
A study of the multitime evolution equation with

time-nonlocal conditions

A. Benrabah, F. Rebbani and N. Boussetila

Abstract. The aim of this paper is to prove existence, uniqueness, and
continuous dependence upon the data of solutions to the multitime evo-
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1 Introduction

The classical time-dependent partial differential equations (PDEs) of mathematical
physics involve evolution in one-dimensional time. Space can be multidimensional, but
time stayed one dimensional until 1932, then the adjective multitime was introduced
for the first time in physics by Dirac (1932) where he considered the multitime wave
functions via m-time evolution equation and later it was used in mathematics.
Multitime evolution equation arise for example in Brownian motion [1], Transport the-
ory (Fokker-plank-type equations ), biology (age structured population dynamics)[18],
wave and maxell’s equations [3], [17], mechanics, physics and cosmology([24], [31]).

The important step in the theoretical study of multidimensional time problems
was made by Friedman and Littman ([13], [20]) where they have proved the ex-
istence and uniqueness of the following mixed problem with two-dimensional time
ut1,t2 − Lu = F (x, t), u |t1=0= u |t2=0= u |x∈∂D, where L is a second order elliptic
self-adjoint differential operator. The further development of the theory was elabo-
rated in the series of papers by Brish and Yurchuk ([4], [5], [6]) and Rebbani, Zouyed
and Boussetila ([22], [35], [23]) for the Mixed and Goursat problems, hyperbolic equa-
tions and recently by (Rebbani, Zouyed and Boussetila) for the multitime evolution
equations with nonlocal initial conditions, all these works were studied by the energy
inequality method. In [11], Dezin showed for the first time that, for the description
of all solvable extensions of differential operators generated by a general differential
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equation with constant coefficients, one should use not only local but also nonlocal
conditions.

The problems with nonlocal conditions in the time variable for some classes
of PDEs depending on one time variable have attracted much interest in recent
years, and have been studied extensively by many authors, see for instance [21],
[25], Fardigola,[12], Chesalin and Yurchuk [7], [8], [9] Gordeziani and Avalishvili [15],
[16], and Shakhmurov and al. [26]. However, the case of multitime equations with
time-nonlocal conditions does not seem to have been widely investigated and few re-
sults are available, see, e.g., the articles by the authors Rebbani and al [22, 23, 35].
In the present paper, we consider time-nonlocal problems for a class of multitime
evolution equations, and we will apply the same technic used in [35]. We will prove
the existence and the uniqueness of the strong solution, this results are proved by the
energy inequality method.

2 Assumptions and statement of the problem

Throughout this paper H will represent a complex Hilbert space, endowed with the
inner product (., .) and the norm |.|, and L(H) denote the Banach algebra of bounded
linear operators on H. Let T1, T2 > 0, Ω = ]0, T1[× ]0, T2[ = Q1 ×Q2 be a bounded
rectangle in the plane R2 . We consider the following problem: Given the data f ,ϕ, ψ
and H, find a function u(t1, t2) satisfying the multitime evolution equation

(2.1) Lu ≡ ∂2u

∂t1∂t2
+ B

[
∂u

∂t1
+

∂u

∂t2

]
+ A(t)u = f(t), t ∈ Ω,

(2.2)
`λ1u ≡ u |t1=0 − λ1u |t1=T1 = ϕ(t2), t2 ∈ Q2,

`λ2u ≡ u |t2=0 − λ2u |t2=T2 = ψ(t1), t1 ∈ Q1,

where u and f are H-valued functions on Ω, ϕ (resp. ψ) is H-valued function on Q2

(resp. Q1) and satisfy the compatibility condition

(2.3) ϕ(0)− λ2ϕ(T2) = ψ(0)− λ1ψ(T1),

λ1 and λ2 are two complex parameters, A(t) is an unbounded linear operator in H,
with domain of definition D(A) densely defined and independent of t and B ∈ L(H).
We require the following assumptions
1. The operator A(t) is self-adjoint for every t ∈ Ω and verifies

(2.4) (A(t)u, u) ≥ c0 |u|2 , ∀u ∈ D(A),

(2.5) A(0, t2) = A(T1, t2), t2 ∈ Q2,

(2.6) A(t1, 0) = A(t1, T2), t1 ∈ Q1.

