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Abstract. The aim of this paper is to characterize all second order tensor-
valued and scalar differential invariants of the bundle of linear frames FX
over an n-dimensional manifold X. These differential invariants are ob-
tained by factorization method and are described in terms of bases of
invariants. Second order natural Lagrangians of frames have been charac-
terized explicitly; if n = 1, 2, 3, 4, the number of functionally independent
second order natural Lagrangians is N = 0, 6, 33, 104, respectively.
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1 Introduction

Throughout this paper, a left G-manifold is a smooth manifold endowed with a left
action of a Lie group G. A mapping between two left G-manifolds transforming G-
orbits into G-orbits is said to be G-equivariant. As usual, we denote by R the field
of real numbers. The r-th differential group Lr

n of Rn is the Lie group of invertible
r-jets with source and target at the origin 0 ∈ Rn; the group multiplication in Lr

n

is defined by the composition of jets. Note that L1
n = GLn(R). For generalities on

spaces of jets and their mappings, differential groups, their actions, etc., we refer to
[6, 11, 13].

Let P and Q be two left Lr
n-manifolds, and U be an open, Lr

n-invariant set in P .
A smooth Lr

n-equivariant mapping F : U → Q is called a differential invariant. If Q
is the real line R, endowed with the trivial action of Lr

n, an equivariant mapping F is
called a scalar invariant.

Let X be an n-dimensional manifold. By an r-frame at a point x ∈ X we mean
an invertible r-jet with source 0 ∈ Rn and target x. The set of r-frames together with
its natural structure of a principal Lr

n-bundle with base X is denoted by F rX, and is
called the bundle of r-frames over X. For r = 1, we get the bundle of linear frames,
and write F 1X = FX. If S is a left Lr

n-manifold, then the bundle with type fibre S,
associated with F rX is denoted by F r

SX.
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If S is a left L1
n-manifold, we denote by T r

nS the manifold of r-jets with source
0 ∈ Rn and target in S. For finding differential invariants of frames it is convenient
to realize FX as a bundle with type fibre L1

n, associated with itself. Then, the r-jet
prolongation JrFX of FX can be considered as a fibre bundle with type fibre T r

nL1
n,

associated with F r+1X.
For characterizing natural Lagrangians on JrFX, i.e. Lagrangians invariant with

respect to all diffeomorphisms of X, it is sufficient to describe all differential invariants
defined on the type fiber P = T r

nL1
n of JrFX. The aim of this paper is to give explicit

characterization of second order natural Lagrangians.
Most of differential invariants with values in Q appearing in differential geometry

correspond with the case when Q is an L1
n-manifold. These differential invariants

can be described as follows. Let Kr,s
n be the kernel of the canonical group morphism

πr,s
n : Lr

n → Ls
n, where r ≥ s. If Lr

n acts on Q via its subgroup L1
n, each continuous,

Lr
n-equivariant mapping F : U → Q has the form F = f ◦ π, where π : P → P/Kr,1

n

is the quotient projection, P/Kr,1
n is the space of Kr,1

n -orbits, and f : P/Kr,1
n → Q is

a continuous, L1
n-equivariant mapping. Indeed, in this scheme P/Kr,1

n is considered
with the quotient topology, but is not necessarily a smooth manifold. The quotient
projection π is continuous but not necessarily smooth. If P/Kr,1

n has a smooth struc-
ture such that π is a submersion, we call π the basis of differential invariants on P
(for more details of a basis, see [12]). The general concepts on equivariant mappings,
related with a normal subgroup of a Lie group, and corresponding assertions with the
proofs can be found in [4, 8].

A method based on this observation was first time applied to the problem of
finding differential invariants of a linear connection in [8]. The initial problem was
reduced to a more simple problem of the classical invariant theory (see e.g. [14, 15])
to describe all L1

n-equivariant mappings from P/Kr,1
n to L1

n-manifolds. Our aim in
this paper is to study invariants of linear frames by the same method, which allows
us to simplify expressions of the action of Lr

n on P .
In this paper, we first introduce the domain of second order differential invariants

with values in L1
n-manifolds, which is, according to the prolongation theory of mani-

folds endowed with a Lie group action (see e.g. [6, 7, 11]), the L3
n-manifold P = T 2

nL1
n.

