
The characterization of eigenfunctions

for Laplacian operators

Xiang Gao

Abstract. In this paper, we consider the characterization of eigenfunc-
tions for Laplacian operators on some Riemannian manifolds. Firstly we
prove that for the space form (Mn

K , gK) with the constant sectional curva-
ture K, the first eigenvalue of Laplacian operator λ1 (Mn

K) is greater than
the limit of the first Dirichlet eigenvalue of Laplacian operator λD

1 (BK (p, r)).
Based on this, we then present a characterization of the Ricci soliton being
an n-dim space form by the eigenfunctions corresponding to the first eigen-
value of Laplacian operator, which gives a generalization of an interesting
result by Cheng in [3] from 2-dim to n-dim. Moreover, this result also
gives a partly proof of a conjecture by Hamilton that a compact gradient
shrinking Ricci soliton with positive curvature operator must be Einstein.
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1 Introduction and main results

Suppose that (Mn, g) is an n-dim C∞ complete Riemannian manifold, and let ∆ de-
note the Laplacian operator. If the manifold is compact, it is well known that the
eigenvalue problem −∆ϕ = λϕ has discrete eigenvalues, and we list them as

0 = λ0 (Mn) < λ1 (Mn) ≤ λ2 (Mn) ≤ · · · .

We call λi (Mn) the ith eigenvalue and call a function satisfying ∆ϕ = −λiϕ an ith
eigenfunction.

Recall that the first eigenvalue λ1 (Mn) for the closed Riemannian manifold Mn

is defined as follows:

(1.1) λ1 (Mn) = inf
f∈Ω

∫
Mn |∇f |2 dµ∫

Mn f2dµ
,
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where Ω is the completing Hilbert space of

Ω0 =
{

f ∈ C∞ (Mn)
∣∣∣∣
∫

Mn

fdµ = 0
}

under the norm
‖f‖21 =

∫

Mn

f2dµ +
∫

Mn

|∇f |2 dµ.

For the first eigenvalue λ1 (Mn) for closed Riemannian manifolds, we have the
following famous theorem For the first eigenvalue λ1 (Mn) for closed Riemannian
manifolds, we have the following famous theorem in [4]:

Theorem 1.1 (Lichnerowicz-Obata). Let (Mn, g) be a closed Riemannian mani-
fold satisfying Rc ≥ (n− 1)K > 0. Then

λ1 (Mn) ≥ nK,

and the equality holds iff (Mn, g) is isometric to the space form (Mn
K , gK) with con-

stant sectional curvature K and the eigenfunction

f (x) = A cos
(√

Kr
)

+ B sin
(√

Kr
)

,

where r = d (p, x).

On the other hand, we denote the open geodesic ball with center p and radius r
by B (p, r), and let BK(p, r) denote the geodesic ball with radius r in the n-dim simply
connected space form (Mn

K , gK) with constant sectional curvature K. Then the first
Dirichlet eigenvalue λD

1 (B (p, r)) of B (p, r) can be denoted as:

(1.2) λD
1 (B (p, r)) = inf

f∈H2
0 (B(p,r))

∫
B(p,r)

|∇f |2 dµ∫
B(p,r)

f2dµ
,

where H2
0 (B (p, r)) is the completing Hilbert space of C∞0 (B (p, r)) under the norm

‖f‖21 =
∫

B(p,r)

f2dµ +
∫

B(p,r)

|∇f |2 dµ.

For λD
1 (B (p, r)) we have the following famous theorem in [2]:

Theorem 1.2 (Cheng). Let (Mn, g) be a complete Riemannian manifold satisfy-
ing Rc ≥ (n− 1) K. Then

λD
1 (B (p, r)) ≤ λD

1 (BK(p, r))

and the equality holds iff B (p, r) is isometric to BK(p, r).

Moreover by using Theorem 1.2 we have the following corollary:

Corollary 1.3 (Cheng). Let (Mn, g) be a compact Riemannian manifold satisfy-
ing Rc ≥ 0. Then

λ1 (Mn) ≤ λD
1

(
B

(
p,

dMn

2

))
≤ Cn

d2
Mn

,

where Cn = 2n (n + 4) and dMn is the diameter of Mn.
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In this paper, by using Theorem 1.1 and 1.2 we firstly prove a useful result, which
is one of the main results as follows:

Theorem 1.4. Let (Mn
K , gK) be a space form with constant sectional curvature K, and

λD
1 (Mn

K) denote the first Dirichlet eigenvalue of Mn
K which is defined by

λD
1 (Mn

K) = lim
r→ π√

K

λD
1 (BK (p, r)) ,

where λD
1 (BK (p, r)) is the first Dirichlet eigenvalue of Laplacian operator of BK (p, r),

then

(1.3) λD
1 (Mn

K) = lim
r→ π√

K

λD
1 (BK (p, r)) ≤ λ1 (Mn

K) ≤ λD
1

(
BK

(
p,

dMn
K

2

))
.