where c0 is a positive constant not depending on u and t.
2. λi 6= 0 (i = 1, 2) such that,

(2.7) αi = |λi|2 exp(3C(T1 + T2)) < 1,

where C is a positive constant depending on B, A(t) and its derivatives and λ1, λ2

are tow complex parameters belonging to M, (C, M will be defined later).
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3 Spaces and auxiliary inequalities

3.1 Abstract formulation

Let us reformulate problem ((2.1)− (2.2) = P) as the problem of solving the operator
equation

(3.1) Lu = F = (f, ϕ, ψ),

where L = (L, `λ1 , `λ2) is generated by (P), with domain of definition D(L), the
operator L is considered from the Banach space E into the Hilbert space F, which
will be defined later. For this operator we establish an energy inequality

(3.2) ‖u‖E ≤ k‖Lu‖F.
If the operator L is closable then we denote by L the closure of L and by D(L) its
domain.

Definition 3.1. A solution of the abstract equation Lu = F is called a strongly
generalized solution of problem (P).

Inequality (3.2) can be extended to u ∈ D(L), that is,

(3.3) ‖u‖E ≤ k‖Lu‖F, ∀u ∈ D(L).

From this inequality, we obtain the uniqueness of a strong solution, if it exists, and
the equality of the sets R(L) and R(L). Thus, to prove the existence of a strong
solution for any F ∈ F, it remains to prove that the set R(L) is dense in F.

3.2 Function spaces

In this subsection, we introduce and study certain fundamental function spaces. For
this purpose, let us denote by W r = D(Ar(0)), 0 ≤ r ≤ 1, the space W r endowed
with the inner product (x, y)r = (Ar(0)x,Ar(0)x) and the norm |x|r = |Ar(0)x| is a
Hilbert space. We show that the operator A(t) (resp. A

1
2 (t)) is bounded from W 1

(resp. W
1
2 ) into H, i.e., A(t) (resp. A

1
2 (t)) ∈ L(W 1; H) (resp. L(W

1
2 ;H)) (see [19]).

Thus, we have the following results

Proposition 3.1. [6] If the function Ω 3 t 7−→ A(t) ∈ L(W 1; H) is continuous with
respect to the topology of L(W 1; H), then there exist positive constants c1 and c2 such
that

(3.4) c1|u|1 ≤ |A(t)u| ≤ c2|u|1, ∀u ∈ W 1,

(3.5)
√

c1 |u| 1
2
≤ |A 1

2 (t)u| ≤ √
c2 |u| 1

2
, ∀u ∈ W

1
2 .

Lemma 3.2. If the function Ω 3 t 7−→ A(t) ∈ L(W 1; H) admits bounded derivatives
with respect to t1 and t2 with respect to the simple topology in L(W 1; H), then we
have the estimates

(3.6)

∥∥∥∥∥
∂A(t)

1
2

∂ti
A(t)−

1
2

∥∥∥∥∥
L(H)

≤ δ

∥∥∥∥
∂A(t)
∂ti

A(t)−1

∥∥∥∥
L(H)

, (i = 1, 2),
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where δ =
∫∞
0

√
s

(1 + s)2
ds. (see [19], Lemma 1.9, p. 186).

Proposition 3.3. The operators
∂A(t)
∂ti

A(t)−1 ,
∂A(t)

1
2

∂ti
A(t)−

1
2 are uniformly bounded,

i.e.,
∂A(t)
∂ti

A(t)−1 ,
∂A(t)

1
2

∂ti
A(t)−

1
2 ∈ L∞(Ω;L(H)), (i = 1, 2).

To show the estimate (3.2) we introduce the following spaces
H1,1(Ω;W 1) is the space obtained by completing C∞(Ω; W 1) with respect to the norm

‖u‖21,1 =
∫

Ω

(∣∣∣∣
∂2u

∂t1∂t2

∣∣∣∣
2

1

+
∣∣∣∣
∂u

∂t1

∣∣∣∣
2

1

+
∣∣∣∣
∂u

∂t2

∣∣∣∣
2

1

+ |u|21
)

dt.

