Notes on some classes of 3-dimensional contact metric manifolds

J. E. Jin, J. H. Park and K. Sekigawa

Abstract

A review of the geometry of 3-dimensional contact metric manifolds shows that generalized Sasakian manifolds and η-Einstein manifolds are deeply interrelated. For example, it is known that a 3 -dimensional Sasakian manifold is η-Einstein. In this paper, we discuss the relationships between several special classes of 3 -dimensional contact metric manifolds which are generalizations of 3-dimensional Sasakian manifolds. We also provide examples illustrating our result in this paper.

M.S.C. 2010: 53D10, 53C25.

Key words: Sasakian manifolds; contact metric manifolds.

1 Introduction

It is well-known that any 3 -dimensional compact oriented manifold admits a contact structure [21], and hence, it admits an associated contact metric structure. Therefore, it is natural to investigate 3-dimensional compact oriented manifolds from the contact metric view point. We shall give a brief review of contact metric manifolds focusing on the interrelationships between the generalizations of Sasakian manifolds and η-Einstein contact metric manifolds. It is well known that a Sasakian manifold is characterized as a contact metric manifold $M=(M, \phi, \xi, \eta, g)$ whose curvature tensor R satisfies

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{1.1}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ denotes the Lie algebra of all smooth vector fields on M. As a generalization of the Sasakian manifold, Blair, Koufogiorgos and Papantoniou [2] introduced the notion of a contact metric manifold called a (κ, μ)contact metric manifold satisfying the condition

$$
\begin{equation*}
R(X, Y) \xi=\kappa(\eta(Y) X-\eta(X) Y)+\mu(\eta(Y) h X-\eta(X) h Y), \tag{1.2}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(M)$, where κ and μ are constants on M and $h=\frac{1}{2} £_{\xi} \phi$ (here, $£_{\xi}$ is the Lie derivative in the direction of $\xi) .(\kappa, \mu)$-contact metric manifolds have attracted
by many authors $[4,5,9,10,11,18,20]$. (κ, μ)-contact metric manifolds include Sasakian manifolds ($\kappa=1$ and $h=0$), and also many examples of non-Sasakian (κ, μ)-contact metric manifolds have been provided. Koufogiorgos and Tsichlias [12] generalized the notion of a (κ, μ)-contact metric manifold by regarding the constants κ and μ in (1.2) to be smooth functions on M, called a generalized (κ, μ)-contact metric manifold. Further, the same authors [11] studied 3-dimensional generalized (κ, μ)-contact metric manifolds with $\xi \mu=0$ (this condition means the function μ is constant along each integral curve of the characteristic vector field ξ) and showed that it is possible to construct two families of such manifolds in \mathbb{R}^{3}, for any smooth function $\kappa(\kappa<1)$ of one variable. We shall introduce an example belonging to such families in $\S 5$, which illustrates Theorem B in the present paper. Koufogiorgos, Markellas and Papantoniou [10] introduced the notion of a (κ, μ, ν)-contact metric manifold which is a generalization of the generalized (κ, μ)-contact metric manifold, defined as a contact metric manifold $M=(M, \phi, \xi, \eta, g)$ satisfying

$$
\begin{align*}
R(X, Y) \xi= & \kappa(\eta(Y) X-\eta(X) Y)+\mu(\eta(Y) h X-\eta(X) h Y) \\
& +\nu(\eta(Y) \phi h X-\eta(X) \phi h Y) . \tag{1.3}
\end{align*}
$$

for any $X, Y \in \mathfrak{X}(M)$, where κ, μ, ν are smooth functions on M. In the same paper [10], they proved that a (κ, μ, ν)-contact metric manifold is necessarily a (κ, μ) contact metric manifold if the dimension of M is greater than or equal to 5 . They also proved that the condition (1.3) is invariant under the D-homothetic deformations, and further that, if $\operatorname{dim} M=3$, then the condition (1.3) is equivalent to the following condition

$$
\begin{equation*}
Q=\left(\frac{r}{2}-\kappa\right) I+\left(-\frac{r}{2}+3 \kappa\right) \eta \otimes \xi+\mu h+\nu \phi h \tag{1.4}
\end{equation*}
$$

holding on an open and dense subset of M, where Q is the Ricci operator and r is the scalar curvature of M ([10], Proposition 3.1). We note that $\kappa \leq 1$ on 3 dimensional (κ, μ, ν)-contact metric manifold (see(3.13)). A contact metric manifold $M=(M, \phi, \xi, \eta, g)$ is called η-Einstein if the Ricci operator Q takes the following form

$$
\begin{equation*}
Q=\alpha I+\beta \eta \otimes \xi \tag{1.5}
\end{equation*}
$$

where α and β are some smooth functions on M. From (1.3) and (1.4), taking account of (1.5), we may observe that the geometry of (κ, μ, ν)-contact metric manifolds and of generalized (κ, μ)-contact metric manifolds is deeply interrelated with the generalization of the η-Einstein contact metric manifold in the 3 -dimensional case. On the other hand, a contact metric manifold $M=(M, \phi, \xi, \eta, g)$ is said to be H-contact if the characteristic vector field ξ is a harmonic vector field. We remark that (κ, μ, ν) contact metric manifold is H-contact. Koufogiorgos, Markellas and Papantoniou [10] proved that a 3 -dimensional H-contact manifold is a (κ, μ, ν)-contact metric manifold on an open and dense subset of M ([10], Theorem 1.1). The last two of the present authors worked on the H-contact unit tangent sphere bundles [6, 7, 14]. Concerning 3 -dimensional (κ, μ, ν)-contact metric manifolds, the present authors previously proved the following theorem.

