulation; non-special embedding.

1 Introduction

Let $X \subset \mathbb{P}^{r}$ be a closed subscheme. We say that X has maximal rank if for all integers $t \geq 1$ the restriction map $\rho_{r, X, t}: H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(t)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(t)\right)$ has maximal rank, i.e. it is either injective or surjective. Now assume that X is a reduced and connected curve of degree d and arithmetic genus g, spanning \mathbb{P}^{r} and with $h^{1}\left(X, \mathcal{O}_{X}(1)\right)=0$. Riemann-Roch gives $d \geq g+r$. If $d=r$ (and hence X is a rational normal curve) then we say that X has critical value 1 and that 1 is the critical value of the triple $(r, 0, r)$. Now assume $d>r$. Let k be the minimal integer ≥ 2 such that $\binom{r+k}{r} \geq k d+1-g$. We say that k is the critical value of X and of the triple (d, g, r). X has maximal rank if and only if $h^{0}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t<k$ and $h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t \geq k$. Since $k \geq 2$, we have $h^{1}\left(X, \mathcal{O}_{X}(k-1)\right)=0$. Hence Castelnuovo-Mumford's lemma says that if $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$, then $h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t>k$. Hence X has maximal rank if and only if $h^{0}\left(\mathcal{I}_{X}(k-1)\right)=0$ and $h^{1}\left(\mathcal{I}_{X}(k)\right)=0$.

For all integers d, g, r such that $r \geq 0, g \geq 0$ and $d \geq g+r$ let $H(d, g, r)$ denote the open subset of the Hilbert scheme $\operatorname{Hilb}\left(\mathbb{P}^{r}\right)$ parametrizing the smooth and nondegenerate curves $C \subset \mathbb{P}^{r}$ such that $p_{a}(C)=g, \operatorname{deg}(C)=d$ and $h^{1}\left(C, \mathcal{O}_{C}(1)\right)=0$. The set $H(d, g, r)$ is a smooth and irreducible quasi-projective variety (here we use in an essential way that we only take non-special embeddings, because the Hilbert scheme of non-degenerate smooth curves of degree d and genus g may be reducible

[^0]even when d is very near to $2 g-2\left([4],[7],[8]\right.$ and references therein). Let $H(d, g, r)^{\prime}$ denote the closure of $H(d, g, r)$ in $\operatorname{Hilb}\left(\mathbb{P}^{r}\right)$.

For any integer $g \geq 2$ set $\Delta_{0}(g):=\left\{C \in \overline{\mathcal{M}}_{g}: C\right.$ is irreducible and with a unique node\}. The closure $\Delta_{0}(g)^{\prime}$ of $\Delta_{0}(g)$ in $\overline{\mathcal{M}}_{g}$ is the irreducible divisor of $\overline{\mathcal{M}}_{g}$ usually denoted with Δ_{0}. Hence $\Delta_{0}(g)$ is non-empty, quasi-projective, irreducible and of dimension $3 g-4$. Let $\Delta_{0}(1)$ denote a set with as its unique element the only integral nodal curve with arithmetic genus 1 . Set $H(d, g, r)_{1}:=\left\{C \in H(d, g, r)^{\prime}: C \in \Delta_{0}(g)\right.$ and $\left.h^{1}\left(C, \mathcal{O}_{C}(1)\right)=0\right\}$. Set $H(d, g, r)_{1}^{\prime}:\left\{C \in H(d, g, r)^{\prime}: h^{1}\left(C, \mathcal{O}_{C}(1)\right)=0\right\}$. Notice that $H(d, g, r)_{1}$ is a non-empty and irreducible codimension one algebraic subset of $H(d, g, r)^{\prime}$. In this paper we extend [5], [1], [2], [3] to general non-special embeddings of a general element of $\Delta_{0}(g)$ and prove the following result.

Theorem 1.1. Fix integers $r \geq 3, g \geq 1$ and $d \geq g+r$. Let $X \subset \mathbb{P}^{r}$ be a general embedding of degree d of a general element of $\Delta_{0}(g)$. Then X has maximal rank.

Theorem 1.1 is equivalent to say that a general element of $H(d, g, r)_{1}$ has maximal rank.

2 Preliminaries

For any curve $Y \subset \mathbb{P}^{r}$ with only nodes as singularities let N_{Y} denote its normal bundle. The sheaf N_{Y} is a rank $r-1$ vector bundle on Y and $\operatorname{deg}\left(N_{Y}\right)=(r+$ 1) $\operatorname{deg}(Y)+2 p_{a}(Y)-2$. For any smooth variety W and any nodal curve $T \subset W$ let $N_{Y, W}$ denote the normal bundle of Y in $W \cdot N_{Y, W}$ is a $\operatorname{rank}(\operatorname{dim}(W)-1)$ vector bundle on Y with degree $-\operatorname{deg}\left(\omega_{W}\right)+2 p_{a}(T)-2$.

Fix a reduced curve $Y \subset \mathbb{P}^{r}$. We say that a line D is 1 -secant (resp. 2-secant) to Y if $\sharp(Y \cap D)=1$ (resp. $\sharp(Y \cap D)=2$), Y is smooth at each point of $Y \cap D$ and D is not a tangent line of Y at one of the points of $Y \cap D$.

Lemma 2.1. Let W be a smooth projective variety and F, R smooth and connected curves in W. Assume that R is a smooth and rational, that R intersects F at a single point, P, and quasi-transversal. Assume $h^{1}\left(F, N_{F, W}\right)=0$ and that $N_{R, W}$ is trivial. Then $h^{1}\left(F \cup R, N_{F \cup R, W}\right)=0$ and $F \cup R$ is smoothable in W.

Proof. Set $r:=\operatorname{dim}(W)$. The vector bundle $N_{F \cup R, W} \mid F$ is obtained from $N_{F, W}$ making a positive elementary transformation supported by $P([6], \S 2)$. Hence we have $h^{1}\left(F, N_{F \cup R, W} \mid F\right)=0$. The vector bundle $N_{F \cup R, W} \mid R$ is obtained from $N_{R, W}$ making a positive elementary transformation supported by $P([6], \S 2)$. Hence $N_{F \cup R, W} \mid R$ is a direct sum of a line bundle of degree 1 and $r-2$ line bundles of degree 0 . Hence $h^{1}\left(R, N_{F \cup R, W} \mid R(-P)\right)=0$. Hence $h^{1}\left(F \cup R, N_{F \cup R, W}\right)=0$ and $F \cup R$ is smoothable in W ([6], Theorem 4.1 and its proof).