Let H1(Qi;W
1
2 ) be the obtained space by completing C∞(Qi; W

1
2 ), (i = 1, 2) with

respect to the norms ‖ϕ‖21 =
T2∫
0

(∣∣∣ϕ′
∣∣∣
2

+ |ϕ|21
2

)
dt2, ‖ψ‖21 =

T1∫
0

(∣∣∣ψ′
∣∣∣
2

+ |ψ|21
2

)
dt1.

By completing C∞(Ω; W 1) with respect to the norm

‖u‖2E = (J(λ))2 sup
τ∈Ω

(‖u(τ1, .)‖21 + ‖u(., τ2)‖21
)
,

where J(λ) = (1−α1)(1−α2)
(1+α1)(1+α2)

, we obtain the space E.

Denoting by F the Hilbert space L2(Ω;H) × V1(Q2; W
1
2 ) × V1(Q1; W

1
2 ), consisting

of vector-valued functions F = (f, ϕ, ψ) for which the norm ‖F‖2F = ‖f‖2 + ‖ϕ‖21 +
‖ψ‖21, is finite. V1(Q2; W

1
2 ) × V1(Q1; W

1
2 ) is the closed subspace of H1(Q2; W

1
2 ) ×

H1(Q1; W
1
2 ) composed of elements (ϕ, ψ) satisfying (2.3).

To prove the existence of the strong generalized solution we need the following
Hilbert structure.
Let H1,1(Ω;H) be the Hilbert space obtained by completion of C∞(Ω; H) with respect

to the norm ‖u‖21,1 =
∫
Ω

(∣∣∣ ∂2u
∂t1∂t2

∣∣∣
2

+
∣∣∣ ∂u
∂t1

∣∣∣
2

+
∣∣∣∣
∂u

∂t2

∣∣∣∣
2

+ |u|2
)

dt.

Let H1(Q2; H) be the Hilbert space obtained by completion of the space C∞(Q2; H)
with respect to the norm ‖ϕ‖21 = ‖ϕ‖2 + ‖ϕ′‖2.
We construct H1(Q1; H) in a similar manner.
Denoting by E the Hilbert space L2(Ω;H) × V1(Q2; H) × V1(Q1; H) composed of
elements F = (f, ϕ, ψ) such that the norm ‖F‖2E = ‖f‖2+‖ϕ‖21+‖ψ‖21 is finite, where
V1(Q2;H)× V1(Q1;H) is the closed subspace of H1(Q2; H)×H1(Q1; H) composed
of elements (ϕ,ψ) such that λ2ϕ(0)− ϕ(T2) = λ1ψ(0)− ψ(T1).
H1,1

0 (Ω;W 1) =
{

u ∈ H1,1(Ω; W 1) : `λ1u = 0, `λ2u = 0
}

is the closed subspace of

H1,1(Ω;W 1).
H1,1

0 (Ω;H) =
{

u ∈ H1,1(Ω; H) : `λ1u = 0, `λ2u = 0
}

is the closed subspace of

H1,1(Ω;H)

H
1,1

0 (Ω;H) =
{

u ∈ H1,1(Ω; H) : λ1u |t1=0 −u |t1=T1= 0, λ2u |t2=0 −u |t2=T2= 0
}

,
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is the closed subspace of H1,1(Ω,H). We further denote

M =
{
(λ1, λ2) ∈ C2 : λi 6= 0 and αi < 1, (i = 1, 2)

}
.

4 Uniqueness and continuous dependence

We are now in a position to state and to prove the main theorem of this section
for the operator L = (L, `λ1 , `λ2) acting from E into F with domain of definition
D(L) = H1,1(Ω; W 1) ⊂ E, from which we conclude the uniqueness and continuous
dependence of the solution with respect to the data.

Theorem 4.1. Let the function Ω 3 t 7−→ A(t) ∈ L(W 1;H) have bounded derivatives
with respect to t1 and t2 with respect to the simple convergence topology of L(W 1; H)
and the conditions (2.4), (2.5), (2.6) and (2.7) be fulfilled. Then we have

(4.1) ‖u‖2E ≤ S‖Lu‖2F, ∀u ∈ H1,1(Ω; W 1),

where S is a positive constant independent of λ1, λ2 and u.