Theorem A [8] Let $M=(M, \phi, \xi, \eta, g)$ be a 3-dimensional ($\kappa, \mu, \nu)$-contact metric manifold. If the functions μ and ν are constant on M, then M is either Sasakian
or a non-Sasakian (κ, μ)-contact metric manifold with constant scalar curvature $r=$ $2 \kappa-2 \mu$.

In this paper, we shall prove the following theorem.
Theorem B Let $M=(M, \phi, \xi, \eta, g)$ be a 3-dimensional compact ($\kappa, \mu, \nu)$-contact metric manifold with $\xi \mu=\xi \nu=0$ and let r be the scalar curvature. If either (the inequality) $r+\frac{\mu^{2}}{2} \geq 0$ or $r+\frac{\mu^{2}}{2} \leq 0$ holds everywhere on M, then M is a Sasakian manifold or a non-Sasakian (κ, μ)-contact metric manifold with $\kappa=\mu-\frac{\mu^{2}}{4}$ and $r=-\frac{\mu^{2}}{2}$.

We here remark that the hypothesis " $M=(M, \phi, \xi, \eta, g)$ is a 3 -dimensional (κ, μ, ν) contact metric manifold with $\xi \mu=\xi \nu=0 "$ is preserved under any D-homothetic transformation [10] of the contact metric structure (ϕ, ξ, η, g) on M. Unless otherwise specified, the manifolds to be considered in this paper will be assumed to be connected.

2 Preliminaries

In this section, we present some basic facts about contact metric manifolds. We refer to [1] for more details. A $(2 n+1)$-dimensional smooth manifold M is called a contact manifold if it admits a global 1 -form η such that $\eta \wedge(d \eta)^{n} \neq 0$ everywhere on M. We call η a contact form of M. It is well known that given a contact form η, there exists a unique vector field ξ, which is called the characteristic vector field, satisfying $\eta(\xi)=1$ and $d \eta(\xi, X)=0$ for any vector field X on M. A Riemannian metric g is said to be an associated metric to a contact form η if there exists a $(1,1)$-tensor field ϕ satisfying

$$
\begin{equation*}
\eta(X)=g(X, \xi), \quad d \eta(X, Y)=g(X, \phi Y), \quad \phi^{2} X=-X+\eta(X) \xi \tag{2.1}
\end{equation*}
$$

where X and Y are vector fields on M. From (2.1), one can easily obtain

$$
\begin{equation*}
\phi \xi=0, \quad \eta \circ \phi=0, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

The structure (ϕ, ξ, η, g) is called a contact metric structure, and a manifold M with a contact metric structure (ϕ, ξ, η, g) is said to be a contact metric manifold and is denoted by $M=(M, \phi, \xi, \eta, g)$. Let ∇ be the Levi-Civita connection and let R be the corresponding Riemann curvature tensor field given by $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ for all vector fields X, Y on M. We denote by S the Ricci tensor field of type (0,2), by Q the Ricci operator, and by r the scalar curvature. We define on M the operators h, l by setting

$$
\begin{equation*}
h X=\frac{1}{2}\left(£_{\xi} \phi\right) X, \quad l X=R(X, \xi) \xi \tag{2.3}
\end{equation*}
$$

where $£_{\xi}$ is the Lie derivative in the direction of ξ. It is easily checked that h and l are symmetric operators and satisfy the following equalities

$$
\begin{equation*}
h \xi=0, \quad l \xi=0, \quad h \phi=-\phi h . \tag{2.4}
\end{equation*}
$$

We also have the following formulas for a contact metric manifold:

$$
\begin{array}{lc}
\nabla_{X} \xi=-\phi X-\phi h X, & \left(\text { and hence } \nabla_{\xi} \xi=0\right) \\
\nabla_{\xi} \phi=0, & \operatorname{Trl}=g(Q \xi, \xi)=2 n-\operatorname{tr}\left(h^{2}\right), \tag{2.5}\\
\phi l \phi-l=2\left(\phi^{2}+h^{2}\right), & \nabla_{\xi} h=\phi-\phi l-\phi h^{2}
\end{array}
$$

On the other hand, a contact metric manifold for which ξ is a Killing vector field is called a K-contact manifold. It is well known that a contact metric manifold is K contact if and only if $h=0$. It is well known that Sasakian manifolds are necessarily K-contact but the converse is generally not true except in the 3-dimensional case ($[1]$, pp. 70 and pp.76). Here, we note that on any $(2 n+1)(n>1)$-dimensional η-Einstein K-contact manifold, the functions α and β in the defining equation (1.5) are both constant. We may also note that any 3 -dimensional Sasakian manifold is η-Einstein ((1.4), [17]) and $\alpha+\beta$ is constant [3]. Hence, it is natural to ask whether there exists a 3-dimensional Sasakian manifold with non-constant coefficient functions α and β as a η-Einstein or not. Concerning this question, to our knowledge, it seems that any explicit example of a 3-dimensional Sasakian manifold with non-constant coefficient functions α and β as an η-Einstein manifold has not yet appeared in any literature. In the last section, we shall provide an explicit example of such a 3 -dimensional Sasakian manifold. Based on the above arguments, it seems worthwhile to discuss the coefficient functions in the equation (1.4) for a 3-dimensional (κ, μ, ν)-contact metric manifold, along with the generalizations of a 3-dimensional Sasakian manifold introduced in the $\S 1$.

