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Abstract. A review of the geometry of 3-dimensional contact metric man-
ifolds shows that generalized Sasakian manifolds and η-Einstein manifolds
are deeply interrelated. For example, it is known that a 3-dimensional
Sasakian manifold is η-Einstein. In this paper, we discuss the relationships
between several special classes of 3-dimensional contact metric manifolds
which are generalizations of 3-dimensional Sasakian manifolds. We also
provide examples illustrating our result in this paper.
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1 Introduction

It is well-known that any 3-dimensional compact oriented manifold admits a con-
tact structure [21], and hence, it admits an associated contact metric structure. There-
fore, it is natural to investigate 3-dimensional compact oriented manifolds from the
contact metric view point. We shall give a brief review of contact metric manifolds
focusing on the interrelationships between the generalizations of Sasakian manifolds
and η-Einstein contact metric manifolds. It is well known that a Sasakian manifold is
characterized as a contact metric manifold M = (M, φ, ξ, η, g) whose curvature tensor
R satisfies

(1.1) R(X,Y )ξ = η(Y )X − η(X)Y,

for any X, Y ∈ X(M), where X(M) denotes the Lie algebra of all smooth vector
fields on M . As a generalization of the Sasakian manifold, Blair, Koufogiorgos and
Papantoniou [2] introduced the notion of a contact metric manifold called a (κ, µ)-
contact metric manifold satisfying the condition

(1.2) R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

for any X, Y ∈ X(M), where κ and µ are constants on M and h = 1
2£ξφ (here, £ξ is

the Lie derivative in the direction of ξ). (κ, µ)-contact metric manifolds have attracted
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by many authors [4, 5, 9, 10, 11, 18, 20]. (κ, µ)-contact metric manifolds include
Sasakian manifolds (κ = 1 and h = 0), and also many examples of non-Sasakian
(κ, µ)-contact metric manifolds have been provided. Koufogiorgos and Tsichlias [12]
generalized the notion of a (κ, µ)-contact metric manifold by regarding the constants
κ and µ in (1.2) to be smooth functions on M , called a generalized (κ, µ)-contact
metric manifold. Further, the same authors [11] studied 3-dimensional generalized
(κ, µ)-contact metric manifolds with ξµ = 0 (this condition means the function µ is
constant along each integral curve of the characteristic vector field ξ) and showed
that it is possible to construct two families of such manifolds in R3, for any smooth
function κ (κ < 1) of one variable. We shall introduce an example belonging to
such families in §5, which illustrates Theorem B in the present paper. Koufogiorgos,
Markellas and Papantoniou [10] introduced the notion of a (κ, µ, ν)-contact metric
manifold which is a generalization of the generalized (κ, µ)-contact metric manifold,
defined as a contact metric manifold M = (M, φ, ξ, η, g) satisfying

R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )
+ ν(η(Y )φhX − η(X)φhY ).

(1.3)

for any X, Y ∈ X(M), where κ, µ, ν are smooth functions on M . In the same
paper [10], they proved that a (κ, µ, ν)-contact metric manifold is necessarily a (κ, µ)-
contact metric manifold if the dimension of M is greater than or equal to 5. They
also proved that the condition (1.3) is invariant under the D-homothetic deformations,
and further that, if dimM = 3, then the condition (1.3) is equivalent to the following
condition

(1.4) Q =
(r

2
− κ

)
I +

(
−r

2
+ 3κ

)
η ⊗ ξ + µh + νφh

holding on an open and dense subset of M , where Q is the Ricci operator and r
is the scalar curvature of M ([10], Proposition 3.1). We note that κ ≤ 1 on 3-
dimensional (κ, µ, ν)-contact metric manifold (see(3.13)). A contact metric manifold
M = (M, φ, ξ, η, g) is called η-Einstein if the Ricci operator Q takes the following
form