Lemma 4.2. (generalized Gronwall’s lemma)
(GV1) Let v(t1, t2) and F (t1, t2) be two non negative integrable functions on Ω such
that the function F (t1, t2) is non-decreasing with respect to the variables t1 and t2.

Then the inequality v(t1, t2) ≤ c3

{
t1∫
0

v(τ1, t2) dτ1 +
t2∫
0

v(t1, τ2) dτ2

}
+ F (t1, t2) ,

(c3 ≥ 0), gives v(t1, t2) ≤ exp
(
2c3(t1 + t2)

)
F (t1, t2).

(GV2) Let v(t1, t2) and G(t1, t2) be two non negative integrable functions on Ω such
that the function G(t1, t2) is non-increasing with respect to the variables t1 and t2.

Then the inequality v(t1, t2) ≤ c4

{
T1∫
t1

v(τ1, t2) dτ1 +
T2∫
t2

v(t1, τ2) dτ2

}
+ G (t1, t2) ,

(c4 ≥ 0), yields v(t1, t2) ≤ exp
(
2c4(T1 + T2 − t1 − t2)

)
G(t1, t2).

Proof. see [35]. ¤

Lemma 4.3. Let |.|m be the norm in Wm (m =
1
2
, 1), g be a function of variable

t∈ [0, T ] in Wm, and let hi = g(0) − λig(T ), (i = 1, 2). Then, if the condition (2.7)
holds, we have θ3|g(0)|2m − 1

2 (1 + αi)|g(T )|2m ≤ θ3
(1+αi)
(1−αi)

|hi|2m, θ3 = αi

|λi|2 (i = 1, 2).

Proof. It sufficient to use the ε inequality with ε = (1−αi)
2αi

, (i = 1, 2) . ¤

Lemma 4.4. [The method of continuity]
Let X1, X2 be two Banach spaces and L0, L1 be bounded operators from X1 into X2.
For each r ∈ [0, 1], set Lr = (1 − r)L0 + rL1 and suppose that there is a constant k
such that ‖u‖X1 ≤ k‖Lru‖X2 for r ∈ [0, 1]. Then L1 maps X1 onto X2 if and only if
L0 maps X1 onto X2. (see [14], Th. 5.2, p. 75).

We also need the ε-inequality: 2(a, b) ≤ ε|a|2 + ε−1|b|2, ε > 0. Let us return now to
the demonstration of the theorem 4.1.



18 A. Benrabah, F. Rebbani and N. Boussetila

Proof. The proof is based on detailed analysis of the forms
∫

Ωτ

2Re(Lu,Mu) dt1dt2,

where Mu =
∂u

∂t1
+

∂u

∂t2
and Ω ⊃ Ωτ = (0, τ1) × (0, τ2), (0, τ1) × (0, T2), (0, T1) ×

(0, τ2), (τ1, T1) × (τ2, T2) and by making use some technical elementary estimates,
propositions (3.1, 3.3) and lemmas (3.6, 4.2, 4.3) we get ‖u‖2E ≤ S‖Lu‖2F, ∀u ∈ D(L).
¤

It follows from estimation (4.1), that there is a bounded inverse operator L−1 on
the range R(L) of L. However, since we have no information concerning R(L), except
that R(L) ⊂ F, we must extend L so that the estimation (4.1), holds for the extension
and its range is the whole space. We first show that L : E −→ F, with the domain
D(L), has a closure.

Proposition 4.5. If the conditions of theorem 4.1 are satisfied, then the operator L
admits a closure L with domain of definition denoted by D(L).

The solution of the equation

(4.2) Lu = F , F ∈ F,

is called a strong generalized solution of problem (P). Passing to the limit, we extend
the inequality (4.1) to the strong generalized solution, we obtain

(4.3) ‖u‖2E ≤ S
∥∥Lu

∥∥2

F , ∀u ∈ D(L),

from which we deduce

Corollary 4.6. From the inequality (4.3) we deduce that, if the strong generalized so-
lution exists, then this solution is unique and it depends continuously on F = (f, ϕ, ψ).

Corollary 4.7. The set of values R(L) of the operator L is equal to the closure R(L)
of R(L) and (L)−1 = L−1.