Then we describe the frame action of L3
n on T 2

nL1
n. This action corresponds to the

second jet prolongation of the frame lift of a diffeomorphism of X. Using a tensor de-
composition, we also construct the corresponding orbit space of the normal subgroup
K3,1

n of L3
n. We show that this orbit space can be identified with Cartesian products

of L1
n with some tensor spaces over Rn; in this way the differential invariants with

values in L1
n-manifolds are described in terms of their basis. Note that the second

order differential invariants with values in L2
n-manifolds can be easily obtained by the

same manner.
These results are subsequently used for extension of the theory of the first order

differential invariants of frames in [5], studied in terms of integrals of canonical dif-
ferential system, to the second order case. Applying factorization method, we give an
explicit characterization of second order scalar invariants of frames and Lagrangians,
defined on J2FX, invariant with respect to all diffeomorphisms on X. In Section
8 we also introduce the concept of canonical odd n-form on FX, where n = dim X,
which gives an exact description of globally defined invariant object in the role of
volume form. In [5], (ordinary) n-form was considered, which is only available over
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orientable manifolds. We also extend the remarks of the authors on the use of differ-
ential invariants as Lagrangians over non-orientable manifolds. For the theory of odd
de Rham forms and odd base forms we refer to [9].

The calculations in this paper rely on the jet description of differential invariants.
This is based on the existence of a Lie group (the differential group) whose invariants
are exactly the differential invariants. Such description implies, in particular, that the
arising theory is comparatively simpler than other versions of the theory of differential
invariants.

Using another left action of L1
n on itself, called coframe action, it is possible to

obtain the corresponding differential invariants of coframes. Note that they can
be obtained by the same method. For differential invariants of coframes, see [3]; it
represents an extension of Ph.D. thesis of the first author, devoted to the second order
case, to the third order case.

There are several types of invariance of Lagrangians on frame bundles. One of
them is invariance with respect to the canonical action of L1

n on JrFX. All L1
n-

invariant Lagrangians on JrFX are explicitly described in [2].

2 Jet prolongations of L1
n manifolds

In this section, the general prolongation theory of left G-manifolds is applied to the
case of the Lie group G = L1

n = GLn(R). We use the prolongation formula derived
in [7], and the terminology and notation of the book [11].

Recall that the r-th differential group Lr
n of Rn is the group of invertible r-jets

with source and target at the origin 0 ∈ Rn. The group multiplication in Lr
n is defined

by the composition of jets. Let Jr
0α ∈ Lr

n, where α = (αi) is a diffeomorphism of a
neighborhood U of the origin 0 ∈ Rn into Rn such that α(0) = 0. The first canonical
coordinates ai

j1
, ai

j1j2
, . . . , ai

j1j2...jr
, where 1 ≤ i ≤ n, 1 ≤ j1 ≤ j2 ≤ . . . ≤ jr ≤ n, on

Lr
n are defined by

(2.1) ai
j1j2...jk

(Jr
0α) = Dj1Dj2 . . . Djk

αi(0), 1 ≤ k ≤ r.

We also define the second canonical coordinates bi
j1

, bi
j1j2

, . . . , bi
j1j2...jr

, on Lr
n by

bi
j1j2...jk

(Jr
0α) = ai

j1j2...jk
(Jr

0α−1), 1 ≤ k ≤ r.

Indeed, ai
jb

j
k = δi

k (the Kronecker symbol).
Let us consider a left L1

n-manifold S, and denote by T r
nS the manifold of r-jets

with source 0 ∈ Rn and target in S. According to the general theory of prolongations
of left G-manifolds, T r

nS has a (canonical) structure of a left Lr+1
n -manifold. To define

this structure, denote by tx the translation of Rn defined by tx(y) = y − x. Consider
elements q ∈ T r

nS, q = Jr
0γ, and a ∈ Lr+1

n , a = Jr+1
0 α. Denoting ᾱx = tx◦α◦t−α−1(x),

and ᾱ(x) = J1
0 ᾱx we get an element of the group L1

n. Then formula

(2.2) a · q = Jr
0 (ᾱ · (γ ◦ α−1))