3 Fundamental formulas

In this section, we shall prepare some fundamental formulas which we need in the proof of the Theorem B.

Let $M=(M, \phi, \xi, \eta, g)$ be a 3 -dimensional contact metric manifold, and h, l be the $(1,1)$ tensor fields defined by (2.3). First, we recall the following formula by [19]:

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{3.1}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(M)$. Next, we recall that the curvature tensor R of a 3-dimensional Riemannian manifold satisfies the following identity

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y-g(Q X, Z) Y \\
& +g(Q Y, Z) X-\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{3.2}
\end{align*}
$$

for any $X, Y, Z \in \mathfrak{X}(M)$. Now, let U be the open subset of M on which $h \neq 0$, and V be the open subset of points $m \in M$ such that $h=0$ on a neighborhood of m. Then, we may easily check that $U \cup V$ is an open and dense subset of M. If U is not empty, for any $m \in U$, we may choose a local orthonormal frame field $\left\{\xi, e_{1}, e_{2}=\phi e_{1}\right\}$ on a neighborhood of m in such a way that

$$
\begin{equation*}
h e_{1}=\lambda e_{1}, \quad h e_{2}=-\lambda e_{2}, \tag{3.3}
\end{equation*}
$$

where λ is a smooth positive function on U. We may also note that, if V is not empty, then V becomes a Sasakian manifold (see §2).
Now, we assume that U is not empty. Then, by making use of (2.4), (2.5), (3.2) and (3.3), we have the following basic formulas on U :
(3.4)

$$
\begin{array}{ll}
\nabla_{\xi} e_{1}=-a e_{2}, & \nabla_{\xi} e_{2}=a e_{1}, \\
\nabla_{e_{1}} e_{1}=\frac{1}{2 \lambda}\left(e_{2} \lambda+A\right) e_{2}, & \nabla_{e_{1}} e_{2}=-\frac{1}{2 \lambda}\left(e_{2} \lambda+A\right) e_{1}+(\lambda+1) \xi \\
\nabla_{e_{2}} e_{2}=\frac{1}{2 \lambda}\left(e_{1} \lambda+B\right) e_{1}, & \nabla_{e_{2}} e_{1}=-\frac{1}{2 \lambda}\left(e_{1} \lambda+B\right) e_{2}+(\lambda-1) \xi,
\end{array}
$$

and we have

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=-\frac{1}{2 \lambda}\left(e_{2} \lambda+A\right) e_{1}+\frac{1}{2 \lambda}\left(e_{1} \lambda+B\right) e_{2}+2 \xi \tag{3.5}
\end{equation*}
$$

where $A=S\left(\xi, e_{1}\right), B=S\left(\xi, e_{2}\right)$ and a is a smooth function. Further, the Ricci operator Q [16] on U is given by

$$
\begin{align*}
& Q \xi=2\left(1-\lambda^{2}\right) \xi+A e_{1}+B e_{2} \\
& Q e_{1}=A \xi+\left(\frac{r}{2}-1+\lambda^{2}+2 a \lambda\right) e_{1}+\xi(\lambda) e_{2} \tag{3.6}\\
& Q e_{2}=B \xi+\xi(\lambda) e_{1}+\left(\frac{r}{2}-1+\lambda^{2}-2 a \lambda\right) e_{2}
\end{align*}
$$

Thus, from (3.2) and (3.6), we get that the components of the curvature tensor are given by
(3.7)
$R\left(e_{1}, e_{2}\right) e_{1}=\left(2-\frac{r}{2}-2 \lambda^{2}\right) e_{2}-B \xi, \quad R\left(e_{1}, e_{2}\right) e_{2}=\left(\frac{r}{2}-2+2 \lambda^{2}\right) e_{1}+A \xi$,
$R\left(e_{1}, e_{2}\right) \xi=B e_{1}-A e_{2}, \quad R\left(e_{1}, \xi\right) e_{1}=-B e_{2}+\left(\lambda^{2}-1-2 a \lambda\right) \xi$,
$R\left(e_{1}, \xi\right) e_{2}=B e_{1}-\xi(\lambda) \xi, \quad R\left(e_{1}, \xi\right) \xi=\left(2 a \lambda+1-\lambda^{2}\right) e_{1}+\xi(\lambda) e_{2}$,
$R\left(e_{2}, \xi\right) e_{1}=A e_{2}-\xi(\lambda) \xi, \quad R\left(e_{2}, \xi\right) e_{2}=B e_{2}+\left(-1+\lambda^{2}+2 a \lambda\right) \xi$,
$R\left(e_{2}, \xi\right) \xi=\xi(\lambda) e_{1}+\left(1-2 a \lambda-\lambda^{2}\right) e_{2}$.
We have noted that $\operatorname{Trl}=2\left(1-\lambda^{2}\right)$ by (2.5). In the remaining section, we assume that M (under consideration) is a (κ, μ, ν)-contact metric manifold. Then, from (1.3), we have
(3.8)
$R\left(e_{1}, e_{2}\right) \xi=0, \quad R\left(e_{1}, \xi\right) \xi=(\kappa+\lambda \mu) e_{1}+\lambda \nu e_{2}, \quad R\left(e_{2}, \xi\right) \xi=\lambda \nu e_{1}+(\kappa-\lambda \mu) e_{2}$.
Thus, comparing (3.7) and (3.8), we have

$$
\begin{gather*}
A=B=0 \tag{3.9}\\
\xi \lambda=\lambda \nu \tag{3.10}
\end{gather*}
$$

$$
\begin{equation*}
1-\lambda^{2}+2 a \lambda=\kappa+\lambda \mu, \quad 1-\lambda^{2}-2 a \lambda=\kappa-\lambda \mu, \tag{3.11}
\end{equation*}
$$