Lemma 2.2. Let $Y \subset \mathbb{P}^{r}$ be a nodal curve. Set $g:=p_{a}(Y)$ and $d:=\operatorname{deg}(Y)$. Then N_{Y} is a rank $r-1$ vector bundle on Y and $\operatorname{deg}(Y)=(r+1) d+2 g-2$. If $h^{1}\left(Y, \mathcal{O}_{Y}(1)\right)=0$, then $h^{1}\left(Y, N_{Y}\right)=0$.

Proof. Look at the Euler's sequence of $T \mathbb{P}^{r}$

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{r}} \rightarrow \mathcal{O}_{\mathbb{P}^{r}}^{\oplus(r+1)}(1) \rightarrow T \mathbb{P}^{r} \rightarrow 0 \tag{2.1}
\end{equation*}
$$

Since Y is a curve, we have $h^{2}\left(Y, \mathcal{O}_{Y}\right)=0$. Restricting (2.1) to Y we get $h^{1}\left(Y, T \mathbb{P}^{r} \mid Y\right)=$ 0 . There is a morphism $\eta: T \mathbb{P}^{r} \mid Y \rightarrow N_{Y}$ whose cokernel is supported by $\operatorname{Sing}(Y)$. Since Y is a curve, we have $h^{2}(Y, \operatorname{Ker}(\eta))=0$. Since $h^{1}\left(T, \mathbb{P}^{r} \mid Y\right)=0$, the exact sequence

$$
0 \rightarrow \operatorname{Ker}(\eta) \rightarrow T \mathbb{P}^{r} \mid Y \rightarrow \operatorname{Im}(\eta) \rightarrow 0
$$

gives $h^{1}(Y, \operatorname{Im}(\eta))=0$. Since $\operatorname{Coker}(\eta)$ is supported by a finite set, we obtain that $h^{1}(Y, \operatorname{Coker}(\eta))=0$. Hence the exact sequence

$$
0 \rightarrow \operatorname{Im}(\eta) \rightarrow N_{Y} \rightarrow \operatorname{Coker}(\eta) \rightarrow 0
$$

gives $h^{1}\left(Y, N_{Y}\right)=0$.
Lemma 2.3. Let $C \subset \mathbb{P}^{r}, r \geq 3$, be a smooth and non-degenerate curve such that $h^{1}\left(C, \mathcal{O}_{C}(1)\right)=0$. Fix a line $D \subset \mathbb{P}^{r}$ such that $\sharp(D \cap C)=2$ and D is not tangent to C. Fix $O \in D \cap C$. Set $Y:=C \cup D$. Then $h^{1}\left(Y, N_{Y}\right)=0, Y \in H(d, g, r)_{1}^{\prime}$ and Y is a flat limit of a flat family of elements of $H(d, g, r)_{1}$ whose singular point goes to O at the limit.

Proof. By [6], Remark 4.1.1 and Corollary 4.2, or [9], Theorem 5.2, we have $h^{1}\left(Y, N_{Y}\right)$ and $Y \in H(d, g, r)^{\prime}$. Since C is smooth, N_{C} is a quotient of $T \mathbb{P}^{r} \mid C$. Hence N_{C} is spanned. Hence $h^{0}\left(C, N_{C}(-O)\right)=h^{0}\left(C, N_{C}\right)-\operatorname{rank}\left(N_{C}\right)$. Since $h^{1}\left(C, N_{C}\right)=0$, Riemann-Roch gives $h^{1}\left(C, N_{C}(-O)\right)=0$. Let $\pi: \Pi \rightarrow \mathbb{P}^{r}$ be the blowing up of O and Y^{\prime} (resp. C^{\prime}, resp. D^{\prime}) the strict transform of Y (resp. C, resp. D). Since C and D are smooth, the morphism π induces $u: C^{\prime} \rightarrow C$ and $D^{\prime} \cong D . Y^{\prime}$ is nodal and we call P its unique singular point. Since $N_{Y} \mid C$ is obtained from N_{C} making two positive elementary transformations, $N_{Y^{\prime}} \mid C$ is obtained from $u^{*}\left(N_{C}(-O)\right)$ making some positive elementary transformations. By assumption $h^{1}\left(C, N_{C}\right)=0$. Hence $h^{1}\left(N_{Y^{\prime}} \mid C\right)=0$. Since N_{D} is a direct sum of $r-1$ line bundles of degree $1, N_{D}(-O)$ is trivial. Hence $N_{Y^{\prime}} \mid D^{\prime}$ is obtained from a trivial vector bundle making some positive elementary transformation. Hence $h^{1}\left(D^{\prime}, N_{D^{\prime}}(-P)\right)=0$. Hence Y^{\prime} is smoothable in Π ([6], Theorem 4.1.1 and its proof) .

Remark 2.1. Fix integers $r \geq 3, g>0$ and $d \geq g+r$. It is easy to prove the existence of a non-degenerate curve $X \subset \mathbb{P}^{r}$ such that $h^{1}\left(X, \mathcal{O}_{X}(1)\right)=0, X$ is irreducible and X has an ordinary node as its unique singularity. Since X is non-degenerate, we have $h^{0}\left(\mathcal{I}_{X}(1)\right)=0$. Applying Riemann-Roch on X we get $h^{1}\left(\mathcal{I}_{X}(1)\right)=d-g-r$. Hence if $d=g+r$, then $h^{1}\left(\mathcal{I}_{X}(1)\right)=0$.

Lemma 2.4. Fix integers d, g, r such that $r \geq 3, g>0, d \geq g+r$ and $2 d+1-g \leq$ $\binom{r+2}{2}$. Then there is $X \in H(d, g, r)_{1}$ such that $h^{0}\left(\mathcal{I}_{X}(1)\right)=0$ and $h^{1}\left(\mathcal{I}_{X}(t)\right)=0$ for all $t \geq 2$.

Proof. In all cases we construct a certain non-degenerate irreducible curve $X \subset \mathbb{P}^{r}$. Hence the curve X we will construct will also have $h^{0}\left(\mathcal{I}_{X}(1)\right)=0$. By CastelnuovoMumford's lemma it is sufficient to find $X \in H(d, g, r)_{1}$ such that $h^{1}\left(\mathcal{O}_{X}(2)\right)=0$. Fix a general $C \in H(d-1, g-1, r)$. Since C has maximal rank ([1], [2], [3]) and $2(d-1)+1-(g-1)<\binom{r+2}{2}$, we have $h^{0}\left(C, \mathcal{I}_{C}(1)\right)=0$ and $h^{1}\left(\mathcal{I}_{C}(2)\right)>0$. Let $Q \subset \mathbb{P}^{r}$ be any quadric hypersurface containing C. Let $D \subset \mathbb{P}^{r}$ be a general 2secant line of C. Since C is non-degenerate and the singular locus of a quadric is a
linear space, Q is smooth at a general $P \in C$. Since D is general, we may assume that $P \in C \cap D$ is a smooth point of Q. Since C is non-degenerate and Q is not a cone with vertex containing $P, D \nsubseteq Q$. Hence $h^{0}\left(\mathcal{I}_{C \cup D}(2)\right)<h^{0}\left(C, \mathcal{I}_{C}(2)\right)$. Since $h^{0}\left(C \cup D, \mathcal{O}_{C \cup D}(2)\right)=h^{0}\left(C, \mathcal{O}_{C}(2)\right)+1$, we get $h^{1}\left(\mathcal{I}_{C \cup D}(2)\right)=0$. Apply Lemma 2.3.