One of the basic problems in Riemannian geometry is to relate curvature and
topology, in [1] Böhm and Wilking prove that n-dimensional closed Riemannian
manifolds with 2-positive curvature operators are diffeomorphic to spherical space
forms, i.e., they admit metrics with constant positive sectional curvature. Moreover it
is a well-known theorem of Tachibana in [7] that any compact Einstein manifold with
positive sectional curvature must be of constant curvature. Since Einstein manifolds
are special Ricci solitons with constant potential functions, hence, inspired by his own
work in [5] and [6], Hamilton made the following conjecture:

Conjecture 1.5 (Hamilton). A compact gradient shrinking Ricci soliton with pos-
itive curvature operator must be Einstein.

Recall that the definition of the gradient Ricci soliton is as follows:

Definition 1.1. A complete Riemannian manifold (Mn, g) is called a gradient Ricci
soliton if there is a smooth function f : Mn → R, such that

Rc +∇∇f +
ε

2
g = 0,

where Rc is the Ricci curvature tensor and ε is a real number. Moreover
(i) If ε < 0, it is called a shrinking gradient Ricci soliton;
(ii) If ε = 0, it is called a steady one;
(iii) If ε > 0, it is called an expanding one.

For the compact gradient Ricci soliton, Hamilton proved the following fact:

Theorem 1.6 (Hamilton). A compact gradient steady or expanding Ricci soliton
must be Einstein.

On the other hand, for the special case S2, in [3] Cheng derived an interesting result
by using the approach of tensor analysis and Gauss-Bonnet Theorem as follows:

Theorem 1.7 (Cheng). Suppose that M2 is homeomorphic to S2 and ϕ1, ϕ2 and ϕ3

are three first eigenfunctions such that their square sum is a constant. Then M2 is
actually isometric to a sphere with constant sectional curvature.



The characterization of eigenfunctions 49

Thus for the manifolds with dim ≥ 3, it is natural to ask the following question:

Problem 1.2. Is Theorem 1.7 also true when dim ≥ 3 ?

Although the general answer is hard, recall that each manifold with dim = 2 is
actually an Einstein manifold, which is a special Ricci soliton with the constant po-
tential function. Based on this observation, we will give an affirmative answer for the
special case of Ricci solitons. In fact, we present a characterization of a Ricci soliton
being an n-dim space form by the first eigenfunctions of Laplacian operator, which
also gives a partly proof of Conjecture 1.5 of Hamilton as follows:

Theorem 1.8. Let (Mn, g) be a compact gradient Ricci soliton with positve Ricci
curvature, and suppose that there exists a geodesic ball B (p, r) with center p and radius
r such that the eigenfunctions {ϕi}m

i=1 corresponding to the first Dirichlet eigenvalue of
Laplacian operator λD

1 (B (p, r)) satisfy
∑
i

ϕ2
i ≡ C, where C is a nonzero constant. Let

µ = inf {λ ∈ R |∇∇f ≤ λg } ,

then
(i) (Mn, g) is a shrinking Ricci soliton,
(ii) (Mn, g) is locally isometric to the space form Mn

K with constant sectional curva-
ture K = −µ+ ε

2
n−1 .

The paper is organized as follows: In section 2, we prove Theorem 1.4. In section
3, we present the proof of Theorem 1.8 by using the approach of tensor analysis and
Theorem 1.1, 1.2 and 1.4.

2 Proof of Theorem 1.4

Proof of Theorem 1.4. Firstly let points p, q ∈ Mn
K such that d (p, q) = dMn

K
, then

we consider the geodesic balls BK

(
p,

dMn
K

2

)
and BK

(
q,

dMn
K

2

)
in the n-dim simply

connected space form Mn
K . We denote u and v as the first Dirichlet eigenfunctions of

Laplacian operator corresponding to BK

(
p,

dMn
K

2

)
and BK

(
q,

dMn
K

2

)
, and define the

following two functions:

ũ (x) =





u (x) , x ∈ BK

(
p,

dMn
K

2

)

0, x ∈ Mn
K\BK

(
p,

dMn
K

2

)

and

ṽ (x) =





v (x) , x ∈ BK

(
q,

dMn
K

2

)

0, x ∈ Mn
K\BK

(
q,

dMn
K

2

)
.