(1.5) Q = αI + βη ⊗ ξ,

where α and β are some smooth functions on M . From (1.3) and (1.4), taking account
of (1.5), we may observe that the geometry of (κ, µ, ν)-contact metric manifolds and
of generalized (κ, µ)-contact metric manifolds is deeply interrelated with the general-
ization of the η-Einstein contact metric manifold in the 3-dimensional case. On the
other hand, a contact metric manifold M = (M,φ, ξ, η, g) is said to be H-contact if
the characteristic vector field ξ is a harmonic vector field. We remark that (κ, µ, ν)-
contact metric manifold is H-contact. Koufogiorgos, Markellas and Papantoniou [10]
proved that a 3-dimensional H-contact manifold is a (κ, µ, ν)-contact metric manifold
on an open and dense subset of M ([10], Theorem 1.1). The last two of the present
authors worked on the H-contact unit tangent sphere bundles [6, 7, 14]. Concern-
ing 3-dimensional (κ, µ, ν)-contact metric manifolds, the present authors previously
proved the following theorem.

Theorem A [8] Let M = (M, φ, ξ, η, g) be a 3-dimensional (κ, µ, ν)-contact metric
manifold. If the functions µ and ν are constant on M , then M is either Sasakian
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or a non-Sasakian (κ, µ)-contact metric manifold with constant scalar curvature r =
2κ− 2µ.

In this paper, we shall prove the following theorem.

Theorem B Let M = (M, φ, ξ, η, g) be a 3-dimensional compact (κ, µ, ν)-contact
metric manifold with ξµ = ξν = 0 and let r be the scalar curvature. If either (the
inequality) r + µ2

2 ≥ 0 or r + µ2

2 ≤ 0 holds everywhere on M , then M is a Sasakian
manifold or a non-Sasakian (κ, µ)-contact metric manifold with κ = µ − µ2

4 and
r = −µ2

2 .

We here remark that the hypothesis “M = (M,φ, ξ, η, g) is a 3-dimensional (κ, µ, ν)-
contact metric manifold with ξµ = ξν = 0” is preserved under any D-homothetic
transformation [10] of the contact metric structure (φ, ξ, η, g) on M . Unless otherwise
specified, the manifolds to be considered in this paper will be assumed to be connected.

2 Preliminaries

In this section, we present some basic facts about contact metric manifolds. We refer
to [1] for more details. A (2n+1)-dimensional smooth manifold M is called a contact
manifold if it admits a global 1-form η such that η ∧ (dη)n 6= 0 everywhere on M .
We call η a contact form of M . It is well known that given a contact form η, there
exists a unique vector field ξ, which is called the characteristic vector field, satisfying
η(ξ) = 1 and dη(ξ,X) = 0 for any vector field X on M . A Riemannian metric g is
said to be an associated metric to a contact form η if there exists a (1, 1)-tensor field
φ satisfying

(2.1) η(X) = g(X, ξ), dη(X, Y ) = g(X, φY ), φ2X = −X + η(X)ξ,

where X and Y are vector fields on M . From (2.1), one can easily obtain

(2.2) φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X, Y )− η(X)η(Y ).

The structure (φ, ξ, η, g) is called a contact metric structure, and a manifold M with
a contact metric structure (φ, ξ, η, g) is said to be a contact metric manifold and is
denoted by M = (M,φ, ξ, η, g). Let ∇ be the Levi-Civita connection and let R be the
corresponding Riemann curvature tensor field given by R(X,Y )=[∇X , ∇Y ]- ∇[X,Y ]

for all vector fields X,Y on M . We denote by S the Ricci tensor field of type (0,2), by
Q the Ricci operator, and by r the scalar curvature. We define on M the operators
h, l by setting

(2.3) hX =
1
2
(£ξφ)X, lX = R(X, ξ)ξ,

where £ξ is the Lie derivative in the direction of ξ. It is easily checked that h and l
are symmetric operators and satisfy the following equalities

(2.4) hξ = 0, lξ = 0, hφ = −φh.
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We also have the following formulas for a contact metric manifold:

∇Xξ = −φX − φhX, (and hence ∇ξξ = 0)

∇ξφ = 0, T rl = g(Qξ, ξ) = 2n− tr(h2),

φlφ− l = 2(φ2 + h2), ∇ξh = φ− φl − φh2.