Remark 2.2. Fix a closed subscheme $W \subset \mathbb{P}^{r}$ and an effective Cartier divisor D of \mathbb{P}^{r}. Set $a:=\operatorname{deg}(D)$. We will take as D a hyperplane if $r \geq 4$ and a smooth quadric surface if $r=3$. Let $\operatorname{Res}_{D}(W)$ be the residual scheme of W with respect to H, i.e. the closed subscheme of \mathbb{P}^{r} with $\mathcal{I}_{W}: \mathcal{I}_{D}$ as its ideal sheaf. If W is reduced, then $\operatorname{Res}_{D}(W)$ is the union of the irreducible components of W not contained in H. For any $t \in \mathbb{Z}$ we have the following exact sequence of coherent sheaves

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{\operatorname{Res}_{D}(W)}(t-a) \rightarrow \mathcal{I}_{W}(t) \rightarrow \mathcal{I}_{W \cap D, D}(t) \rightarrow 0 \tag{2.2}
\end{equation*}
$$

From (2.2) we get

$$
h^{i}\left(\mathcal{I}_{W}(t)\right) \leq h^{i}\left(\mathcal{I}_{\operatorname{Res}_{D}(W)}(t-a)\right)+h^{i}\left(D, \mathcal{I}_{W \cap D, D}(t)\right)
$$

for all $i \geq 0$ and all $t \in \mathbb{Z}$.
Remark 2.3. Fix a flat family $\left\{Y_{\lambda}\right\}_{\lambda \in \Delta}$ of curves $Y_{\lambda} \subset \mathbb{P}^{r}$, where Δ is a connected affine curve. Call $u: \mathcal{Y} \rightarrow \Delta$ the corresponding family. Fix $o \in \Delta$ and take a line $D \subset \mathbb{P}^{r}$ which is 2 -secant to Y_{o}. Taking a finite covering of Δ if necessary, we may assume that u has two disjoint section s_{1}, s_{2} with $\left\{s_{1}(o), s_{2}(o)\right\}=Y \cap D$. For any $t \in \Delta$ let D_{t} be the line spanned by $s_{1}(t)$ and $s_{2}(t)$. There is an open neighborhood Δ^{\prime} of o in Δ instead of Δ we reduce to the case in which $\sharp\left(Y_{t} \cap D_{t}\right)=2$ for all t and D_{t} is 2-secant to Y_{t} for all $t \in \Delta^{\prime}$.

3 Proof of Theorem 1.1

For all integers $m \geq 3$ and $t \geq 2$ define the integers $a_{m, t}$ and $b_{m, t}$ by the relations

$$
\begin{equation*}
(t-1) \cdot a_{m, t}+1+t r+b_{m, t}=\binom{m+t}{m}, 0 \leq b_{m, t} \leq t-2 \tag{3.1}
\end{equation*}
$$

Set $a_{m, 0}=a_{m, 1}=m$ and $b_{m, 0}=b_{m, 1}=0$. Fix integers d, g, r such that $r \geq 3, g>0$ and $d \geq g+r$. Let k be the critical value of the triple (d, g, r). By the semicontinuity theorem for cohomology to be of maximal rank is an open condition among non-special embeddings of curves. Recall that $H(d, g, r)_{1}^{\prime}$ is irreducible. Hence it is sufficient to prove the existence of $X_{i} \in H(d, g, r)_{1}^{\prime}, i=1,2$, such that $h^{1}\left(\mathcal{I}_{X_{1}}(k)\right)=0$ and $h^{0}\left(\mathcal{I}_{X_{2}}(k-1)\right)=0$. Notice that if $k d+1-g=\binom{r+k}{r}$, then any X_{1} as above satisfies $h^{0}\left(\mathcal{I}_{X_{1}}(k)\right)=0$ and hence in this particular case we do not need to check the existence of X_{2}. For the case $k=1$ see Remark 2.1. The case $k=2$ is true by Lemma 2.4. From now on we assume $k \geq 3$. In the case $r \geq 4$ we only write the proof of the existence of X_{1}, since the proof of the existence of X_{2} is similar (and trivial for $k=2$). In the case $r=3$ we only write the proof of the existence of X_{2}.

Define the integers $u_{r, y, g-1}$ and $v_{r, y, g-1}$ by the relations

$$
\begin{equation*}
y \cdot u_{r, y, g-1}+1-(g-1)+v_{r, y, g-1}=\binom{r+y}{r}, 0 \leq v_{r, y, g-1} \leq y-1 \tag{3.2}
\end{equation*}
$$

Claim 1: To prove the existence of X_{1} (resp. X_{2}) it is sufficient to find $Y \in$ $H(d-1, g-1, r)^{\prime}$ and a line $D 2$-secant to Y such that $h^{1}\left(\mathcal{I}_{Y \cup D}(k)\right)=0$ (resp. $\left.h^{0}\left(\mathcal{I}_{Y \cup D}(k-1)\right)=0\right)$.

Proof of Claim 1: By semicontinuity it is sufficient to prove that $Y \cup D \in$ $H(d, g, r)_{1}^{\prime}$. Take a smoothing of Y inside \mathbb{P}^{r}, say $\left\{Y_{t}\right\}_{t \in \Delta}, o \in \Delta$, and $Y_{t} \in H(d-$ $1, g-1, r)$ for all $t \in \Delta$, and call $u: \mathcal{Y} \rightarrow \Delta$ the corresponding family. Taking a finite covering of Δ if necessary, we may assume that u has two disjoint sections s_{1}, s_{2} with $\left\{s_{1}(o), s_{2}(o)\right\}=Y \cap D$. For any $t \in \Delta$ let D_{t} be the line spanned by $s_{1}(t)$ and $s_{2}(t)$. Taking an open neighborhood of o in Δ instead of Δ we reduce to the case in which $\sharp\left(Y_{t} \cap D_{t}\right)=2$ for all t and $Y_{t} \cup D_{t}$ is nodal. Use the flat family $\left\{Y_{t} \cup D_{t}\right\}_{t \in \Delta} \subset H(d, g, r)^{\prime}$ and apply Lemma 2.3.