Thus

(2.1)

∫
Mn

K
|∇ũ|2 dµ

∫
Mn

K
ũ2dµ

=

∫
BK

(
p,

dMn
K

2

) |∇u|2 dµ

∫
BK

(
p,

dMn
K

2

) u2dµ
= λD

1

(
BK

(
p,

dMn
K

2

))
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and

(2.2)

∫
Mn

K
|∇ṽ|2 dµ

∫
Mn

K
ṽ2dµ

=

∫
BK

(
q,

dMn
K

2

) |∇u|2 dµ

∫
BK

(
q,

dMn
K

2

) u2dµ
= λD

1

(
BK

(
q,

dMn
K

2

))
.

Then we choose a constant C such that
∫

Mn
K

(ũ + Cṽ) dµ = 0,

and by the definition of the first eigenvalue of Laplacian operator λ1 (Mn
K) we have

λ1 (Mn
K) ≤

∫
Mn

K
|∇ (ũ + Cṽ)|2 dµ

∫
Mn

K
(ũ + Cṽ)2 dµ

.

Since Mn
K is a space form with diameter dMn

K
, we have

λD
1

(
BK

(
p,

dMn
K

2

))
= λD

1

(
BK

(
q,

dMn
K

2

))

and

V ol

(
BK

(
p,

dMn
K

2

)
∩BK

(
q,

dMn
K

2

))
= 0.

Thus

λ1 (Mn
K) ≤

∫
Mn

K
|∇ (ũ + Cṽ)|2 dµ

∫
Mn

K
(ũ + Cṽ)2 dµ

=

∫
Mn

K
|∇ũ|2 dµ + C2

∫
Mn

K
|∇ṽ|2 dµ

∫
Mn

K
ũ2dµ + C2

∫
Mn

K
ṽ2dµ

= λD
1

(
BK

(
p,

dMn
K

2

))

= λD
1

(
BK

(
q,

dMn
K

2

))
,

for the last two equalities we use (2.1) and (2.2).
For the other inequality, since the metric of space form Mn

K has the form

gMn
K

= dr2 + sK (r) gSn−1 ,

and by Theorem 1.1 we can choose the function

ϕ (x) = A cos
(√

Kr
)

+ B sin
(√

Kr
)

where r = d (p, x) such that
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λ1 (Mn
K) =

∫
Mn

K
|∇ϕ|2 dµ

∫
Mn

K
ϕ2dµ

=

∫ π√
K

0 |∇ϕ (r)|2 sK (r)n−1
dr

∫
Sn−1 dµSn−1

∫ π√
K

0 ϕ (r)2 sK (r)n−1
dr

∫
Sn−1 dµSn−1

=
∫ π√

K

0 |∇ϕ (r)|2 sK (r)n−1
dr

∫ π√
K

0 ϕ (r)2 sK (r)n−1
dr

= lim
s→ π√

K

∫ s

0
|∇ϕ (r)|2 sK (r)n−1

dr∫ s

0
ϕ (r)2 sK (r)n−1

dr
,

where we use Mn
K is a space form with diameter dMn

K
. Then we define a function ϕs ∈

H2
0 (BK (p, s)) such that ϕs (x) = ϕ (x) for any x ∈ BK (p, s). Then by the definition

of the first Dirichlet eigenvalue λD
1 (BK (p, s)) it follows that

∫ s

0
|∇ϕ (r)|2 sK (r)n−1

dr∫ s

0
ϕ (r)2 sK (r)n−1

dr
=

∫ s

0
|∇ϕ (r)|2 sK (r)n−1

dr
∫

Sn−1 dµSn−1∫ s

0
ϕ (r)2 sK (r)n−1

dr
∫

Sn−1 dµSn−1

=

∫
BK(p,s)

|∇ϕs|2 dµ∫
BK(p,s)

ϕ2
sdµ

≥ λD
1 (BK (p, s)) .