(2.5)

On the other hand, a contact metric manifold for which ξ is a Killing vector field is
called a K-contact manifold. It is well known that a contact metric manifold is K-
contact if and only if h = 0. It is well known that Sasakian manifolds are necessarily
K-contact but the converse is generally not true except in the 3-dimensional case ([1],
pp.70 and pp.76). Here, we note that on any (2n + 1)(n > 1)-dimensional η-Einstein
K-contact manifold, the functions α and β in the defining equation (1.5) are both
constant. We may also note that any 3-dimensional Sasakian manifold is η-Einstein
((1.4), [17]) and α + β is constant [3]. Hence, it is natural to ask whether there exists
a 3-dimensional Sasakian manifold with non-constant coefficient functions α and β as
a η-Einstein or not. Concerning this question, to our knowledge, it seems that any
explicit example of a 3-dimensional Sasakian manifold with non-constant coefficient
functions α and β as an η-Einstein manifold has not yet appeared in any literature.
In the last section, we shall provide an explicit example of such a 3-dimensional
Sasakian manifold. Based on the above arguments, it seems worthwhile to discuss
the coefficient functions in the equation (1.4) for a 3-dimensional (κ, µ, ν)-contact
metric manifold, along with the generalizations of a 3-dimensional Sasakian manifold
introduced in the §1.

3 Fundamental formulas

In this section, we shall prepare some fundamental formulas which we need in the
proof of the Theorem B.

Let M = (M, φ, ξ, η, g) be a 3-dimensional contact metric manifold, and h, l be
the (1, 1) tensor fields defined by (2.3). First, we recall the following formula by [19]:

(3.1) (∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),

for any X,Y ∈ X(M). Next, we recall that the curvature tensor R of a 3-dimensional
Riemannian manifold satisfies the following identity

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY − g(QX, Z)Y

+ g(QY,Z)X − r

2
(g(Y, Z)X − g(X,Z)Y ) ,

(3.2)

for any X, Y, Z ∈ X(M). Now, let U be the open subset of M on which h 6= 0, and V
be the open subset of points m ∈ M such that h = 0 on a neighborhood of m. Then,
we may easily check that U ∪V is an open and dense subset of M . If U is not empty,
for any m ∈ U , we may choose a local orthonormal frame field {ξ, e1, e2 = φe1} on
a neighborhood of m in such a way that

(3.3) he1 = λe1, he2 = −λe2,



58 J. E. Jin, J. H. Park and K. Sekigawa

where λ is a smooth positive function on U . We may also note that, if V is not empty,
then V becomes a Sasakian manifold (see §2).
Now, we assume that U is not empty. Then, by making use of (2.4), (2.5), (3.2) and
(3.3), we have the following basic formulas on U :

∇ξe1 = −ae2, ∇ξe2 = ae1, ∇e1ξ = −(λ + 1)e2, ∇e2ξ = −(λ− 1)e1,

∇e1e1 =
1
2λ

(e2λ + A)e2, ∇e1e2 = − 1
2λ

(e2λ + A)e1 + (λ + 1)ξ,

∇e2e2 =
1
2λ

(e1λ + B)e1, ∇e2e1 = − 1
2λ

(e1λ + B)e2 + (λ− 1)ξ,

(3.4)

and we have

(3.5) [e1, e2] = − 1
2λ

(e2λ + A)e1 +
1
2λ

(e1λ + B)e2 + 2ξ,

where A = S(ξ, e1), B = S(ξ, e2) and a is a smooth function. Further, the Ricci
operator Q [16] on U is given by

Qξ = 2(1− λ2)ξ + Ae1 + Be2,

Qe1 = Aξ +
(r

2
− 1 + λ2 + 2aλ

)
e1 + ξ(λ)e2,

Qe2 = Bξ + ξ(λ)e1 +
(r

2
− 1 + λ2 − 2aλ

)
e2.