Let m be the maximal integer $x \geq 0$ such that $a_{r, x} \leq g-1$. Since $d \geq g+r$, we have $m \leq k . r>3$. Consider the following assertion: $\quad E_{r, x}, r \geq 3, x \geq 2$. Fix integers u, q such that $x u+1-q+2 x \leq\binom{ r+x}{r}$. Then there exists (C, D) such that $C \in H(u, q, r), D$ is a line, $\sharp(C \cap D)=1, C \cup D$ is nodal and $h^{1}\left(\mathcal{I}_{C \cup D}(x)\right)=0$.

Lemma 3.1. $E_{r, x}$ is true for all integers $r \geq 3$ and $x \geq 2$.
Proof. Let e be the critical value of $(u+2, q, r)$. By assumption we have $e \leq x$. Notice that $e \geq 2$. Castelnuovo-Mumford's lemma shows that it is sufficient to find (C, D) such that $C \in H(u, q, r), D$ is a line, $\sharp(C \cap D)=1, C \cup D$ is nodal and $h^{1}\left(\mathcal{I}_{C \cup D}(e)\right)=0$. We follow the proofs in [1], [2] and [3] for the genus $g:=q$ and the integer $d:=u+1$, but we need to modify the very last step of the proofs in the quoted papers.
(a) First assume $r=3$. In this case we take the proof of [2], Lemma V.2, for the critical value e, i.e. starting with a certain curve, Y, with $h^{i}\left(\mathcal{I}_{Y}(e-2)\right)=0, i=0,1$. In the quadric surface Q one of the added lines, D^{\prime}, is linked to the remaining lines or to C only at one point. We get $\left(Y^{\prime}, D^{\prime}\right)$ with $Y^{\prime} \in H(u, q, 3)^{\prime}, \sharp\left(Y^{\prime} \cap D^{\prime}\right)=1, Y^{\prime} \cup D^{\prime}$ nodal and with $h^{1}\left(\mathcal{I}_{Y^{\prime} \cup D^{\prime}}(e)\right)=0$; here contrary to [2], Lemma V.2, we don't need to distinguish several subcases, because $h^{0}\left(Y^{\prime} \cup D^{\prime}, \mathcal{O}_{Y^{\prime} \cup D^{\prime}}(e)\right)=(u+1) e+1-q$ and our numerical assumptions give $\binom{e+3}{3}-(u+1) e-1+q \geq e$. We smooth Y^{\prime} to some $Y \in H(u, q, 3)$, say $\left\{Y_{\lambda}\right\}$ and follow this deformation with a family of lines $\left\{D_{\lambda}\right\}$ with D_{λ} 1-secant line of Y_{λ} (Remark 2.3).
(b) From now on we assume $r \geq 4$. Let $H \subset \mathbb{P}^{r}$ be a hyperplane. Assume for the moment $r \geq 5$, but also assume that the lemma is true in \mathbb{P}^{r-1}. We follow [3], $\S 5$, (with $j:=e$) but in the last step we add in a hyperplane H a curve $Y_{1} \cup D_{1} \subset H$ with $D_{1} 1$-secant to Y_{1}. Let ρ be the maximal integer t such that $a_{r, t} \leq q$ (ρ is called r in $[3], \S 2)$. To see that this construction is possible, we need to check in each subcase (b1), (b2) and (b3) the numerical obstructions stated in [3]. Set $a:=\operatorname{deg}\left(Y_{1}\right)$ and $y:=p_{a}\left(Y_{1}\right)$. We have $y \leq q$ and $(e-1) a+1-y=\binom{r+e-1}{r}$.
(b1) First assume $e=\rho$. Since $e\left(a_{r, e}+r\right)+1-a_{r, e}+b_{r, e}=\binom{r+e}{e}, b_{r, e} \leq e-2$, $q \geq a_{r, e}, u-q \geq q-a_{r, e}$ and $e u+1-q+2 e \leq\binom{ r+e}{r}$, this case is impossible.
(b2) Now assume $e=\rho+1$. Take $W \in H\left(a_{r, e-1}+r, a_{r, e-1}, r\right)$ with maximal rank. Hence $h^{1}\left(\mathcal{I}_{W}(e-1)\right)=0$ and $h^{0}\left(\mathcal{I}_{W}(e-1)\right)=v_{r, e-1, q} \leq e-2$. First assume $q \geq a_{r, e-1}+r-1$. Take a general smooth curve $U \subset H$ such that $\operatorname{deg}(U)=u-a_{r, e-1}$, $\sharp(U \cap W)=r$ and $p_{a}(W)=q-a_{r, e-1}-(r-1)$. Let $T \subset H$ be a general line meeting T. Hence $W \cup U \in H(u, q, r)^{\prime}$ and T is 1-secant to $W \cup U$. Hence (moving if necessary T as in Remark 2.3) it is sufficient to prove $h^{1}\left(\mathcal{I}_{W \cup U \cup T}(e)\right)=0$. Since $h^{1}\left(\mathcal{I}_{W}(e-1)\right)=0$, it is sufficient to prove $h^{1}\left(H, \mathcal{I}_{U \cup T \cup(W \cap H), H}(e)\right)=0$. Since $a_{r, e-1} \leq e-2 \leq\binom{ r+e}{r}-$ $e(u+1)-1+q$, we have $\sharp(W \cap H)-\sharp(W \cap U)+h^{0}\left(U \cup T, \mathcal{O}_{U \cup T}(e)\right) \leq\binom{ r+e-1}{r-1}$. By the inductive assumption in \mathbb{P}^{r-1} we have $h^{1}\left(H, \mathcal{I}_{U \cup T, H}(e)\right)=0$. Hence it is sufficient to prove that the points in $W \cap(H \backslash U)$ give independent conditions to $H^{0}\left(H, \mathcal{I}_{U \cup T, H}(e)\right)$. We want to apply [3], Lemma 1.6, with $e=0$, i.e. $s=r, g^{\prime \prime} \geq 0$ and hence $\left(s-r-2-\left(d^{\prime \prime}-g^{\prime \prime}-r+1\right)\right)<0 \leq g^{\prime \prime}$. Now assume $q \leq a_{r, e-1}+r-2$. In this case we may take $U \subset H$ smooth and rational and meeting W at $q+1-a_{r, e-1}$ points.
(b3) Now assume $e \geq \rho+2$. Take $W \in H\left(u_{r, e-1, q}, q, r\right)$ with maximal rank. Hence $h^{1}\left(\mathcal{I}_{W}(e-1)\right)=0$ and $h^{0}\left(\mathcal{I}_{W}(e-1)\right)=v_{r, e-1, q} \leq e-2$. Let $U \subset H$ be a general smooth rational curve of degree $u-u_{r, e-1, q}$ and T a general line meeting W at exactly one point and with $T \cap W \in H$. Since $W \cup T \in H(u, q, r)^{\prime}$, to prove the lemma in this case it is sufficient to prove $h^{1}\left(\mathcal{I}_{W \cup U \cup T}(e)\right)=0$ for general (U, T). Since $h^{1}\left(\mathcal{I}_{W}(e-1)\right)=0$, it is sufficient to prove $h^{1}\left(H, \mathcal{I}_{U \cup T \cup(W \cap H, H}(e)\right)=0$. We have $\sharp(W \cap H)=u_{r, e-1, q} \geq e+1$, because, $q \leq u_{r, e-1, q}-r$ and hence $(e-1) u_{r, e-1, q} \geq$ $\binom{r+e-1}{r}+r-(e-1)$. By the case $q=0$ in \mathbb{P}^{r-1} there is a pair (U, T) in \mathbb{P}^{r-1} such that $h^{1}\left(H, \mathcal{I}_{U \cup T, H}(e)\right)=0$. Since $\binom{r+e_{1}}{r-1}-e(u+1)-1+q \geq 2 e>h^{0}\left(\mathcal{I}_{W}(e-1)\right)$, we have $\sharp(W \cap H)-1 \leq\binom{ r+e-1}{e-1}-h^{0}\left(H, \mathcal{I}_{U \cup T, H}(e)\right)$. To get $h^{1}\left(H, \mathcal{I}_{U \cup T \cup(W \cap H), H}(e)\right)=0$ we want to apply [3], Lemma 1.6, with S a single point (a case even easier than the one in [3], Lemma 1.6, where $\sharp(S) \geq r)$.
(c) Now assume $r=4$. Here the situation is simpler, because to control the postulation of $T \cap H, T \subset \mathbb{P}^{4}$ a sufficiently general curve and H a hyperplane, we may use [1], Lemma 1.4, to control $T \cap H$ and hence we could even prove Lemma 3.1 by induction on e starting with a pair $\left(Y_{e-1}, D\right)$ for the critical value $e-1$ and arriving to the pair $\left(Y_{e}, D\right)$ for the critical value e.