defines a left action of the differential group Lr+1
n on T r

nS. We usually call formula
(2.2) the prolongation formula for the action of the group L1

n on S. The left Lr+1
n -

manifold T r
nS is called the r-jet prolongation of the left L1

n-manifold S.
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3 Frames

Let X be an n-dimensional manifold. Recall that an r-frame at a point x ∈ X is an
invertible r-jet with source 0 ∈ Rn an target at x. The set of r-frames, denoted by
F rX, will be considered with its natural structure of a principal Lr

n-bundle over X.
We write FX = F 1X; FX is the bundle of linear frames.

For computing differential invariants of frame bundles it is important to realize
FX as a fibre bundle with type fibre L1

n, associated with itself. Thus, the structure
group of FX is the group L1

n = GLn(R), with canonical coordinates (ai
j), defined

by (2.1). If (pi
j) are the canonical coordinates on the type fibre L1

n of fibre bundle
FX, then the left action of the structure group L1

n of FX on the type fibre L1
n is

represented by the group multiplication L1
n × L1

n 3 (J1
0α, J1

0η) → J1
0 (α ◦ η) ∈ L1

n.
In the canonical coordinates, pi

j(J
1
0 (α ◦ η)) = ai

k(J1
0α)pk

j (J1
0η), which can be written

simply by

(3.1) p̄i
j = ai

kpk
j .

(3.1) is called the frame action of L1
n on itself.

JrFX denotes the r-jet prolongation of FX. It follows from the general theory
of jet prolongations of fibre bundles that JrFX can be considered as a fibre bundle
over X with type fibre T r

nL1
n, associated with F r+1X. Equations of the group action

of Lr+1
n on T r

nL1
n can be obtained from (2.2) and (3.1).

4 The second jet prolongation of the frame action

Now we derive an explicit expression for the action (2.2) of the group L3
n on T 2

nL1
n,

associated with (3.1).
Let U be a neighborhood of the origin 0 ∈ Rn. Let α be a diffeomorphism of U onto

α(U) ⊂ Rn such that α(0) = 0. Then ᾱ(x) = J1
0 ᾱx, where ᾱx = tx ◦α ◦ t−α−1(x). Let

γ : U → L1
n be a mapping. For every x ∈ α(U) we denote ψ(x) = ᾱ(x) · γ(α−1(x)),

and the dot on the right hand side means the multiplication in the group L1
n. In

coordinates,

(4.1) pi
j(ψ(x)) = pi

j(ᾱ(x) · γ(α−1(x))) = ai
s(ᾱ(x))ps

j(γ(α−1(x))).

Note that in this formula,

(4.2) ai
s(ᾱ(x)) = Dsα

i(α−1(x)).

Now the chart expression of the frame action is obtained by expressing the r-jet
Jr

0ψ = Jr+1
0 α · Jr

0γ (2.2) in coordinates. Consider the case r = 2.

Lemma 1. The group action of L3
n on T 2

nL1
n induced by the frame action of L1

n

on L1
n is defined by the equations

(4.3)

p̄i
j = ps

ja
i
s,

p̄i
j,k = ps

j,ta
i
sb

t
k + ps

ja
i
stb

t
k,

p̄i
j,kl = ps

j,tuai
sb

u
l bt

k + ps
j,t(a

i
subu

kbt
l + ai

subu
l bt

k + ai
sb

t
kl)

+ps
j(a

i
stubu

l bt
k + ai

stb
t
kl).
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Proof. First equation is obtained from (4.1) and (4.2), to get the remaining equa-
tions, we differentiate (4.1) twice, and then put x = 0. ¤

5 Differential invariants with values in L1
n-manifolds

In this part we are interested in differential invariants F : T 2
nL1

n → Q, where Q is
arbitrary left L1

n-manifold. We define the homomorphism

π3,1
n : L3

n → L1
n, π3,1

n (ai
j , a

i
jk, ai

jkl) = (ai
j).

Notice that each differential invariant F with values in L1
n-manifold satisfies

F (a · q) = π3,1
n (a) · F (q),

for each a ∈ L3
n, q ∈ T 2

nL1
n.