Thus, from (1.4), (2.5), (3.6), (3.9), and (3.11), we have further

$$
\begin{equation*}
\kappa=\frac{1}{2} S(\xi, \xi)=1-\frac{1}{2} \operatorname{Tr}\left(h^{2}\right)=1-\lambda^{2} . \tag{3.13}
\end{equation*}
$$

On the other hand, from (2.4) and (3.3), taking account of (3.4), (3.9), (3.10) and (3.12), we have

$$
\begin{array}{ll}
\left(\nabla_{e_{1}} \eta\right)\left(e_{2}\right)=-(\lambda+1), & \left(\nabla_{e_{1}} \eta\right)(\xi)=0, \\
\left(\nabla_{e_{2}} \eta\right)(\xi)=0, & \left(\nabla_{\xi} \eta\right)\left(e_{e_{2}} \eta\right)\left(e_{1}\right)=0, \tag{3.14}\\
\left.\left(\nabla_{e_{1}} h\right)\left(e_{2}\right)=-\left(e_{1} \lambda\right) e_{2}+\left(e_{2} \lambda\right) e_{1}-\lambda\right)(\lambda+1) \xi, \\
\left(\nabla_{e_{2}} h\right)\left(e_{1}\right)=-\left(e_{1} \lambda\right) e_{2}+\left(e_{2} \lambda\right) e_{1}+\lambda(\lambda-1) \xi, \\
\left(\nabla_{e_{1}} h\right)(\xi)=-\lambda(\lambda+1) e_{2}, & \left(\nabla_{e_{2}} h\right)(\xi)=\lambda(\lambda-1) e_{1}, \\
\left(\nabla_{\xi} h\right)\left(e_{1}\right)=\lambda \nu e_{1}-\lambda \mu e_{2}, & \left(\nabla_{\xi} h\right)\left(e_{2}\right)=-\lambda \nu e_{2}-\lambda \mu e_{1}, \\
\left(\nabla_{e_{1}} \phi h\right)\left(e_{2}\right)=\left(e_{1} \lambda\right) e_{1}+\left(e_{2} \lambda\right) e_{2}, & \left(\nabla_{e_{1}} \phi h\right)(\xi)=\lambda(\lambda+1) e_{1}, \\
\left(\nabla_{e_{2}} \phi h\right)\left(e_{1}\right)=\left(e_{1} \lambda\right) e_{1}+\left(e_{2} \lambda\right) e_{2}, & \left(\nabla_{e_{2}} \phi h\right) \xi=\lambda(\lambda-1) e_{2}, \\
\left(\nabla_{\xi} \phi h\right) e_{1}=\lambda \nu e_{2}+\lambda \mu e_{1}, & \left(\nabla_{\xi} \phi h\right) e_{2}=\lambda \nu e_{1}-\lambda \mu e_{2}
\end{array}
$$

From (1.3), taking account of the second Bianchi identity, we get

$$
\begin{align*}
& {\underset{X, Y, Z}{\mathfrak{S}} R(X, Y) \nabla_{Z} \xi}_{=}{ }_{X, Y, Z}^{\mathfrak{S}}\left\{(Z \kappa)(\eta(Y) X-\eta(X) Y)+\kappa\left(\left(\nabla_{Z} \eta\right)(Y) X-\left(\nabla_{Z} \eta\right)(X) Y\right)\right. \\
& \quad+(Z \mu)(\eta(Y) h X-\eta(X) h Y)+\mu\left(\left(\nabla_{Z} \eta\right)(Y) h X+\eta(Y)\left(\nabla_{Z} h\right) X\right. \\
& \left.\quad-\left(\nabla_{Z} \eta\right)(X) h Y-\eta(X)\left(\nabla_{Z} h\right) Y\right)+(Z \nu)(\eta(Y) \phi h X-\eta(X) \phi h Y) \tag{3.15}\\
& \left.\quad+\nu\left(\left(\nabla_{Z} \eta\right)(Y) \phi h X+\eta(Y)\left(\nabla_{Z} \phi h\right) X-\left(\nabla_{Z} \eta\right)(X) \phi h Y-\eta(X)\left(\nabla_{Z} \phi h\right) Y\right)\right\}
\end{align*}
$$

for any $X, Y, Z \in \mathfrak{X}(M)$, where $\underset{X, Y, Z}{\mathcal{S}}$ denotes the cycle sum with respect to the vector fields X, Y and Z. Setting $X=e_{1}, Y=e_{2}$ and $Z=\xi$ in (3.15), and taking account of (3.4), (3.7) and (3.14), we have
$-2\left(\lambda^{2}-1+\lambda^{2} \mu\right) \xi=2\left(\kappa-\lambda^{2} \mu\right) \xi+\left(\lambda e_{1} \nu-\lambda e_{2} \mu-e_{2} \kappa\right) e_{1}+\left(e_{1} \kappa-\lambda e_{1} \mu-\lambda e_{2} \nu\right) e_{2}$,
and hence, we have

$$
\begin{equation*}
e_{1} \kappa=\lambda\left(e_{1} \mu+e_{2} \nu\right), \quad e_{2} \kappa=\lambda\left(e_{1} \nu-e_{2} \mu\right) \tag{3.16}
\end{equation*}
$$