3.1 Case $r=3$ of Theorem 1.1

In this subsection we conclude the proof of Theorem 1.1 in the case $r=3$. We fixed the integer $g>0$ and called m the maximal integer such that $a_{3, m} \leq g-1$. For any $P \in \mathbb{P}^{3}$ let $\chi(P)$ denote the first infinitesimal neighborhood of P in \mathbb{P}^{3}, i.e. the closed subscheme of \mathbb{P}^{3} with $\left(\mathcal{I}_{P}\right)^{2}$ as its ideal sheaf. The scheme $\chi(P)$ has dimension zero, $\operatorname{deg}(\chi(P))=3$ and $\chi(P)_{\text {red }}=\{P\}$. We call $\chi(P)$ the nilpotent with P as its support.

We only prove the existence of X_{2}, i.e. of a pair (C, D) with $C \in H(d-1, g-1,3)$, D a 2-secant line of C and $h^{0}\left(\mathcal{I}_{C \cup D}(k-1)\right)=0$. The triple $(d-1, g, 3)$ has either critical value k or critical value $k-1$.
(a) In this step we assume that $(d-1, g, 3)$ has critical value $k-1$. Since $(d, g, 3)$ has not critical value $k-1$, we have

$$
\begin{equation*}
\binom{k+2}{3}<k d+1-g \leq\binom{ k+2}{3}+k . \tag{3.3}
\end{equation*}
$$