Let K3,1
n denote the kernel of the canonical homomorphism π3,1

n ; K3,1
n is normal

subgroup of L3
n represented by elements in coordinates written as (δi

j , a
i
jk, ai

jkl). Now
we restrict the action (4.3) to the subgroup K3,1

n of L3
n. The following result is

fundamental for the discussion of the corresponding orbit spaces.

Lemma 2. The group action of K3,1
n on T 2

nL1
n induced by the frame action of L1

n

on L1
n is defined by the equations

(5.1)

p̄i
j = pi

j ,

p̄i
j,k = pi

j,k + ps
ja

i
sk,

p̄i
j,kl = pi

j,kl + ps
j,la

i
sk + ps

j,kai
sl + (pi

j,t + ps
ja

i
st)b

t
kl + ps

ja
i
skl.

Proof. We take ai
j = bi

j = δi
j in (4.3). ¤

Corollary 1. The action (5.1) is free.

Now we describe orbits of the group actions (5.1). Let us introduce some notation.
Using the second canonical coordinates on T 2

nL1
n, we denote by qi

j the inverse matrix
of the matrix pi

j ; thus, qi
j : T 2

nL1
n → R are functions such that qi

sp
s
j = δi

j .
We also use the special notation for symmetrization and antisymmetrization of

indexed families of functions through selected indices. Symmetrization (resp. anti-
symmetrization) in some indices j, k, l, . . . is denoted by writing a bar (resp. a tilde)
over these indices, i.e., by writing j̄, k̄, l̄, . . . (resp. j̃, k̃, l̃, . . .).

First, we state some auxiliary assertions on the Young decomposition of tensors
of type (0, 3). Let us have a tensor ∆ = ∆jkl and let n be the dimension of the
underlying vector space. We define

(5.2)

S∆ = 1
6 (∆jkl + ∆ljk + ∆klj + ∆jlk + ∆lkj + ∆kjl),

Q∆ = 1
3 (∆jkl + ∆kjl −∆lkj −∆klj) + 1

3 (∆jkl + ∆lkj −∆kjl −∆ljk),

A∆ = 1
6 (∆jkl + ∆ljk + ∆klj −∆jlk −∆lkj −∆kjl).
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Note that (5.2) can be equivalently written by

(5.3) S∆ = ∆j̄k̄l̄, Q∆ = 1
3 (2∆jkl −∆ljk −∆klj), A∆ = ∆j̃k̃l̃.

Lemma 3. (a) If n ≥ 3, a tensor ∆ = ∆jkl has a unique decomposition

∆ = S∆ +Q∆ +A∆,

such that S(S∆) = S∆, Q(Q∆) = Q∆, A(A∆) = A∆, S(Q∆) = Q(S∆) =
A(Q∆) = Q(A∆) = S(A∆) = A(S∆) = 0.

(b) If n = 2, a tensor ∆ = ∆jkl has a unique decomposition

∆ = S∆ +Q∆,

such that S(S∆) = S∆, Q(Q∆) = Q∆, S(Q∆) = Q(S∆) = 0.
Proof. These assertions can be verified by a direct computation. ¤

Corollary 2. For tensor ∆ = ∆jkl symmetric in the indices k, l there is a unique
decomposition

(5.4) ∆ = S∆ +Q∆,

such that S(S∆) = S∆, Q(Q∆) = Q∆, S(Q∆) = Q(S∆) = 0.

Finally, we introduce the following functions on T 2
nL1

n:

(5.5)

Ii
jk(pa

b , pa
b,c, p

a
b,cd) = ql

j̃
pi

l,k̃
,

Ii
jkl(p

a
b , pa

b,c, p
a
b,cd) = 2qs

jp
i
s,kl − qs

kpi
s,lj − qs

l p
i
s,jk

−3(qt
j̃
pm

t,l̃
qs
m̄pi

s,k̄ + qt
j̃
pm

t,k̃
qs
m̄pi

s,l̄)

+pi
s,m(2qs

jq
t
k̄pm

t,l̄ − qs
kqt

l̄p
m
t,j̄ − qs

l q
t
j̄p

m
t,k̄).