(3.6)

Thus, from (3.2) and (3.6), we get that the components of the curvature tensor are
given by

R(e1, e2)e1 =
(
2− r

2
− 2λ2

)
e2 −Bξ, R(e1, e2)e2 =

(r

2
− 2 + 2λ2

)
e1 + Aξ,

R(e1, e2)ξ = Be1 −Ae2, R(e1, ξ)e1 = −Be2 + (λ2 − 1− 2aλ)ξ,

R(e1, ξ)e2 = Be1 − ξ(λ)ξ, R(e1, ξ)ξ = (2aλ + 1− λ2)e1 + ξ(λ)e2,

R(e2, ξ)e1 = Ae2 − ξ(λ)ξ, R(e2, ξ)e2 = Be2 + (−1 + λ2 + 2aλ)ξ,

R(e2, ξ)ξ = ξ(λ)e1 + (1− 2aλ− λ2)e2.

(3.7)

We have noted that Trl = 2(1 − λ2) by (2.5). In the remaining section, we assume
that M (under consideration) is a (κ, µ, ν)-contact metric manifold. Then, from (1.3),
we have

R(e1, e2)ξ = 0, R(e1, ξ)ξ = (κ + λµ)e1 + λνe2, R(e2, ξ)ξ = λνe1 + (κ− λµ)e2.

(3.8)

Thus, comparing (3.7) and (3.8), we have

(3.9) A = B = 0,

(3.10) ξλ = λν,
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(3.11) 1− λ2 + 2aλ = κ + λµ, 1− λ2 − 2aλ = κ− λµ,

Thus, from (1.4), (2.5), (3.6), (3.9), and (3.11), we have further

(3.12) µ = 2a,

(3.13) κ =
1
2
S(ξ, ξ) = 1− 1

2
Tr(h2) = 1− λ2.

On the other hand, from (2.4) and (3.3), taking account of (3.4), (3.9), (3.10) and
(3.12), we have

(∇e1η)(e2) = −(λ + 1), (∇e1η)(ξ) = 0, (∇e2η)(e1) = −(λ− 1),
(∇e2η)(ξ) = 0, (∇ξη)(e1) = 0, (∇ξη)(e2) = 0,

(3.14)

(∇e1h)(e2) = −(e1λ)e2 + (e2λ)e1 − λ(λ + 1)ξ,
(∇e2h)(e1) = −(e1λ)e2 + (e2λ)e1 + λ(λ− 1)ξ,
(∇e1h)(ξ) = −λ(λ + 1)e2, (∇e2h)(ξ) = λ(λ− 1)e1,

(∇ξh)(e1) = λνe1 − λµe2, (∇ξh)(e2) = −λνe2 − λµe1,

(∇e1φh)(e2) = (e1λ)e1 + (e2λ)e2, (∇e1φh)(ξ) = λ(λ + 1)e1,

(∇e2φh)(e1) = (e1λ)e1 + (e2λ)e2, (∇e2φh)ξ = λ(λ− 1)e2,

(∇ξφh)e1 = λνe2 + λµe1, (∇ξφh)e2 = λνe1 − λµe2.

From (1.3), taking account of the second Bianchi identity, we get

S
X,Y,Z

R(X, Y )∇Zξ

= S
X,Y,Z

{(Zκ)(η(Y )X − η(X)Y ) + κ((∇Zη)(Y )X − (∇Zη)(X)Y )

+ (Zµ)(η(Y )hX − η(X)hY ) + µ((∇Zη)(Y )hX + η(Y )(∇Zh)X
− (∇Zη)(X)hY − η(X)(∇Zh)Y ) + (Zν)(η(Y )φhX − η(X)φhY )
+ν((∇Zη)(Y )φhX + η(Y )(∇Zφh)X − (∇Zη)(X)φhY − η(X)(∇Zφh)Y )}

(3.15)

for any X, Y, Z ∈ X(M), where S
X,Y,Z

denotes the cycle sum with respect to the

vector fields X, Y and Z. Setting X = e1, Y = e2 and Z = ξ in (3.15), and taking
account of (3.4), (3.7) and (3.14), we have

−2(λ2 − 1 + λ2µ)ξ = 2(κ− λ2µ)ξ + (λe1ν − λe2µ− e2κ)e1 + (e1κ− λe1µ− λe2ν)e2,

and hence, we have

(3.16) e1κ = λ(e1µ + e2ν), e2κ = λ(e1ν − e2µ).