(a1) First assume $k \geq m+3$ and $d-2-u_{3, k-3, g-1} \geq v_{3, k-3, g-1}$ (by the first inequality in (3.3) it is sufficient to assume $\left.u_{3, k-1, g-1}-u_{3, k-3, g-1} \geq v_{3, k-3, g-1}\right)$. As in [2], Lemma VI.4, take ($Y, Q, D, D^{\prime}, S, S^{\prime}$) satisfying $R(k-1)$ for the genus $g-1$ with respect to the integer $x=0$. Hence $Y \in H\left(u_{3, k-3, g-1}, g-1,3\right), Q$ is a smooth quadric surface intersecting transversally Y, D and D^{\prime} are disjoint 1-secant lines of Y contained in $Y, S^{\prime}=\varnothing, \sharp(S)=v_{3, k-3, g-1}, S \subset D \backslash Y \cap D$. Deforming Y we may also assume that no line of Q is 2 -secant to Y. Let $E_{i}, 0 \leq i \leq d-1-u_{3, k-1, g-1}$, be lines of Q intersecting D, not containing the point $D \cap Y$ and such that $E_{i} \cap Y \neq 0$ if and only if $0 \leq i \leq v_{3, k-3, g-1}$. Let Z be the union of Y, D, the lines $E_{i}, 1 \leq i \leq$ $d-1-u_{3, k-1, g-1}$ and the $v_{3, k-3, g-1}$ nilpotents $\chi(P), P \in D \cap E_{i}, 1 \leq i \leq v_{3, k-3, g-1}$. We have $Z \in H(d-1, g-1,3)^{\prime}\left([2]\right.$, Corollary 1.4) and E_{0} is a 2-secant line of Z. The scheme $\operatorname{Res}_{Q}\left(Z \cup E_{0}\right)$ is the union of Y and the points $P, P \in D \cap E_{i}$, $1 \leq i \leq v_{3, k-3, g-1}$. Since $\sharp(Y \cap(Q \backslash D))>k+1$, we see as in [2], lines $12-16$ of the proof of Lemma VI.1) that $\left.h^{0}\left(\mathcal{I}_{\operatorname{Res}_{Q}\left(Z \cup E_{0}\right)}(k-1)\right)\right)=0$. Hence it is sufficient to prove $h^{0}\left(Q, \mathcal{I}_{G}\left(k-1, d-1-u_{3, k+1, g-1}\right)\right)=0$, where $G:=Y \cap\left(Q \backslash\left(D \cup E_{0} \cup \cdots E_{v(3, k+1, g-1}\right)\right)$. We apply [2], Lemma VIII.8.
(a2) Now assume $k \geq m+3$ and $d-2-u_{3, k-3, g-1}<v_{3, k-3, g-1}$. Take ($\left.Y, Q, D, D^{\prime}, S, S^{\prime}\right)$ satisfying $R(k-3)$ for the genus $g-1$ with respect to the integer $x:=v_{3, k-3, g-1}-\left(d-3-u_{3, k+1, g-1}\right)$. Here we use [2], Lemma VII.2, which says that $0 \leq 2 x \leq v_{3, k-3, g-1}$. Deforming Y we may assume that Y is transversal to Q and that Q contains no 2 -secant line of Y. Fix $d-2-u_{3, k+1, g-1}$ lines E_{i}, $0 \leq i \leq d-3-u_{3, k+1, g-1}$, in the linear system of lines in Q intersecting D with the only condition that E_{i} intersects $Y \cap\left(Q \backslash\left(D \cup D^{\prime}\right)\right)$ if and only if $1 \leq i \leq x$. Let Z be the union of Y, D, D^{\prime}, the lines $E_{i}, i \neq 0$, and the nilpotents $\chi(P), P \in D \cap E_{i}$, $1 \leq i \leq v_{3, k+1, g-1}-x$, and $P \in D^{\prime} \cap E_{i}, 1 \leq i \leq x$. We have $Z \in H(d-1, g-1,3)^{\prime}$, E_{0} is a 2-secant line of Z (it intersects D and D^{\prime}, but not Y) and $Z \cup E_{0} \in H(d, g, 3)_{1}^{\prime}$ (Lemma 2.3).
(a3). Now assume $k \leq m+2$, i.e. $k \in\{m, m+1, m+2\}$. We use the assertion $H(k-3)$ of [2] instead of the assertion $R(k-3)$. Here need to distinguish four subcases. In every subcase we start with a solution (Y, Q, D, S) of H_{k-3}. Let $(1,0)$ be the system of lines on Q containing D. Deforming if necessary Y we may assume that Q is transversal to Y and that D is the only 2 -secant line of Y contained in Q.
(a3.1) Assume $g-1=a_{3, k-3}$ (it implies $k=m+2$). Since $b_{3, k-3} \leq(k-3) / 3$ ([2], III.1), we have $b_{3, k-3} \leq d-2-a_{3, k-3}$. Take a line D^{\prime} of type $(1,0)$ on Q and 1-secant to Y. Let $E_{i}, 0 \leq i \leq d-2-a_{3, k}$, be lines of type $(0,1)$ on Q such that $D^{\prime} \cap Y \notin E_{i}$ for any i and $E_{i} \cap Y \neq \varnothing$ if and only if $0 \leq \leq b_{3, k-3}$. Let Z be the union of $Y, D^{\prime}, E_{i}, i \geq 1$, and the nilpotents $\chi\left(D^{\prime \prime} \cap E_{i}\right), 1 \leq i \leq b_{3, k-3}$. We have $Z \in H(d-1, g-1,3)^{\prime}$ and E_{0} is a 2 -secant line of Z.
(a3.2) Assume $g-1 \geq a_{3, k-3}+1$ and $b_{3, k-3} \leq d-2-a_{3, k-3}-(g-2)$. Let E_{i}, $0 \leq i \leq d-2-a_{3, k-3}$, be lines of type $(0,1)$ on Q such that $D \cap Y \notin E_{i}$ for any i and $E_{i} \cap Y \neq \varnothing$ if and only if $0 \leq i \leq g-2-a_{3, k-3}+b_{3, k-3}$. Let Z be the union of $Y, D, E_{i}, i \geq 1$, and $\chi\left(E_{j} \cap D\right), 1 \leq i \leq b_{3, k-3}$. We have $Z \in H(d-1, g-1,3)^{\prime}$ and E_{0} is a 2-secant line of Z.
(a3.3) Assume $b_{3, k-3} \geq d+1-a_{3, k-3}-g$ and $b_{3, k-3}+\left(g-3-a_{3, k-3}\right) \leq$ $3\left(d-3-a_{3, k-3}\right)$. Since $b_{3, k-3} \leq(k-3) / 3$ ([2], III.1) and $g-1>a_{3, k-1}$, we have $g-1 \geq a_{3, k-3}+2$. Let D^{\prime} be a general 2-secant line of Y. Instead of Q we take
a general quadric surface Q^{\prime} containing $D \cup D^{\prime}$, say as lines of type (1,0). Let E_{i}, $0 \leq i \leq d-3-a_{3, k-3}$ be lines of type $(0,1)$ on Q^{\prime}, not intersecting $Y \cap\left(D \cup D^{\prime}\right)$ and with $E_{i} \cap D_{i} \neq \varnothing$ if and only if $0 \leq i \leq g-3-a_{3, k-3}+b_{3, k-3}-2\left(d-3-a_{3, k-3}\right)$. Let Z be the union of Y, D, D^{\prime}, the lines $L_{i}, i \geq 1$, the nilpotents $\chi\left(D \cap E_{i}\right), i \geq 1$, and the nilpotents $\chi\left(D^{\prime} \cap E_{i}\right), 1 \leq i \leq x$. we have $Z \in H(d-1, g-1, e)^{\prime}$ and E_{0} is 2-secant to Z.
(a3.4) Assume $b_{3, k-3} \geq d+1-b_{3, k-3}-g$ and $b_{3, k-3}+\left(g-3-a_{3, k-3}\right)>$ $3\left(d-3-a_{3, k-3}\right)$. Since $b_{3, k-3} \leq(k-3) / 3$ ([2], III.1), $d-1 \geq a_{3, k-1}+3$ and $a_{3, k-1}-a_{3, k-3}>2(k-1)([2]$, III.1), this case cannot occur.
(b) Now assume that $(d-1, g, 3)$ has critical value k. Let x be the maximal integer $x>0$ such that $(x, g, 3)$ has critical value $\leq k-1$. It is easy to check that $x \geq g+3$ and that $x<d$. We proved the existence of a pair (C, D) such that $C \in H(x, g-1,3), D$ is a 2 -secant line of C, Let $E \subset \mathbb{P}^{3}$ be any smooth rational curve such that $\operatorname{deg}(E)=d-x, \sharp(C \cap E)=1, E \cap D=\varnothing$ and E meets quasi-transversally C (e.g., take as E a general smooth rational curve of degree $d-x$ intersecting C). Set $X_{2}:=(C \cup E) \cup D$.