Thus, from (3.16), taking account of (3.13), we have also

$$
\begin{equation*}
e_{1} \lambda=-\frac{1}{2}\left(e_{1} \mu+e_{2} \nu\right), \quad e_{2} \lambda=\frac{1}{2}\left(e_{2} \mu-e_{1} \nu\right) . \tag{3.17}
\end{equation*}
$$

By the second Bianchi identity, we have further

$$
\begin{equation*}
\underset{\xi, e_{1}, e_{2}}{\mathfrak{S}}\left(\nabla_{\xi} R\right)\left(e_{1}, e_{2}\right) e_{1}=0 \tag{3.18}
\end{equation*}
$$

Taking account of (3.4) and (3.7) with (3.9), (3.10), (3.12) and (3.13), we have

$$
\begin{align*}
& \left(\nabla_{\xi} R\right)\left(e_{1}, e_{2}\right) e_{1}=-\left(\frac{1}{2} \xi r+4 \lambda^{2} \nu\right) e_{2} \\
& \left(\nabla_{e_{1}} R\right)\left(e_{2}, \xi\right) e_{1}=-\left(e_{1}(\lambda \nu)+\mu e_{2} \lambda\right) \xi+\lambda(\lambda+1) \nu e_{2} \tag{3.19}\\
& \left(\nabla_{e_{2}} R\right)\left(\xi, e_{1}\right) e_{1}=\left(e_{2}(\lambda \mu)-2 \lambda e_{2} \lambda+\nu e_{1} \lambda\right) \xi+\lambda(\lambda-1) \nu e_{2}
\end{align*}
$$

Thus, from (3.18) and (3.19), we have

$$
\begin{equation*}
\xi r=-4 \lambda^{2} \nu \tag{3.20}
\end{equation*}
$$

From (3.10) and (3.13), we have also

$$
\begin{equation*}
\xi \kappa=-2 \lambda^{2} \nu \tag{3.21}
\end{equation*}
$$

Now, from (3.4), (3.9), (3.12) and (3.13), we obtain
(3.22)

$$
\begin{aligned}
& R\left(e_{1}, e_{2}\right) e_{1} \\
& =\nabla_{e_{1}}\left(\nabla_{e_{2}} e_{1}\right)-\nabla_{e_{2}}\left(\nabla_{e_{1}} e_{1}\right)-\nabla_{\left[e_{1}, e_{2}\right]} e_{1} \\
& =\left\{-\frac{1}{2} e_{1}\left(e_{1} \log \lambda\right)-\frac{1}{2} e_{2}\left(e_{2} \log \lambda\right)+\frac{1}{4}\left(e_{2} \log \lambda\right)^{2}+\frac{1}{4}\left(e_{1} \log \lambda\right)^{2}+\kappa+\mu\right\} e_{2} .
\end{aligned}
$$

On one hand, taking account of (2.5) and (3.4), we also obtain

$$
\begin{align*}
& -\frac{1}{2} \triangle \log \lambda \tag{3.23}\\
& =-\frac{1}{2}\left\{e_{1}\left(e_{1} \log \lambda\right)+e_{2}\left(e_{2} \log \lambda\right)+\xi(\xi \log \lambda)-\frac{1}{2}\left(e_{2} \log \lambda\right)^{2}-\frac{1}{2}\left(e_{1} \log \lambda\right)^{2}\right\}
\end{align*}
$$

Thus, from the first equality in (3.7), (3.22) and (3.23), we have

$$
\begin{equation*}
r=\triangle \log \lambda+2 \kappa-2 \mu-\xi \nu \tag{3.24}
\end{equation*}
$$

4 Proof of Theorem B

Let $M=(M, \phi, \xi, \eta, g)$ be a 3-dimensional compact (κ, μ, ν)-contact metric manifold with $\xi \mu=\xi \nu=0$ on M. Now, we assume that the open subset U of M on which $h \neq 0$, is not empty. We set

$$
\begin{align*}
& F_{\text {min }}=\{m \in M \mid \kappa \text { takes into minimum at } m\}, \\
& F_{\text {max }}=\{m \in M \mid \kappa \text { takes into maximum at } m\} . \tag{4.1}
\end{align*}
$$

Then, we may easily check that $F_{\min }$ and $F_{\max }$ are both non-empty closed (and hence, compact) subsets of M such that $F_{\min } \subset U$. And, we see that each integral curve of ξ is a geodesic in M. We denote by $\gamma(t)=\gamma(t ; m)$ the integral curve of ξ though $m \in U$ with the arc-length parameter t. Then, from (3.10) and hypothesis $\xi \nu=0$, we have

$$
\begin{equation*}
\lambda(t) \equiv \lambda(\gamma(t))=\lambda(m) e^{\nu(m) t} \tag{4.2}
\end{equation*}
$$

for $|t|<\epsilon$, where ϵ is a certain positive real number. From (3.13), (4.2), we see that $\kappa(t)=\kappa(\gamma(t))$ is given by

$$
\begin{equation*}
\kappa(t)=1-\lambda(m)^{2} e^{2 \nu(m) t} \tag{4.3}
\end{equation*}
$$

for $|t|<\epsilon$. Thus from (4.3), we see that, for each point $m \in U, \gamma(t) \in U$ for all $t \in \mathbb{R}$. Now, we suppose that there exists a point $m \in U$ with $\nu(m)>0$. Then, from (4.3), we have