This corollary allows us to claim that, to establish the existence of the strong gen-
eralized solution to problem (P) it suffices to prove the density of the set R(L) in
F.

5 Existence of a solution

To show the existence, we need the following condition

Condition (H) Ω 3 t 7−→ A(t) ∈ L(Ω; W 1) admits mixed derivatives

∂2A

∂t1∂t2
,

∂2A

∂t2∂t1
with

∂A

∂t1∂t2
A−1,

∂A

∂t2∂t1
A−1 ∈ L2(Ω;L(H)).

We are now, in a position to state and to prove the main result of this paper i.e., estab-
lish the density of R(L) in F, who is equivalent to show that, R(L)⊥ = {(0, 0, 0)} for
this purpose, we meet some difficulties (derivation), and to surmount these difficulties
we introduces the regularization operators, so we use the regularization technique.
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Definition 5.1. We put Aε(t) = (I + εA(t)), Jε(t) = A−1
ε (t) = (I + εA(t))−1,

Rε(t) = A(t)(I + εA(t))−1 = 1
ε (I − Jε(t)), ε > 0, and call Rε(t) the Yosida approx-

imation of A(t).

Theorem 5.1. Under the conditions of the Theorem (4.1) and the condition (H),
the set R(L) is dense in F.

Proof. We use the method of continuity given in the book [14]. We introduce the
family of operators Lω = (Lω, `λ1 , `λ2), ω ∈ [0, 1], where

Lω =
∂2

∂t1∂t2
+ ωB + A(t) = (1− ω)L0 + ωL1, B = B

[
∂

∂t1
+

∂

∂t2

]
.

Let’s start with showing the result (i.e., R(L0)⊥ = {(0, 0, 0)}) in the case ω = 0, and
by means of the method of continuity, we establish the general case.

First step ω = 0. Let V = (v, v1, v2) be an orthogonal element to R(L0). Then
we have

(5.1) 〈L0u, V 〉F = 〈L0u, v〉+ 〈`λ1u, v1〉+ 〈`λ2u, v2〉 = 0, ∀u ∈ H1,1(Ω, W 1).

Let’s show that V = (0, 0, 0), but `λ1 , `λ2 are independent and their ranges are dense,
then it is sufficient to prove the following proposition

Proposition 5.2. If for every v ∈ L2(Ω;H) we have

(5.2) 〈L0u, v〉 =
〈

∂2u

∂t1∂2
+ A(t)u, v

〉
= 0,∀u ∈ H1,1

0 (Ω; W 1), then v = 0.

Proof. Let w = A−1
ε v and h = Aεu, then the relation (5.2) becomes

(5.3)
〈

∂2h

∂t1∂t2
− ∂

∂t2
(B∗

1εh)− ∂

∂t1
(B∗

2εh) + B∗
3εh,w

〉
= −〈h,Aw〉,

h ∈ H1,1
0 (Ω;H) and B∗

iε ∈ L(H), (i = 1, 2, 3) are given by B∗
1ε = ε ∂A

∂t1
A−1

ε −
B, B∗

2ε = ε ∂A
∂t2

A−1
ε −B,B∗

3ε = ε ∂2A
∂t1∂t2

A−1
ε − εB ∂A

∂t1
A−1

ε − εB ∂A
∂t2

A−1
ε , (∗) denotes

the symbol of the adjoint.
Since the equation (5.3) is true for all function h ∈ H1,1

0 (Ω;H) , it remains true for
h ∈ C∞0 (Ω; H), what gives to the sense of distributions

(5.4)
〈

h,
∂2w

∂t1∂t2
+ B1ε

∂w

∂t2
+ B2ε

∂w

∂t1

〉

D′
= −〈h, (A + B3ε)w〉, ∀h ∈ C∞0 (Ω;H).