3.2 End of the proof of Theorem $\mathbf{1 . 1}$ for $r \geq 4$

From now on we assume $r \geq 4$. We define the following assertions $H_{r, x}, x \geq 1$, $R_{r, y, g-1}, y \geq m$, and $R_{r, m+1, g-1}^{\prime}$ (only if $r \geq 5$ and $g-1 \geq v_{r, m, g-1}$).
$H_{r, x}$: A general $C \in H\left(a_{r, x}+r, a_{r, x}-b_{r, x}, r\right)$ satisfies $h^{i}\left(\mathcal{I}_{C}(x)\right)=0, i=0,1$. $R_{r, x, g-1}, x \geq m$: There exists a triple (X, Z, T) such that
(i) $X=Z \cup T, Z \cap T=\varnothing$ and $h^{i}\left(\mathcal{I}_{X}(x)\right)=0, i=0,1$;
(ii) $Z \in H\left(u_{r, x, g-1}-v_{r, x, g-1}, g-1, r\right)$ and T is a union of $v_{r, x, g-1}$ disjoint lines.
$R_{r, m+1, g-1}^{\prime}$ (under the assumptions $r \geq 5$ and $g-1 \geq v_{r, m, g-1}$): There is $Y \in$ $H\left(u_{r, m+1, g-1}, g-1-v_{r, m+1, g-1}, r\right)$ such that $h^{i}\left(\mathcal{I}_{Y}(m+1)\right)=0, i=0,1$.

Of course, to see that $H_{r, x}$ (resp. $R_{r, x, g-1}$) makes sense for $x \geq 1$ (resp. $x \geq m$) we need to check that $a_{r, x} \geq b_{r, x}$ for all $x \geq 1$ (resp. $u_{r, x, g-1}-v_{r, x, g-1} \geq g-1+r$ for all $x \geq m$). These inequalities are true for the following reasons. A stronger form of the inequality $a_{4, x} \geq b_{4, x}+4$ is [1], Lemma 2, plus that $b_{4,1}=0$. We have $u_{4, m, g-1}-v_{4, m, g-1} \geq g-1+4$ by [1], Lemma 9. We have $u_{4, x, g-1}-v_{4, x, g-1} \geq$ $g-1+4$ for all $x>m$ by [1], Lemma 5, and the inequality $v_{4, x, g-1} \leq x-1$. More restrictive inequalities are proved in [3], $\S 5$, for the case $r \geq 5$. Granted this, for any $C \in H\left(a_{r, x}+r, a_{r, x}-b_{r, x}, r\right)^{\prime}$ we have $h^{1}\left(\mathcal{I}_{C}(x)\right)=h^{0}\left(\mathcal{I}_{C}(x)\right)$ by the equation in (3.2). The equation in (3.1) gives $h^{1}\left(\mathcal{I}_{Z \sqcup T}(x)\right)=h^{0}\left(\mathcal{I}_{Z \sqcup T}(x)\right)$ for any $Z \sqcup T$ with $Z \in H\left(u_{r, x, g-1}-v_{r, x, g-1}, g-1, r\right)$ and T a union of $v_{r, x, g-1}$ disjoint lines such that $Z \cap T=\varnothing$. Similarly, if $g-1 \geq v_{r, m+1, g-1}$ and $Y \in H\left(u_{r, m+1, g-1}, g-1-\right.$ $\left.v_{r, m+1, g-1}, r\right)^{\prime}$, then $h^{1}\left(\mathcal{I}_{Y}(m+1)\right)=h^{0}\left(\mathcal{I}_{Y}(m+1)\right)$. To prove one of these assertions $H_{r, x}, R_{r, x, g-1}$ or $R_{r, m+1, g-1}^{\prime}$ it is sufficient to find a " solution " which is smoothable (by semicontinuity). For instance, to prove $H_{r, x}$ it is sufficient to prove the existence of $C \in H\left(a_{r, x}+r, a_{r, x}-b_{r, x}, r\right)^{\prime}$ such that $h^{1}\left(\mathcal{I}_{C}(x)\right)=0$. The assertion $H_{r, x}, r \geq 5$ and $x \geq 1$, are true by [3], Lemma 1. If $R_{r, m+1, g-1}^{\prime}$ is defined and $r \geq 5$, then $R_{r, m+1, g-1}^{\prime}$ is true ([3], Lemma 3.2). For $y \geq m+1 R_{r, y, g-1}$ implies $R_{r, y+1, g-1}$ ([1],

Lemma 8, for $r=4$, [3], Lemma 3.6, for $r \geq 5$. If $r \geq 5$ and $R_{r, m+1, g-1}^{\prime}$ is not defined, then $R_{r, m+1, g-1}$ is true ([3], Lemma 3.3). $R_{4, m+1, g-1}$ is true ([1], Lemma 10). If $r \geq 5$ and $R_{r, m+1, g-1}^{\prime}$ is defined, then $R_{r, m+2, g-1}$ is true ([3], Lemma 3.5). Hence we may use all $H_{r, x}$ and all $R_{r, y, g-1}$, except $R_{r, y+1, g-1}$ when $r \geq 5$ and $R_{r, m+1, g-1}^{\prime}$ is defined. In the latter case we may use $R_{r, m+1, g-1}^{\prime}$. Fix a hyperplane H of \mathbb{P}^{r}.
(a) Here we assume $m=k$. Since $k \geq 3, g \geq a_{r, m}, d \geq g+r$ and $k d+1-g \leq$ $\binom{m+r}{r}$, we get $g=a_{r, m}$ and $d=a_{r, m}+r$. Take a solution C of $H_{r, k-1}$. Hence $C \in H\left(a_{r, k-1}+r, a_{r, k-1}-b_{r, k-1}, r\right)$ and $h^{i}\left(\mathcal{I}_{C}(k-1)\right)=0, i=0,1$. First assume $d \geq a_{r, k-1}+r+\left(g-a_{r, k-1}+b_{r, k-1}\right)$. Since $(m-2) a_{r, m-1}+r(m-1)+m-3 \geq\left({ }_{r}^{r+m-1}\right)$, we have $a_{r, m-1}-2 \geq 2 m$. Hence Lemma 3.1 gives the existence of (U, T) with $U \cup T \subset H, U \in H\left(d-a_{r, k-1}, g-1, r-1\right), \sharp(U \cap C)=, T$ a 2-secant line of $W \cup U$ and with $h^{1}\left(H, \mathcal{I}_{U \cup T, H}(e)\right)=0$. By Remark 2.2 to prove the existence of X_{1} it is sufficient to prove $h^{1}\left(H, \mathcal{I}_{U \cup T \cup(C \cap H), H}(m)\right)=0$. Since $k d+1-g \leq\binom{ r+k}{r}$, the case $t=k-1$ of (3.1) gives

$$
h^{0}\left(U \cup T, \mathcal{O}_{U \cup T}(k)\right) \leq\binom{ r+k-1}{r-1}-\sharp(C \cap H)+\sharp(C \cap(U \cup T)) .
$$