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \kappa(t)=-\infty \tag{4.4}
\end{equation*}
$$

Similarly, if there exists a point $m \in U$ with $\nu(m)<0$. Then from (4.3), we have also

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} \kappa(t)=-\infty \tag{4.5}
\end{equation*}
$$

Since M is compact, we see that $\kappa(\leq 1)$ must bounded on M. But, from (4.4) and (4.5), this is a contradiction. Therefore, it follows that $\nu=0$ on U. Since V is Sasakian, it follows immediately $\nu=0$ on V. Since $U \cup V$ is an open and dense subset in M, we see that ν vanishes on M and hence, the (κ, μ, ν)-contact metric manifold M under consideration reduces to a generalized (κ, μ)-contact metric manifold with $\xi \mu=0$. Since $\nu=0$ on M, from (3.17), we have on U.

$$
\begin{equation*}
A_{1}=-\frac{1}{2} B_{1}, \quad A_{2}=\frac{1}{2} B_{2}, \tag{4.6}
\end{equation*}
$$

where $A_{1}=e_{1} \lambda, B_{1}=e_{1} \mu, A_{2}=e_{2} \lambda, B_{2}=e_{2} \mu$. From (3.4) and (3.5), we have

$$
\begin{equation*}
\left[e_{1}, \xi\right]=\left(\frac{\mu}{2}-\lambda-1\right) e_{2}, \quad\left[e_{2}, \xi\right]=-\left(\frac{\mu}{2}+\lambda-1\right) e_{1} \tag{4.7}
\end{equation*}
$$

Since $\nu=0$, from (3.10), we have also

$$
\begin{equation*}
\xi \lambda=0 . \tag{4.8}
\end{equation*}
$$

Thus, from (4.7), taking account of (4.6) and (4.8), we obtain

$$
\begin{equation*}
\xi A_{1}=\left(\lambda+1-\frac{\mu}{2}\right) A_{2}, \quad \xi A_{2}=\left(\lambda-1+\frac{\mu}{2}\right) A_{1} . \tag{4.9}
\end{equation*}
$$

Similarly, from (4.7), taking account of (4.6) and $\xi \mu=0$, we obtain

$$
\begin{equation*}
\xi A_{1}=-\left(\lambda+1-\frac{\mu}{2}\right) A_{2}, \quad \xi A_{2}=-\left(\lambda-1+\frac{\mu}{2}\right) A_{1} . \tag{4.10}
\end{equation*}
$$

Thus, from (4.9) and (4.10), we have

$$
\begin{align*}
& \left(\lambda+1-\frac{\mu}{2}\right) A_{2}=0 . \tag{4.11}\\
& \left(\lambda-1+\frac{\mu}{2}\right) A_{1}=0 . \tag{4.12}
\end{align*}
$$

Lemma 4.1. $A_{1}=0$ or $A_{2}=0$ at each point of U.
Proof. We assume that $A_{1} \neq 0$ and $A_{2} \neq 0$ at some point $m \in U$. Then, from (4.11) and (4.12), it follows that $\lambda+1-\frac{\mu}{2}=0$ and $\lambda-1+\frac{\mu}{2}=0$ at the point m, and hence, $\lambda=0$ at m. But, this is a contradiction.

Now, we define subsets $F_{1}, F_{2}, G_{1}, G_{2}$ and F of U by

$$
\begin{aligned}
& G_{1}=\left\{m \in U \mid A_{1} \neq 0\left(\text { i.e. } A_{2}=0\right) \text { at } m\right\}, \\
& G_{2}=\left\{m \in U \mid A_{2} \neq 0\left(\text { i.e. } A_{1}=0\right) \text { at } m\right\}, \\
& F_{1}=\left\{m \in U \left\lvert\, \lambda-1+\frac{\mu}{2}=0\right. \text { at } m\right\}, \\
& F_{2}=\left\{m \in U \left\lvert\, \lambda+1-\frac{\mu}{2}=0\right. \text { at } m\right\}, \\
& \left.F=\left\{m \in U \mid A_{1}=A_{2}=0 \text { (i.e. } B_{1}=B_{2}=0\right) \text { at } m\right\} .
\end{aligned}
$$

Then, taking account of (4.11) and (4.12) and Lemma 4.1, we have the following relations.

$$
\begin{align*}
& G_{1} \subset F_{1}, G_{2} \subset F_{2}, F_{1} \cap F_{2}=\varnothing, \text { and } \tag{4.13}\\
& U=G_{1} \cup G_{2} \cup F=F_{1} \cup F_{2} \text { (disjoint union). }
\end{align*}
$$