It is obvious that the functions Ii
jk are antisymmetric in indices j, k, and the functions

Ii
jkl are symmetric in indices k, l, which gives us Ii

jk + Ii
kj = 0, Ii

jkl − Ii
jlk = 0,

respectively. Moreover, we have the identity Ii
jkl + Ii

ljk + Ii
klj = 0.

Lemma 4. K3,1
n -orbits in T 2

nL1
n induced by the frame action of L1

n on L1
n is

defined by the equations

pi
j = ci

j , Ii
jk(pa

b , pa
b,c, p

a
b,cd) = ci

jk, Ii
jkl(p

a
b , pa

b,c, p
a
b,cd) = ci

jkl,

where ci
j , c

i
jk, ci

jkl ∈ R are arbitrary constants such that det ci
j 6= 0.

Proof. Consider the action (5.1) of K3,1
n on T 2

nL1
n, induced by the frame action of

L1
n on L1

n, in standard notation given by p̄i
j = ai

kpk
j . Rewrite this action in the form

(5.6) p̄i
j = pi

j , p̄i
j,k = pi

j,k + ps
ja

i
sk, p̄i

j,kl = pi
j,kl + χi

j,kl + ps
ja

i
skl,

where the functions

(5.7) χi
j,kl = ps

j,la
i
sk + ps

j,kai
sl + (pi

j,t + ps
ja

i
st)b

t
kl
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are symmetric in the indices k, l. From (5.6) we get

(5.8) q̄i
j = qi

j , ai
sk = qj

s̄(p̄
i
j,k̄ − pi

j,k̄), ai
skl = qj

s̄(p̄
i
j,k̄l̄ − pi

j,k̄l̄ − χi
j,k̄l̄).

Substituting the second equation of (5.8) to (5.6) we have

qj
s(p̄

i
j,k − pi

j,k) = qj
s̄(p̄

i
j,k̄ − pi

j,k̄),

which means that we compare the tensor on the left hand side with its symmetric
part. It gives us q̄l

j̃
p̄i

l,k̃
= ql

j̃
pi

l,k̃
. Thus, for the functions Ii

jk, defined by (5.5), we have

(5.9) Ii
jk(p̄a

b , p̄a
b,c, p̄

a
b,cd) = Ii

jk(pa
b , pa

b,c, p
a
b,cd),

and the functions Ii
jk are invariant with respect to the action (5.1) of K3,1

n on T 2
nL1

n.
Again, substituting (5.8) to (5.6) we have

qs
j (p̄

i
s,kl − pi

s,kl − χi
s,kl) = qs

j̄ (p̄
i
s,k̄l̄ − pi

s,k̄l̄ − χi
s,k̄l̄).

It means that we compare the tensor

(5.10) ∆i
jkl = qs

j (p̄
i
s,kl − pi

s,kl − χi
s,kl),

symmetric in the subscripts k, l, on the left hand side, with its symmetric part S∆ =
∆i

j̄k̄l̄
. Using decomposition (5.4) for the tensor ∆ given by (5.10), we get

(5.11) Q∆ = 0.

Applying (5.3) to (5.11), and using (5.7), and (5.8), after long calculation we obtain
that (5.11) is equivalent to

(5.12) Ii
jkl(p̄

a
b , p̄a

b,c, p̄
a
b,cd) = Ii

jkl(p
a
b , pa

b,c, p
a
b,cd),

which means that the functions Ii
jkl, defined by (5.5), are invariant with respect to

the action (5.1) of K3,1
n on T 2

nL1
n. ¤

6 Basis of the second order invariants

Now, from the assertions on equivariant mappings of manifolds (see [4, 8]) we can
obtain the exact characteristics of basis of differential invariants with values in L1

n-
manifolds.

First, let us denote by S0
n the vector subspace of the tensor product

⊗2 Rn∗ =
Rn∗ ⊗ Rn∗, defined in the canonical coordinates on R by the equations

xjk + xkj = 0.

Similarly, S1
n denotes the vector subspace of the tensor product

⊗3 Rn∗ = Rn∗ ⊗
Rn∗ ⊗ Rn∗, defined by the equations

xjkl − xjlk = 0, xjkl + xljk + xklj = 0.