The curve $U \subset H$ is general in $H\left(d-a_{r, k-1}, g-1, r-1\right)$ by [3], Lemmas 1.5 applied to the integer $r-1$. Hence Lemma 3.1 and the generality of $U \cup T$ gives $h^{1}\left(H, \mathcal{I}_{U \cup T}(k)\right)=$ 0. Apply [3], Lemma 1.6.
(b) Now assume $k=m+1$. First assume $k d+1-g>\binom{r+k}{k}-b_{r, m}$. In this case the proof of the case $m=k$ works verbatim, even without knowing the exact values of d and g. Now assume $k d+1-g \leq\binom{ r+k}{r}-b_{r, m}$ and $d \geq a_{r, m}+2 r+1$. Since $d \geq g+r$, we have $d-a_{r, m}-r \geq g-a_{r, m}$. Take a general $C \in H\left(a_{r, m}+r, a_{r, m}, r\right)$. Since C has maximal rank $([1],[3])$, we have $h^{1}\left(\mathcal{I}_{C}(k-1)\right)=0$ and $h^{0}\left(\mathcal{I}_{C}(k-1)\right)=b_{r, k-1}$. We may assume that C is transversal to H. We claim the existence $U \cup T \subset H$ such that (U, T) satisfies the thesis of Lemma 3.1 and with $U \in H\left(d-1-a_{r, k}, g-1-a_{r, k}, r-1\right)$, $\sharp(U \cap C)=1$ and T 2-secant to $C \cup U$. To check the claim it is sufficient to note that $a_{r, m-1}+r-1 \geq 2(m+1)$. Now assume $d \leq a_{r, m}+2 r$. Since $d \geq g+r \geq a_{r, m}+r$, we get $d \leq g+2 r$ and $k d+1-g \leq\binom{ r+k}{r}-2 k$. We start with a general $C^{\prime} \in H\left(a_{r, m}+\right.$ $\left.r-1, a_{r, m}-1, r\right)$ and add $U^{\prime} \cup T \subset H$ with $U^{\prime} \in H\left(d-a_{r, m}, d-a_{r, m}-r+1, r-1\right)$ with $\sharp\left(U^{\prime} \cap C^{\prime}\right)=1+\left(g-a_{r, m}\right)$.
(c) Now assume $k \geq m+2$. First assume $d \geq u_{r, k-1, g-1}+v_{r, k-1, g-1}+1$. Take (C, A) satisfying $R_{r, k-1, g-1}$. Let $U \subset H$ be a general rational normal curve containing exactly one point of each connected component of $C \cup A$, i.e. containing the set $A \cap H$ and exactly one point of $C \cap H$ (C exists, because we assumed $d \geq$ $u_{r, k-1, g-1}+v_{r, k-1, g-1}+1$. Fix $P \in C \cap H$ with $P \notin U$ and take a general line T through P and intersecting C. For general C, A and U we may assume that T is a $2-$ secant line of $C \cup A \cup U$. By Lemma 2.3 it is sufficient to prove $h^{1}\left(\mathcal{I}_{C \cup A \cup U \cup T}(k)\right)=0$, i.e. $h^{1}\left(H, \mathcal{I}_{U \cup T \cup(C \cap H)}(k)\right)=0$. Since (d, g, r) has critical value k, we have

$$
h^{0}\left(C \cup T, \mathcal{O}_{C \cup T}(k)\right)+\sharp(C \cap H)-\sharp(C \cap U)-\sharp(C \cap T) \leq\binom{ r+k-1}{r-1} .
$$

Further, we have $\sharp(C \cap H)-\sharp(C \cap U) \geq 2 k$, because $u_{r, k-1, g-1} \geq 3 k$ by (3.2). Hence Lemma 3.1 implies $h^{1}\left(H, \mathcal{I}_{U \cup T}(k)\right)=0$ Apply [3], Lemma 1.6. Now assume
$d \leq u_{r, k-1, g-1}+v_{r, k-1, g-1}$. Take $Y \in H\left(u_{r, k-1, g-1}, g-1, r\right)$ with maximal rank. Hence $h^{1}\left(\mathcal{I}_{Y}(k-1)\right)=0$. First assume $d \geq u_{r, k-1, g-1}+2$. We add in H the curve $E \cup D$, where E is a smooth rational curve intersecting Y quasi-transversally and exactly one point and D is a 1 -secant line of E passing through one of the points of $Y \cap(H \backslash E)$. By Lemma 3.1 we may assume $h^{1}\left(H, \mathcal{I}_{E \cup D}(k)\right)=0$. Since D is a 2-secant line of $Y \cup E$, it is sufficient to apply Lemma 2.3 and Remark 2.3. Now assume $d \leq u_{r, k-1, g-1}+1$. In this case we have $k d+1-g \leq\binom{ r+k}{r}-2 k$. Take $Y^{\prime} \in H\left(u_{r, k-1, g-1}-1, g-1, r\right)$ with maximal rank and add $E \cup D \subset H$ with E smooth and rational and $\sharp\left(E \cap Y^{\prime}\right)=1$.

Acknowledgements. The author was partially supported by MIUR and GNSAGA of INDAM (Italy).

References

[1] E. Ballico, Ph. Ellia, On postulation of curves in \mathbb{P}^{4}, Math. Z. 188, 2 (1985), 215-223.
[2] E. Ballico, Ph. Ellia, The maximal rank conjecture for nonspecial curves in \mathbf{P}^{3}, Invent. Math. 79, 3 (1985) 541-555.
[3] E. Ballico, Ph. Ellia, The maximal rank conjecture for non-special curves in \mathbb{P}^{n}, Math. Z. 196 (1987), 355-367.
[4] L. Ein, The irreducibility of the Hilbert scheme of smooth space curves, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 83-87, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
[5] R. Hartshorne, A. Hirschowitz, Droites en position générale dans \mathbb{P}^{n}, Algebraic Geometry, Proceedings, La Rábida 1981, 169-188, Lect. Notes in Math. 961, Springer, Berlin, 1982.
[6] R. Hartshorne, A. Hirschowitz, Smoothing algebraic space curves, Algebraic Geometry, Sitges 1983, 98-131, Lecture Notes in Math. 1124, Springer, Berlin, 1985.
[7] C. Keem, Reducible Hilbert scheme of smooth curves with positive Brill-Noether number, Proc. Amer. Math. Soc. 122, 2 (1994) 349-354.
[8] S. Kim, On the irreducibility of the family of algebraic curves in complex projective space \mathbb{P}^{r}, Comm. Algebra 29, 10 (2001), 4321-4331.
[9] E. Sernesi, On the existence of certain families of curves, Invent. Math. 75, 1 (1984), 25-57.

Author's address:
Edoardo Ballico
Department of Mathematics, University of Trento, via Sommarive 14, Trento, 38123, Italy.
E-mail: ballico@science.unitn.it

[^0]: Balkan Journal of Geometry and Its Applications, Vol. 18, No. 1, 2013, pp. 12-21.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2013.