We have denoted by $F_{(i)}$ the interior of F in U. Then, taking account of (4.9), we may observe that, if $F_{(i)} \neq \varnothing$, then λ (and hence, κ) is constant on $F_{(i)}$. From (4.13), we see that $G_{1} \cup G_{2} \cup F_{(i)}$ is an open and dense subset in U. First, we assume that the inequality $r+\frac{\mu^{2}}{2} \geq 0$ holds on M. If $G_{1} \neq \varnothing$, then from (3.24), taking account of (4.12), we have

$$
\begin{equation*}
\triangle \log \lambda=r-2\left(1-\lambda^{2}\right)-4(\lambda-1)=r+2(\lambda-1)^{2}=r+\frac{\mu^{2}}{2} \geq 0 \tag{4.14}
\end{equation*}
$$

on G_{1}. Similarly, if $G_{2} \neq \varnothing$, then, from (3.24), taking account of (4.11), we have

$$
\begin{equation*}
\triangle \log \lambda=r-2\left(1-\lambda^{2}\right)+4(\lambda+1)=r+2(\lambda+1)^{2}=r+\frac{\mu^{2}}{2} \geq 0 \tag{4.15}
\end{equation*}
$$

on G_{2}. Therefore, we have the following inequality

$$
\begin{equation*}
\triangle \log \lambda \geq 0 \tag{4.16}
\end{equation*}
$$

on $G_{1} \cup G_{2}$. By direct calculation, we get

$$
\begin{equation*}
\triangle \log \lambda=-\frac{1}{\lambda^{2}}|\operatorname{grad} \lambda|^{2}+\frac{1}{\lambda} \triangle \lambda \tag{4.17}
\end{equation*}
$$

on $G_{1} \cup G_{2}$. Further, since $\kappa=1-\lambda^{2}$ on U, we get also

$$
\begin{equation*}
\triangle \kappa=-2|\operatorname{grad\lambda }|^{2}-2 \lambda \triangle \lambda \tag{4.18}
\end{equation*}
$$

on $G_{1} \cup G_{2}$. Thus, from (4.17) and (4.18), we have

$$
\begin{equation*}
\triangle \kappa=-4|\operatorname{g} \operatorname{rad} \lambda|^{2}-2 \lambda^{2} \triangle \log \lambda \leq 0 \tag{4.19}
\end{equation*}
$$

on $G_{1} \cup G_{2}$. On the other hand, $\kappa=$ const on $F_{(i)}$. Since $G_{1} \cup G_{2} \cup F_{(i)}$ is an open and everywhere dense subset of U, from (4.19), we have the inequality $\Delta \kappa \leq 0$ on U. If $V \neq \varnothing, V$ is Sasakian (and has $\kappa=1$ on V), since $\kappa=1$ on V, it is evident that $\triangle \kappa=0$ holds on V. Since $U \cup V$ is open and everywhere dense in M, we see finally that

$$
\begin{equation*}
\triangle \kappa \leq 0 \tag{4.20}
\end{equation*}
$$

holds on M. On the other hand, the function κ takes its minimum on the non-empty subset $F_{\text {min }}$. Therefore, by Hopf's theorem, we see that κ is constant on M, and hence, μ is also constant on M. Next, we assume that the inequality $r+\frac{\mu^{2}}{2} \leq 0$ holds everywhere on M. Then, applying the similar arguments as in the previous case where $r+\frac{\mu^{2}}{2} \geq 0$, we have $\Delta \kappa \geq 0$ holds on M. Since the function κ takes its maximum on the non-empty subset $F_{\max }$. Therefore, by Hopf's theorem, we see also that κ and μ are both constant on M.

As the result, we see that M is a non-Sasakian (κ, μ)-contact metric manifold with $\kappa=\mu-\frac{\mu^{2}}{4}$ and hence $r=-\frac{\mu^{2}}{2}$ by virtue of (3.24) if $U \neq \varnothing$. On the other hand, it is evident that M is Sasakian $(\kappa=1$ and $\mu=\nu=0)$ if $U=\varnothing$. This completes the proof of Theorem B.

5 Examples

In this section, we shall provide an example of the 3-dimensional Sasakian manifold $M=(M, \phi, \xi, \eta, g)$ with non-constant coefficient functions α and β in the defining equation (1.5) of an η-Einstein manifold are both non-constant (see Example 1), and also an example of the 3 -dimensional generalized (κ, μ)-contact metric manifold which illustrates as well as supports Theorem B (see Example 2). Example 1 below is a special case of the example introduced in Blair's book [1].
Example 1 Let $M=\mathbb{R}^{3}$ and set

$$
\begin{equation*}
\xi=2 \frac{\partial}{\partial z}, \quad e_{1}=2 \frac{\partial}{\partial y}, \quad e_{2}=2\left(\frac{\partial}{\partial x}-y^{2} \frac{\partial}{\partial y}+y \frac{\partial}{\partial z}\right) \tag{5.1}
\end{equation*}
$$

Let η be the 1-form dual to ξ, and define (1,1)-tenser field ϕ by $\phi \xi=0, \phi e_{1}=e_{2}$ and $\phi e_{2}=-e_{1}$. Further, let g be the Riemannian metric defined by $g(\xi, \xi)=1, g\left(\xi, e_{i}\right)=0$ and $g\left(e_{i}, e_{i}\right)=\delta_{i j}$ for $1 \leq i, j \leq 2$. Then, by direct calculation, we may check that (M, ϕ, ξ, η, g) is a 3 -dimensional Sasakian manifold and the Ricci transformation Q is given by

$$
\begin{equation*}
Q=-\left(2+24 y^{2}\right) I+\left(4+24 y^{2}\right) \eta \otimes \xi \tag{5.2}
\end{equation*}
$$

on M. Therefore, from (5.2), we see that the 3-dimensional Sasakian manifold M provides an explicit example of the η-Einstein manifold with non-constant coefficient functions α and β in (1.5) which is mentioned in $\S 2$.