Consequently

λ1 (Mn
K) = lim

s→ π√
K

∫ s

0
|∇ϕ (r)|2 sK (r)n−1

dr∫ s

0
ϕ (r)2 sK (r)n−1

dr
≥ lim

s→ π√
K

λD
1 (BK (p, s)) = λD

1 (Mn
K) .

¤

3 Proof of the main result

By using Theorem 1.1, 1.2 and 1.4, we now turn to prove our main result Theorem
1.8.

Proof of Theorem 1.8. (i) If (Mn, g) is steady or expanding Ricci soliton, which sat-
isfies

Rc +∇∇f +
ε

2
g = 0

such that ε ≥ 0, then by using Theorem 1.6 we have (Mn, g) is an Einstein manifold
and the Ricci potential function f is a constant. Thus

Rc = −ε

2
g ≤ 0,

which leads a contradiction to the positive Ricci curvature.



52 Xiang Gao

(ii) Note that the assumption of Theorem 1.8 says that




∆ϕi + λD
1 (B (p, r))ϕi = 0, i = 1, · · · ,m

∑
i

ϕ2
i ≡ C,

thus

0 = ∆

(∑

i

ϕ2
i

)

=
∑

i

2 |∇ϕi|2 +2
∑

i

ϕi∆ϕi

=
∑

i

2 |∇ϕi|2 − 2λD
1 (B (p, r))

∑

i

ϕ2
i ,

which implies

(3.1)
∑

i

|∇ϕi|2 = CλD
1 (B (p, r)) .

Recall that the Bochner formula (see [4]) says that

∆ |∇f |2 = 2 |∇∇f |2 + 2 〈∇f,∇∆f〉+ 2Rc (∇f,∇f) ,

where Rc denotes the Ricci curvature and ∇f is the vector field. Taking Laplacian of
both sides of (3.1) we have

0 =
∑

i

∆ |∇ϕi|2 = 2
∑

i

|∇∇ϕi|2 + 2
∑

i

〈∇ϕi,∇∆ϕi〉+ 2
∑

i

Rc (∇ϕi,∇ϕi)

= 2
∑

i

|∇∇ϕi|2 − 2λD
1 (B (p, r))2

∑

i

ϕ2
i + 2

∑

i

Rc (∇ϕi,∇ϕi)

= 2
∑

i

|∇∇ϕi| 2 − 2λD
1 (B (p, r))2

∑

i

ϕ2
i − 2

∑

i

∇∇f (∇ϕi,∇ϕi)− ε
∑

i

|∇ϕi| 2

≥ 2
∑

i

|∇∇ϕi| 2 − 2λD
1 (B (p, r))2

∑

i

ϕ2
i − 2µ

∑

i

|∇ϕi| 2 − ε
∑

i

|∇ϕi| 2

≥ 2
n

∑

i

|∆ϕi| 2 − 2λD
1 (B (p, r))2

∑

i

ϕ2
i − 2µ

∑

i

|∇ϕi| 2 − ε
∑

i

|∇ϕi| 2

= −2
(

1− 1
n

)
λD

1 (B (p, r))2 C − 2
(
µ +

ε

2

)
λD

1 (B (p, r))C.

Since C > 0 we have

λD
1 (B (p, r)) ≥ − 1(

1− 1
n

)
(
µ +

ε

2

)
.

For the space form with constant sectional curvature K = −µ+ ε
2

n−1 , we have

Rc = −(µ +
ε

2
)g.
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Then by using Theorem 1.1 and 1.4 we have

λD
1 (BK(p, r)) ≤ λ1 (Mn

K) = − 1(
1− 1

n

)
(
µ +

ε

2

)
,

where λ1 (Mn
K) is the first eigenvalue of Laplacian operator for the space form Mn

K . This
implies

(3.2) λD
1 (B (p, r)) ≥ λD

1 (BK(p, r)) .

On the other hand, by the definition of µ we have

Rc = −
(
∇∇f +

ε

2
g
)
≥ −

(
µ +

ε

2

)
g = (n− 1)

(
−µ + ε

2

n− 1

)
,

and by Theorem 1.2, it follows that

(3.3) λD
1 (B (p, r)) ≤ λD

1 (BK (p, r)) ,

where K = −µ+ ε
2

n−1 .
Then by (3.2) and (3.3) we derive that

(3.4) λD
1 (B (p, r)) = λD

1 (BK (p, r)) ,

thus by using the equality condition in Theorem 1.2, we complete the proof. ¤
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