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Abstract. We generalize the Zermelo navigation problem from flat to Rie-
mannian spaces and find the corresponding force representing the action
of the wind distribution.
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1 Introduction

In [2] E. Zermelo1 deals with the following classical control problem:

In an unbounded plane where the wind distribution is given by a vector field as
a function of position and time, a boat moves with constant velocity relative to
the surrounding air mass. How must the boat be directed in order to come from
a starting point 0 to a destination point D in the shortest time?

Geometrically, the problem is to find the deviation of geodesics under the action
of a time–dependent vector field. The aim of this paper is to generalize the Zermelo
navigation problem to Riemannian manifolds. We find the solution for this case:
we construct a corresponding suitable Lagrangian and specify the properties of the
corresponding force. In a different way the problem was treated in [1] where for
the case of a “low wind perturbation” (the Riemannian length of the wind vector is
≤ 1 everywhere on M) a new metric corresponding to the deviated geodesics was
constructed as a Finsler metric.

2 Notations and preliminaries

Throughout this paper, manifolds and mappings are smooth and the summation
convention over repeated indices is assumed.

Let a pair (M, g) be a Riemannian manifold, where

g = gijdxi⊗dxj
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is a Riemannian metric ( (gij) be non-degenerate, symmetric and positive definite
matrix) and M is an m-dimensional manifold with local coordinates (xa), 1 ≤ a ≤ m.
We shall consider a fibred manifold π : R ×M → R, where π is the first canonical
projection. On R × M we use coordinate charts adapted to the product structure
(t, xa), 1 ≤ a ≤ m, where t is the global coordinate on R. A curve c : R → M , defined
in a neighborhood of 0 ∈ R, will be represented by its graph

γ : R → R×M,
t 7→ (t, c(t)),

which is a section of the fibered manifold π. Any section γ of the fibered manifold π
can be prolonged to a section J1γ of the fibered manifold J1(R×M) ≈ R×TM , and
J2γ of R× T 2M . Then J1γ(t) = (t, c(t), ċ(t)) and J2γ(t) = (t, c(t), ċ(t), c̈(t)).

Let the wind distribution on M be represented by a time-dependent vector field
on M , i.e. by a projectable vector field ξ on R× TM of the form

ξ =
∂

∂t
+ ξi(t, xj)

∂

∂xi
.

To analyze the deformations of geodesics consider the variational problem on R×TM
defined by the kinetic energy in the form

(2.1) T̄ =
1
2
gijy

iyj ,

where yi = ẋi + ξi.

3 Euler-Lagrange equations

The Euler-Lagrange equations of the mechanical system (2.1) are expressed in the
form

(3.1)
∂T̄

∂xk
− d

dt

(
∂T̄

∂ẋk

)
= 0, 1 ≤ k ≤ m,

where

T̄ =
1
2
gijy

iyj =
1
2
gij

(
ẋi + ξi

) (
ẋj + ξj

)
=

=
1
2
gij ẋ

iẋj + gij ẋ
iξj +

1
2
gijξ

iξj .(3.2)

Let us denote

(3.3) V = −gij ẋ
iξj − 1

2
gijξ

iξj ,

then we have

(3.4) T̄ = T − V,

where T is the kinetic energy of the unpertubed problem and V has the meaning of
the potential energy caused by the wind.



On the Zermelo problem in Riemannian manifolds 79

Computing (3.1) explicitly we obtain

(3.5) Fk − Γkij ẋ
iẋj − gkj ẍ

j = 0,

where

(3.6) Fk =
(

∂gij

∂xk
ξj + gij

∂ξj

∂xk

)
ẋi +

1
2

∂

∂xk

(
gijξ

iξj
)
− ∂gkj

∂xi
ẋiξj−gkj

∂ξj

∂t
−gkj

∂ξj

∂xi
ẋi

and Γijk are standard Christoffel symbols of (gij),

(3.7) Γijk =
1
2

(
∂gji

∂xk
+

∂gki

∂xj
− ∂gjk

∂xi

)
.

Now, let us introduce the covector ξ̃i = gijξ
j . Then using notation

(3.8) ξ2 = ξ · ξ = gijξ
iξj ,

we obtain the force in the following final form

(3.9) Fk =

(
∂ξ̃i

∂xk
− ∂ξ̃k

∂xi

)
ẋi +

1
2

∂ξ2

∂xk
− ∂ξ̃k

∂t
.

If M is 3–dimensional we can write

(3.10) ~F = rot ξ̃ × ~v + ~E,

where

(3.11) Ek =
1
2

∂ξ2

∂xk
− ∂ξ̃k

∂t
.

The force F is a deformation force, arising due to the wind distribution ξ, giving
rise to a deformed family of geodesics compared to the original ones (describing the
“free particle” on M).

Notice an interesting relation with electrodynamics: equations (3.10) have the
same form as the equations for a charged particle moving in an electromagnetic field
with the electromagnetic potentials

(3.12) ~B = −rot ξ̃ and ~E.

4 Simulation of a 2-dimensional situation

As an example we provide a solution of the problem for the case dim (R×M) = 2.
We choose

(4.1)
g = x dx,

ξ =
∂

∂t
+ x

∂

∂x
.
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Equation (3.5) takes the form

(4.2)
3
2
x2 − 1

2
ẋ2 − xẍ = 0

and F = 3
2x2.

Bellow the solution is simulated with help of Wolfram Mathematica.
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On Figure 1 the vector field ξ that was chosen for our simulation is modeled. Curves
on the Figure 2 represent curves before the “wind” deformation

x = c1
3
√

(3t− 2c2)
2
, c1, c2 are arbitrary,

and next Figure 3 shows curves after “wind” deformation

x = c1e
−t 3
√

(e3t + e2c2)2, c1, c2 are arbitrary.
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Last Figure 4 demonstrates the whole situation where we can see changes on the
curves caused by the force F .
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Department of Mathematics, Faculty of Science,
The University of Ostrava, 30. dubna 22,
701 03 Ostrava, Czech Republic
and
Department of Mathematics and Statistics, La Trobe University,
Melbourne, Victoria 3086, Australia.
E-mail: olga.krupkova@osu.cz