The following example which is constructed by Koufogiorgos and Tsichlias [11], which illustrates Theorem B.
Example 2 Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$ and set

$$
\begin{equation*}
\xi=\frac{\partial}{\partial x}, \quad e_{1}=-2 y \frac{\partial}{\partial x}+\left(2 \sqrt{z} x-\frac{1}{4 z} y\right) \frac{\partial}{\partial y}+\frac{\partial}{\partial z}, \quad e_{2}=\frac{\partial}{\partial y} . \tag{5.3}
\end{equation*}
$$

Let η be the 1 -form dual to ξ, and define (1,1)-tenser field ϕ by $\phi \xi=0, \phi e_{1}=e_{2}$ and $\phi e_{2}=-e_{1}$. Further, let g be the Riemannian metric defined by $g(\xi, \xi)=1, g\left(\xi, e_{i}\right)=0$ and $g\left(e_{i}, e_{i}\right)=\delta_{i j}$ for $1 \leq i, j \leq 2$. Then, by direct calculation, we may check that (M, ϕ, ξ, η, g) is a 3 -dimensional generalized (κ, μ, ν)-contact metric manifold with $\kappa=1-z, \mu=2(1-\sqrt{z})($ and $\nu=0)$ and $r+\frac{\mu^{2}}{2}=-\frac{5}{8 z^{2}}<0$ on M.

Thus, Example 2 shows that the compactness assumption in Theorem B plays an essential role.

It is well-known that a 3-dimensional Lie group G admits a discrete subgroup Γ such that the space of right cosets $\Gamma \backslash G$ is compact if and only if G is unimodular [13]. Let G be one of the following simply connected unimodular Lie groups: $\tilde{E}(2), \quad E(1,1)$. Then, from the proof of the Theorem B and $([2, \S 4],[15])$, we may check that $M=\Gamma \backslash G$ with a suitable discrete subgroup Γ of G, provides an example illustrating Theorem B for non-Sasakian case. Acknowledgement. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0012987).

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progress in Math. 203 (2002), Birkhäuser, Boston.
[2] D. E. Blair, T. Koufogiorgos, and V. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.
[3] D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q \varphi=\varphi Q$, Kodai Math. J. 13 (1990), 391-401.
[4] B. Cappelletti Montano and L.Di Terlizzi, Geometric structures associated to a contact metric (κ, μ)-space, Pacific J. Math. 246 (2010), 257-292.
[5] A. Carriazo and V. Martin-Molina, Generalized (κ, μ)-space forms and D_{a} homothetic deformations, Balkan J. Geom. Appl. 16 (2011), 37-47.
[6] S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles of Einstein manifolds, Quart. J. Math. 62 (2011), 59-69.
[7] S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles of four-dimensional Riemannian manifolds, J. Aust. Math. Soc. 91 (2011), 243256.
[8] J. E. Jin, J. H. Park, and K. Sekigawa, Remarks on 3-dimensional contact metric manifolds, to appear Adv. Studies Contemp. Math. 22 (2012), 161-171.
[9] R. Al-Ghefari, F. R. Al-Solamy and M. H. Shahid, Contact CR-warped product submanifolds in generalized Sasakian space forms, Balkan J. Geom. Appl., 11 (2006), 1-10.
[10] T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector field on contact metric 3-manifolds, Pacific J. Math. 234 (2008), 325-344.
[11] T. Koufogiorgos and C. Tsichlias, Generalized (κ, μ)-contact metric manifolds with $\xi \mu=0$, Tokyo. J. Math. 31 (2008), 39-57.
[12] T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), 440-447.
[13] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329.
[14] J. H. Park and K. Sekigawa, When are the tangent sphere bundles of a Riemannian manifold eta-Einstein? Ann. Glob. Anal. Geom. 36 (2009), 275-284.
[15] D. Perrone, Harmonic characteristic vector fields on contact metric manifolds, Bull. Austral. Math. Soc. 67 (2003), 305-315.
[16] D. Perrone, Ricci tensor and spectral rigidity of contact Riemannian threemanifolds, Bull. Inst. Math. Acad. Sinica. 24 (1996), 127-138.
[17] D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J. 13 (1990), 88-100.
[18] A. A. Shaikh, K. Arslan, C. Murathan and K. K. Baishya On 3-dimensional generalized (κ, μ)-contact metric manifolds, Balkan J. Geom. Appl. 12, 1 (2007), 122-134.
[19] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379.
[20] L. Di Terlizzi, On the curvature of a generalization of contact metric manifolds, Acta Math. Hungar. 110, 3 (2006), 225-239.
[21] W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347.

Authors' addresses:
Jieun Jin
Department of Mathematics, Sungkyunkwan Universitty Suwon 440-746, Korea.
E-mail: yosulbong@skku.edu
JeongHyeong Park
Department of Mathematics, Sungkyunkwan Universitty Suwon 440-746, Korea, and School of Mathematics Korea Institute for Advanced Study, Seoul 130-722, Korea. E-mail: parkj@skku.edu

Kouei Sekigawa
Department of Mathematics, Niigata University, Niigata 950-2181, Japan.
E-mail: sekigawa@math.sc.niigata-u.ac.jp