Thus, from (3.16), taking account of (3.13), we have also

(3.17) e1λ = −1
2

(e1µ + e2ν) , e2λ =
1
2

(e2µ− e1ν) .
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By the second Bianchi identity, we have further

(3.18) S
ξ,e1,e2

(∇ξR)(e1, e2)e1 = 0,

Taking account of (3.4) and (3.7) with (3.9), (3.10), (3.12) and (3.13), we have

(∇ξR)(e1, e2)e1 = −
(

1
2
ξr + 4λ2ν

)
e2,

(∇e1R)(e2, ξ)e1 = −(e1(λν) + µe2λ)ξ + λ(λ + 1)νe2,

(∇e2R)(ξ, e1)e1 = (e2(λµ)− 2λe2λ + νe1λ)ξ + λ(λ− 1)νe2.

(3.19)

Thus, from (3.18) and (3.19), we have

(3.20) ξr = −4λ2ν.

From (3.10) and (3.13), we have also

(3.21) ξκ = −2λ2ν.

Now, from (3.4), (3.9), (3.12) and (3.13), we obtain

R(e1, e2)e1

= ∇e1(∇e2e1)−∇e2(∇e1e1)−∇[e1,e2]e1

=
{
−1

2
e1(e1 log λ)− 1

2
e2(e2 log λ) +

1
4
(e2 log λ)2 +

1
4
(e1 log λ)2 + κ + µ

}
e2.

(3.22)

On one hand, taking account of (2.5) and (3.4), we also obtain

− 1
2
4 log λ

= −1
2

{
e1(e1 log λ) + e2(e2 log λ) + ξ(ξ log λ)− 1

2
(e2 log λ)2 − 1

2
(e1 log λ)2

}
.

(3.23)

Thus, from the first equality in (3.7), (3.22) and (3.23), we have

(3.24) r = 4 log λ + 2κ− 2µ− ξν.

4 Proof of Theorem B

Let M = (M, φ, ξ, η, g) be a 3-dimensional compact (κ, µ, ν)-contact metric manifold
with ξµ = ξν = 0 on M . Now, we assume that the open subset U of M on which
h 6= 0, is not empty. We set

Fmin = {m ∈ M | κ takes into minimum at m},
Fmax = {m ∈ M | κ takes into maximum at m}.(4.1)
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Then, we may easily check that Fmin and Fmax are both non-empty closed (and
hence, compact) subsets of M such that Fmin ⊂ U . And, we see that each integral
curve of ξ is a geodesic in M . We denote by γ(t) = γ(t; m) the integral curve of ξ
though m ∈ U with the arc-length parameter t. Then, from (3.10) and hypothesis
ξν = 0, we have

(4.2) λ(t) ≡ λ(γ(t)) = λ(m)eν(m)t.

for |t| < ε, where ε is a certain positive real number. From (3.13), (4.2), we see that
κ(t) = κ(γ(t)) is given by

(4.3) κ(t) = 1− λ(m)2e2ν(m)t,

for |t| < ε. Thus from (4.3), we see that, for each point m ∈ U , γ(t) ∈ U for all t ∈ R.
Now, we suppose that there exists a point m ∈ U with ν(m) > 0. Then, from (4.3),
we have

(4.4) lim
t→+∞

κ(t) = −∞.

Similarly, if there exists a point m ∈ U with ν(m) < 0. Then from (4.3), we have also

(4.5) lim
t→−∞

κ(t) = −∞.

Since M is compact, we see that κ (≤ 1) must bounded on M . But, from (4.4) and
(4.5), this is a contradiction. Therefore, it follows that ν = 0 on U . Since V is
Sasakian, it follows immediately ν = 0 on V . Since U ∪V is an open and dense subset
in M , we see that ν vanishes on M and hence, the (κ, µ, ν)-contact metric manifold
M under consideration reduces to a generalized (κ, µ)-contact metric manifold with
ξµ = 0. Since ν = 0 on M , from (3.17), we have on U .