Second order differential invariants of linear frames 21

We can summarize the discussion of Section 5 in the following theorem, describing
differential invariants on T 2

nL1
n with values in L1

n-manifolds.

Theorem 1. (a) The frame action defines on T 2
nL1

n the structure of a left principal
K3,1

n -bundle.
(b) The quotient space T 2

nL1
n/K3,1

n is canonically isomorphic to the space L1
n ×

(Rn ⊗ S0
n)× (Rn ⊗ S1

n).
Proof. (a) Since we have already proved that the action (5.1) of K3,1

n on T 2
nL1

n

is free (see Corollary 1), in order to show that T 2
nL1

n is a principal K3,1
n -bundle it

remains to show that the equivalence ”J2
0γ ∼ J2

0 γ̄ if and only if there exists an element
J3

0α ∈ K3,1
n such that J2

0 γ̄ = J3
0α ·J2

0γ” is a closed submanifold in T 2
nL1

n×T 2
nL1

n. But
using (5.1) with help of (5.9) and (5.12), we see that this submanifold is defined by
the equations

pi
j(J

2
0 γ̄)− pi

j(J
2
0γ) = 0,

Ii
jk(J2

0 γ̄)− Ii
jk(J2

0γ) = 0,

Ii
jkl(J

2
0 γ̄)− Ii

jkl(J
2
0γ) = 0,

and is therefore closed.
(b) Let J2

0γ ∈ T 2
nL1

n and let [J2
0γ] be the corresponding class of J2

0γ in quotient
T 2

nL1
n/K3,1

n . We set

(6.1)

pi
j([J

2
0γ]) = pi

j(J
2
0γ),

Ii
jk([J2

0γ]) = Ii
jk(J2

0γ),

Ii
jkl([J

2
0γ]) = Ii

jkl(J
2
0γ).

Relations (5.1), (5.9), and (5.12) imply that coordinates defined by (6.1) do not
depend on a representant of given class, and for two different classes there are different
sets of numbers. It means that factor projection π : T 2

nL1
n → T 2

nL1
n/K3,1

n can be
expressed by

π = (pi
j , I

i
jk, Ii

jkl).

Thus, canonical isomorphism of bundles maps the class from T 2
nL1

n/K3,1
n with coor-

dinates (pi
j , I

i
jk, Ii

jkl), to the element of L1
n × (Rn ⊗ S0

n) × (Rn ⊗ S1
n) with the same

canonical coordinates. ¤

Theorems 1 says that every second order differential invariant of frames factorizes
through the corresponding bundle projection. Consider the components of the isomor-
phisms defined by pi

j : T 2
nL1

n → L1
n, Ii

jk : T 2
nL1

n → Rn⊗S0
n, and Ii

jkl : T 2
nL1

n → Rn⊗S1
n.

We have the following results.

Corollary 3. The mappings pi
j, Ii

jk, Ii
jkl represent a basis of second order invari-

ants of frames with values in left L1
n-manifold.

7 Basis of scalar invariants

Note that if G is a Lie group, K is its normal subgroup, and P is a G-manifold then
the quotient manifold (P/K)/(G/K) is canonically isomorphic with P/G (see [1]).
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This means that for finding scalar invariants of Lie group G, we can equivalently
factorize P by normal subgroup K and subsequently by the factor group G/K. Thus,
to obtain scalar invariants of L3

n on T 2
nL1

n it is sufficient to consider L1
n-equivariant

mappings defined on T 2
nL1

n/K3,1
n .

Let us define some functions Ii
jk, Ii

jkl, on T 2
nL1

n, by

(7.1)

Ii
jk = qi

lp
s
k̃
pl

j̃,s
,

Ii
jkl = qi

r(2ps
kpt

lp
r
j,st − ps

l p
t
jp

r
k,st − ps

jp
t
kpr

l,st

− 3
2qu

mpr
u,s(p

s
kpt

l̃
pm

j̃,t
+ ps

l p
t
k̃
pm

j̃,t
)− 5

2pm
j,sp

s
k̄pr

l̄,m

+ 1
2ps

jp
r
k̄,mpm

l̄,s + 2pr
j,mps

k̄pm
l̄,s).