We define the following operators

(5.5) D(L̃) = H
1,1

0 (Ω;H), L̃u =
∂2u

∂t1∂t2
+ B2ε

∂u

∂t1
+ B1ε

∂u

∂t2
,

(5.6) D(L̃′) = H1,1
0 (Ω; H), L̃′u =

∂2u

∂t1∂t2
− ∂

∂t1
(B∗

2εu)− ∂

∂t2
(B∗

1εu).
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According to (5.3) and (5.4), we can show that L̃′ = (L̃)∗. Let’s come back to the
equation (5.4), we have, for each ε 6= 0, w is the weak solution to the problem

(5.7)





L̃w ≡ ∂2w

∂t1∂t2
+ B1ε

∂w

∂t2
+ B2ε

∂w

∂t1
= −(B3εA

−1ε + AA−1ε)v,

˜̀
λ1w ≡ λ1w |t1=0 − w |t1=T1 = 0,

˜̀
λ2w ≡ λ2w |t2=0 − w |t2=T2 = 0,

where v ∈ L2(Ω; H), Bjε∈ L(H), (j = 1, 2, 3).
We are going to show that, w is a solution in the strong sense of the problem (5.7)
and that it verifies an a priori estimate, then we shows that v = 0.
To establish these results, we can show that the operator L̃ = (L̃, l̃1µ, l̃2µ) acting from
H1,1(Ω;H) into E is isomorphism

Proposition 5.3. The operator L̃ is isomorphism from H1,1(Ω;H) into E.

Proof. We must show that R(L̃) = E and

(5.8) (i) ‖L̃u‖2E ≤ d1 ‖u‖21,1 , ∀u ∈ H1,1(Ω;H),

(5.9) (ii) ‖u‖21,1 ≤ d2‖L̃u‖2E , ∀u ∈ H1,1(Ω;H),

where d1 and d2 are positive constants independent of u.
(i) It is easy to show

(5.10) ‖L̃u‖2 ≤ 4max(1, C2) ‖u‖21,1 , ∀u ∈ H1,1(Ω;H).

By virtue of the continuity of the operators ˜̀
λ1 ,

˜̀
λ2 from H1,1(Ω;H) into H1(Q2;H),

H1(Q1; H) respectively and the inequality (5.10), we obtain the estimate (i).
(ii) We use the same techniques to those used to establish the estimate (4.1) in

Theorem (4.1), then we establish the estimate (5.9).
From the continuity of the operator L̃ and the inequality (5.10), we conclude that
the operator L̃ is an isomorphism from H1,1(Ω;H) into the closed subspace R(L̃) =
L̃

(
H1,1(Ω; H)

)
.

It remains to show that R(L̃) = E , for this purpose, we introduce the family of
operators

{
L̃η

}
η∈[0, 1]

defined by

(5.11)





L̃η = (L̃η , ˜̀
λ1 ,

˜̀
λ2), η ∈ [0, 1] ,

L̃ηu =
∂2u

∂t1∂t2
+ ηBεu , with Bεu = B2ε

∂u

∂t1
+ B1ε

∂u

∂t2
,

D(L̃η) = H1,1(Ω,H).

We proceed by the method of continuity, we can show that R(L̃1) = R(L̃) = E . This
proves the proposition (5.3). ¤
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Proposition 5.4. The operator L̃ = L̃ is closed

Proof. The proof is similar to the proof of Proposition 4.6 in [35]. ¤

From the properties of the operators with closed range, it follows

N (L̃
′
) = R(L̃)⊥ = L2(Ω;H)⊥ = {0} ,

R(L̃
′
) = R(L̃ ′) = N (L̃)⊥ = {0}⊥ = L2(Ω;H).

Hence L̃
′

is an isomorphism from H1,1
0 (Ω;H) into L2(Ω; H) and it is closed in the

topology of L2(Ω;H).

Definition 5.2. We Denote by L̂ =
(
L̃′

)∗
the weak extension of the operator L̃

defined by

(5.12)
〈
L̃′ u, v

〉
=

〈
u, L̂ v

〉
= 〈u, f 〉 , ∀u ∈ H1,1

0 (Ω,H) and L̂v = f ∈ L2 (Ω,H)

Proposition 5.5. The weak extension L̂ of the operator L̃ coincides with its strong

extension
(
L̂

)′
= L̃′ .

Proof. see[35]. ¤

From the proposition (5.5), we deduce that the weak solution to problem (5.7)
coincides with its strong solution. Hence w ∈ H1,1(Ω;H) ∩ L2(Ω,W 1) and satisfies
the problem (5.7) in the strong sense, i.e.,

(5.13)





D(L) = H
1,1

0 (Ω; H),

Lw =
∂2w

∂t1∂t2
+ B2ε

∂w

∂t1
+ B1ε

∂w

∂t2
+ Aw = −B3εw = f.