(4.6) A1 = −1
2
B1, A2 =

1
2
B2,

where A1 = e1λ, B1 = e1µ, A2 = e2λ, B2 = e2µ. From (3.4) and (3.5), we have

(4.7) [e1, ξ] =
(µ

2
− λ− 1

)
e2, [e2, ξ] = −

(µ

2
+ λ− 1

)
e1.

Since ν = 0, from (3.10), we have also

(4.8) ξλ = 0.

Thus, from (4.7), taking account of (4.6) and (4.8), we obtain

(4.9) ξA1 =
(
λ + 1− µ

2

)
A2, ξA2 =

(
λ− 1 +

µ

2

)
A1.

Similarly, from (4.7), taking account of (4.6) and ξµ = 0, we obtain

(4.10) ξA1 = −
(
λ + 1− µ

2

)
A2, ξA2 = −

(
λ− 1 +

µ

2

)
A1.
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Thus, from (4.9) and (4.10), we have

(4.11)
(
λ + 1− µ

2

)
A2 = 0.

(4.12)
(
λ− 1 +

µ

2

)
A1 = 0.

Lemma 4.1. A1 = 0 or A2 = 0 at each point of U .

Proof. We assume that A1 6= 0 and A2 6= 0 at some point m ∈ U . Then, from (4.11)
and (4.12), it follows that λ+1− µ

2 = 0 and λ−1+ µ
2 = 0 at the point m, and hence,

λ = 0 at m. But, this is a contradiction. ¤

Now, we define subsets F1, F2, G1, G2 and F of U by

G1 = {m ∈ U |A1 6= 0 (i.e. A2 = 0) at m},
G2 = {m ∈ U |A2 6= 0 (i.e. A1 = 0) at m},
F1 = {m ∈ U |λ− 1 +

µ

2
= 0 at m},

F2 = {m ∈ U |λ + 1− µ

2
= 0 at m},

F = {m ∈ U |A1 = A2 = 0 (i.e. B1 = B2 = 0) at m}.

Then, taking account of (4.11) and (4.12) and Lemma 4.1, we have the following
relations.

G1 ⊂ F1, G2 ⊂ F2, F1 ∩ F2 = ∅, and
U = G1 ∪G2 ∪ F = F1 ∪ F2 (disjoint union).

(4.13)

We have denoted by F(i) the interior of F in U . Then, taking account of (4.9), we
may observe that, if F(i) 6= ∅, then λ (and hence, κ) is constant on F(i). From (4.13),
we see that G1 ∪G2 ∪ F(i) is an open and dense subset in U . First, we assume that

the inequality r + µ2

2 ≥ 0 holds on M . If G1 6= ∅, then from (3.24), taking account
of (4.12), we have

(4.14) 4 log λ = r − 2(1− λ2)− 4(λ− 1) = r + 2(λ− 1)2 = r +
µ2

2
≥ 0

on G1. Similarly, if G2 6= ∅, then, from (3.24), taking account of (4.11), we have

(4.15) 4 log λ = r − 2(1− λ2) + 4(λ + 1) = r + 2(λ + 1)2 = r +
µ2

2
≥ 0

on G2. Therefore, we have the following inequality

(4.16) 4 log λ ≥ 0

on G1 ∪G2. By direct calculation, we get

(4.17) 4 log λ = − 1
λ2
|g radλ|2 +

1
λ
4 λ
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on G1 ∪G2. Further, since κ = 1− λ2 on U , we get also

(4.18) 4κ = −2| g radλ|2 − 2λ4 λ

on G1 ∪G2. Thus, from (4.17) and (4.18), we have

(4.19) 4κ = −4| g radλ|2 − 2λ2 4 log λ ≤ 0

on G1 ∪G2. On the other hand, κ=const on F(i). Since G1 ∪G2 ∪F(i) is an open and
everywhere dense subset of U , from (4.19), we have the inequality 4κ ≤ 0 on U .
If V 6= ∅, V is Sasakian (and has κ = 1 on V ), since κ = 1 on V , it is evident that
4κ = 0 holds on V . Since U ∪ V is open and everywhere dense in M , we see finally
that