We have the following

Theorem 2. The functions Ii
jk, Ii

jkl represent a basis of second order scalar
invariants of frames.

Proof. The group L1
n ' L3

n/K3,1
n acts in factor space T 2

nL1
n/K3,1

n , where the
functions Ii

jk and Ii
jkl live, by

(7.2) Īi
jk = ai

rb
s
jb

t
kIr

st, Īi
jkl = ai

rb
s
jb

t
kbu

l Ir
stu,

respectively. Using relations ai
r = qm

r p̄i
m, and bs

j = q̄v
j ps

v, obtained from (3.1), in (7.2),
we have

q̄a
i p̄j

bp̄
k
c Īi

jk = qa
r ps

bp
t
cI

r
st, q̄a

i p̄j
bp̄

k
c p̄l

dĪ
i
jkl = qa

r ps
bp

t
cp

u
dIr

stu,

which describes L1
n-invariant objets in T 2

nL1
n/K3,1

n . Using (5.5), we get

qa
r ps

bp
t
cI

r
st = Ia

bc, qa
r ps

bp
t
cp

u
dIr

stu = Ia
bcd,

where Ia
bc, Ia

bcd are given by (7.1). ¤

Using factorization method, we are allowed to determine the number of indepen-
dent L3

n-invariant functions on T 2
nL1

n as the dimensions of the corresponding factor
spaces. Thus, the number of functionally independent invariants Ii

jk, Ii
jkl is given by

dim(T 1
nL1

n/L2
n) = 1

2 n2(n− 1), dim(T 2
nL1

n/L3
n) = 1

3 n2(n2 − 1),

respectively. For instance of n = 1, 2, 3, 4, the number of independent L3
n-invariant

functions on T 2
nL1

n is N = 0, 6, 33, 104, respectively.

Let us consider a left action of the general linear group L1
n on the real line R by

L1
n × R 3 (a, t) 7→ | det a−1| · t ∈ R.

The real line, endowed with this action, is an L1
n-manifold, denoted by R̃.

We also introduce the function I0 defined on T 2
nL1

n by

T 2
nL1

n 3 q 7→ I0(q) = |det qi
j(q)| ∈ R.
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Lemma 5. The function I0 : T 2
nL1

n → R̃ is a differential invariant.
Proof. Obviously, the function I0 is smooth, and for every a ∈ L3

n, and every
q ∈ T 2

nL1
n we have I0(a · q) = | det a−1| · I0(q). ¤

Corollary 4. Every differential invariant I defined on T 2
nL1

n, with values in R̃,
is the product of some scalar invariant and the function I0.

8 Canonical odd n-form on FX

In order to compare our results with [5], we recall in this Section the concept of volume
form needed for integration on not necessarily orientable manifold.

Any chart (U,ϕ), ϕ = (xi), on X, induces the fibred chart (V, ψ), ψ = (xi, xi
j), on

FX. For every frame Ξ ∈ V we have detxi
j(Ξ) 6= 0, and we can define some other

coordinates yj
k of Ξ by setting xi

jy
j
k = δi

k. We define a function V 3 Ξ 7→ | det yi
j(Ξ)| ∈

R, associated with the chart (V, ψ). With a chart (V, ψ) we also associate the object

(8.1) ω̃(V,ψ) = | det yi
j | · ϕ̃⊗ dx1 ∧ dx2 ∧ . . . ∧ dxn,

where ϕ̃ is a field of odd scalars on X, associated with (U,ϕ) (see [9]). It is easily seen
that (8.1) represent a globally defined odd base form on FX; we denote this form by
ω̃, and call it canonical odd n-form on X.

This form has the following properties:

1. For each frame field ζ : W → FX, where W is an open set on X, the pullback
ζ∗ω̃ is an odd volume form on W .

2. The construction of ω̃ does not depend on orientability of base manifold X. In
the case of orientable and oriented manifolds X, ω̃ is equivalent to an (ordinary)
n-form on FX.

3. The form ω̃ is diff X-invariant, i.e. (Fα)∗ω̃ = ω̃ for all diffeomorphisms α of
X, where Fα is the canonical lift of α to FX.