By a similar calculations to those used to establish theorem (4.1), we show

Proposition 5.6. Under the assumptions of the theorem (4.1) we have the estimate

(5.14) ‖A 1
2 w‖2 ≤ d6‖B3εw‖2, ∀w ∈ H

1,1

0 (Ω;H),

from (5.14) and (2.4) it follows ‖w‖2 ≤ 1
c0
‖A 1

2 w‖2 ≤ d6

c0
‖B3εw‖2, replacing w by

A−1
ε v in the last inequality, we obtain

(5.15) ‖A−1
ε v‖2 ≤ d6

c0
‖B3εA

−1
ε v‖2.

We have

(B∗
3ε)

∗A−1
ε v ≤

{ ∥∥∥∥
(
I −A−1

ε

) (
∂2A

∂t2∂t1
A−1

)∗ (
A−1

ε v − v
)∥∥∥∥ +

∥∥∥∥(I −A−1
ε )

(
∂2A

∂t1∂t2
A−1

)∗
v

∥∥∥∥

+ 2 ‖B‖
1
2
L(H)

∥∥∥∥
(
I −A−1

ε

) (
∂2A

∂t2∂t1
A−1

)∗ (
A−1

ε v − v
)∥∥∥∥

+

∥∥∥∥(I −A−1
ε )∗(B

∂A

∂t1
A−1)∗v

∥∥∥∥ +

∥∥∥∥(I −A−1
ε )∗(B

∂A

∂t2
A−1)∗v

∥∥∥∥
}
→ 0, ε → 0.



22 A. Benrabah, F. Rebbani and N. Boussetila

While taking account of the last inequality, and while passing to the limit in (5.15),
when ε −→ 0 and applying the properties of A−1

ε , we obtain v = 0. This completes
the proof of proposition (5.2). ¤

Let us go back now to (5.1), by virtue of proposition (5.2), we obtain 〈`λ1u, v1〉0 +
〈`λ2u, v2〉0 = 0. Since `λ1 , `λ2 are independent and the ranges of the operators `λ1 , `λ2

are dense in the corresponding spaces, we obtain v1 = v2 = 0. Hence V = (0, 0, 0),
therefor R(Lω) = F for ω = 0.
Second step ω 6= 0. We need the following lemma

Lemma 5.7. The operator (L1 − L0) is bounded, and we have

(5.16) ‖(L1 − L0)u‖E ≤ k‖u‖E,

where the constant k does not depend on u .

Proof. The equation Lωu = F can be written as

(5.17) u + (ω − ω0)(Lω0)
−1(L1 − L0)u = (Lω0)

−1F .

From (4.3) and (5.16) we have ‖(Lω0)
−1F‖E ≤

√
S‖F‖E , and ‖(Lω0)

−1(L1 − L0)u‖E ≤
m‖u‖E, where m = k

√
S. Let |ω−ω0| ≤ ρ < 1

m , putting Λ = (ω−ω0)(Lω0) (L1 − L0)
and N = (Lω0)

−1F , (5.17) can be written as u + Λu = N.

Observing that ||Λ|| = sup
u∈D(Lλ)

||Λu||1
||u||1 < 1. The Neumann series u =

∑∞
n=0(−Λ)nN

is then a solution to equation (5.17). We have thus proved that if R(Lω0) = F and

|ω−ω0| ≤ ρ <
1
m

, then R(Lω) = F. Proceeding step by step in this way we establish

that R(Lω) = F for every ω ∈ [0, 1]. For the case ω = 1, we have R(L) = F. The
proof of theorem (5.1) is achieved. ¤

Theorem 5.8. For every element F = (f, ϕ, ψ) ∈ F there exists a unique strong
generalized solution u = (L)−1F = (L−1)F to problem (P) satisfying the estimate

‖u‖2E ≤ S‖Lu‖2F, ∀u ∈ H1,1(Ω; W 1),

where S is a positive constant independent of λ1, λ2 and u.
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