(4.20) 4κ ≤ 0

holds on M . On the other hand, the function κ takes its minimum on the non-empty
subset Fmin. Therefore, by Hopf’s theorem, we see that κ is constant on M , and
hence, µ is also constant on M . Next, we assume that the inequality r + µ2

2 ≤ 0
holds everywhere on M . Then, applying the similar arguments as in the previous
case where r + µ2

2 ≥ 0, we have 4κ ≥ 0 holds on M . Since the function κ takes its
maximum on the non-empty subset Fmax. Therefore, by Hopf’s theorem, we see also
that κ and µ are both constant on M .

As the result, we see that M is a non-Sasakian (κ, µ)-contact metric manifold with
κ = µ − µ2

4 and hence r = −µ2

2 by virtue of (3.24) if U 6= ∅. On the other hand, it
is evident that M is Sasakian (κ = 1 and µ = ν = 0) if U = ∅. This completes the
proof of Theorem B.

5 Examples

In this section, we shall provide an example of the 3-dimensional Sasakian manifold
M = (M,φ, ξ, η, g) with non-constant coefficient functions α and β in the defining
equation (1.5) of an η-Einstein manifold are both non-constant (see Example 1),
and also an example of the 3-dimensional generalized (κ, µ)-contact metric manifold
which illustrates as well as supports Theorem B (see Example 2). Example 1 below
is a special case of the example introduced in Blair’s book [1].
Example 1 Let M=R3 and set

(5.1) ξ = 2
∂

∂z
, e1 = 2

∂

∂y
, e2 = 2(

∂

∂x
− y2 ∂

∂y
+ y

∂

∂z
).

Let η be the 1-form dual to ξ, and define (1, 1)-tenser field φ by φξ = 0, φe1 = e2 and
φe2 = −e1. Further, let g be the Riemannian metric defined by g(ξ, ξ) = 1, g(ξ, ei) = 0
and g(ei, ei) = δij for 1 ≤ i, j ≤ 2. Then, by direct calculation, we may check that
(M, φ, ξ, η, g) is a 3-dimensional Sasakian manifold and the Ricci transformation Q is
given by

(5.2) Q = −(2 + 24y2)I + (4 + 24y2)η ⊗ ξ
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on M . Therefore, from (5.2), we see that the 3-dimensional Sasakian manifold M
provides an explicit example of the η-Einstein manifold with non-constant coefficient
functions α and β in (1.5) which is mentioned in §2.

The following example which is constructed by Koufogiorgos and Tsichlias [11],
which illustrates Theorem B.

Example 2 Let M = {(x, y, z) ∈ R3|z > 0} and set

(5.3) ξ =
∂

∂x
, e1 = −2y

∂

∂x
+ (2

√
zx− 1

4z
y)

∂

∂y
+

∂

∂z
, e2 =

∂

∂y
.

Let η be the 1-form dual to ξ, and define (1, 1)-tenser field φ by φξ = 0, φe1 = e2 and
φe2 = −e1. Further, let g be the Riemannian metric defined by g(ξ, ξ) = 1, g(ξ, ei) = 0
and g(ei, ei) = δij for 1 ≤ i, j ≤ 2. Then, by direct calculation, we may check that
(M, φ, ξ, η, g) is a 3-dimensional generalized (κ, µ, ν)-contact metric manifold with
κ = 1− z, µ = 2(1−√z) (and ν = 0) and r + µ2

2 = − 5
8z2 < 0 on M .

Thus, Example 2 shows that the compactness assumption in Theorem B plays an
essential role.

It is well-known that a 3-dimensional Lie group G admits a discrete subgroup
Γ such that the space of right cosets Γ\G is compact if and only if G is unimod-
ular [13]. Let G be one of the following simply connected unimodular Lie groups:
Ẽ(2), E(1, 1). Then, from the proof of the Theorem B and ([2,§4], [15]), we may
check that M = Γ\G with a suitable discrete subgroup Γ of G, provides an example
illustrating Theorem B for non-Sasakian case. Acknowledgement. This work was
supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (2011-0012987).
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