It should be pointed out that odd n-forms ζ∗ω̃ may be used as volume forms for
integration on the base manifold X. In particular, these forms naturally appears as
a components of Lagrangians for variational problems for frame fields. We discuss
these questions in the subsequent Section.

9 Second order natural Lagrangians of frames

Our aim in this Section is to characterize all Lagrangians on J2FX, invariant with
respect to all diffeomorphisms of X. First we recall main concepts to this purpose.

We present basic definitions in full generality (for odd base forms). If the under-
lying manifold X is orientable, odd base forms may be replaced by ordinary forms.

Let us denote by µ the bundle projection µ : FX → X. The canonical jet
projection µ2 : J2FX → X is, for every J2

xζ ∈ J2FX, defined by µ2(J2
xζ) = x. A

second order Lagrangian for FX is any µ2-horizontal n-form λ defined on the second
jet prolongation J2FX of FX. In a chart (V, ψ), ψ = (xi, xi

j), on FX, and the
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associated chart (V 2, ψ2), ψ2 = (xi, xi
j , x

i
j,k, xi

j,kl), on J2FX, a Lagrangian λ has an
expression

λ = L · ϕ̃⊗ ω0,

where ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn, ϕ̃ is a field of odd scalars, and L : V 2 → R is the
component of λ with respect to (V, ψ) (the Lagrange function associated with (V, ψ)).

We say that a second order Lagrangian λ is natural, if for every diffeomorphism
α : W → X, where W is an open set in X, the canonical lift Fα of α to FX is an
invariance transformation of λ, i.e.,

(J2Fα)∗λ = λ

on the corresponding open set in J2FX.
The following theorem is an application of a general result to the structure we

consider in this paper (see [10, 11]).

Theorem 3. Let X be an n-dimensional manifold. There exists a one-to-one
correspondence between natural Lagrangians on J2FX and differential invariants I :
T 2

nL1
n → R̃.

We denote by AdiffX the algebra of diff X-invariant functions on J2FX. Define
in any chart (V, ψ), ψ = (xi, xi

j), on FX, functions Li
jk, Li

jkl, by

(9.1)

Li
jk = yi

lx
s
k̃
xl

j̃,s
,

Li
jkl = yi

r(2xs
kxt

lx
r
j,st − xs

l x
t
jx

r
k,st − xs

jx
t
kxr

l,st

− 3
2yu

mxr
u,s(x

s
kxt

l̃
xm

j̃,t
+ xs

l x
t
k̃
xm

j̃,t
)− 5

2xm
j,sx

s
k̄xr

l̄,m

+ 1
2xs

jx
r
k̄,mxm

l̄,s + 2xr
j,mxs

k̄xm
l̄,s)

(compare with (7.1)). The functions Li
jk, Li

jkl, in coordinates expressed by (9.1), are
globally defined functions on J2FX.

Corollary 5. The functions Li
jk,Li

jkl ∈ AdiffX , and every function L ∈ AdiffX

can be locally written as a differentiable function of the functions Li
jk, Li

jkl, defined
by (9.1).

The following theorem is an immediate consequence of the invariance theory.

Theorem 4. Every natural Lagrangian λ on J2FX is of the form

λ = Lω̃,

where L ∈ AdiffX and ω̃ is canonical odd n-form of FX.

Remark 1. Restricting ourselves to the first order natural Lagrangians, Theorem
4 corresponds with the known results published in [5].



Second order differential invariants of linear frames 25

Acknowledgments

The author is grateful to the Slovak Research and Development Agency (Grants
MVTS SK-CZ-0081-07 and SK-CZ-0006-09), and to the Czech Grant Agency (Grant
No. 201/09/0981).

References

[1] N. Bourbaki, Gruppy i algebry Li, III. Gruppy Li, Mir, Moskva, 1976.
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[11] D. Krupka, J. Janyška, Lectures on Differential Invariants, Folia Facultatis Sci-
entiarum Naturalium Universitatis Purkynienae Brunensis, Mathematica 1, Uni-
versity J. E. Purkyně, Brno, 1990.
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