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Abstract. The aim of this paper is to show a geometrical connection
between elementary mechanical work, Newton law and Euler-Lagrange
ODEs or PDEs. The single-time case is wellknown, but the multitime
case is analyzed here for the first time. Section 1 introduces the Newton
law via a covariant vector or via a tensorial 1-form. Section 2 shows that
the unitemporal Euler-Lagrange ODEs can be obtained from mechanical
work and single-time Newton law . Section 3 describes the Noether First
Integrals in the unitemporal Lagrangian dynamics. Section 4 shows that
the multitemporal Euler-Lagrange PDEs can be obtained from the me-
chanical work and multitime Newton law . Section 5 describes the First
Integrals in multitemporal anti-trace Lagrangian dynamics.
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1 Elementary work and Newton law

Let y = (y!), I = 1,..., N, be an arbitrary point in RV. In case of forces defined on
RYN | the elementary mechanical work can be written as an 1-form w = f7(y)dy’. On
a submanifold M of dimension n in R", described by the equations 3’ = y(z), x =

(x%),i=1,...,n, we have dy’ = g—gldxl Consequently, it appears the pull-back

I
o= Bia)dr', Fi(x) = fi(y(@) 2L 2.

Single-time Newton law . Introducing the time ¢, we can write the unitemporal
Newton law on RY as equality of 1-forms

dy?
I = mcs[J—.
/ dt
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The representation of unitemporal Newton law on the submanifold M is

. J
(1.1) Fi:méjjdiay

dt 0xt’

Multitime Newton law

Introducing the multitime ¢t = (t*),a = 1,...,m, we
can write the multitemporal (tensorial) Newton law as equality of 1-forms

a2yJ
= mér ;6" ‘
f1 110 s 5if
The representation multitemporal Newton law on the submanifold M is

An anti-trace of the force F; is the Newton tensorial 1-form

2,1 J
(1.2) Fo = may 008 089

deod o = P

2 Single-time Euler-Lagrange ODEs obtained from
mechanical work

Looking at the Newton law (1.1) and using the operator 2

4> we observe the identity
dy" oy’ _d -IayJ . d oy’
0 et = a \Y B ) O ar o
or otherwise r oyt o 5 ;
dy” dy d -19Y -1 dy
orj——=—=—19¢ — | — 4 -,
Moat o dt ( 179 Gy 19 oxidt
Consequently
F_d (. oy 0y
m o dt <5Uy oxi ) o179 oz’
Since ! = %

I . I - T
_#% the Jacobian matrix satisfies 2% = 2% Hence
ox ’ ox oz

E; d

1097 1097
i @ 19Y7\ I
= (' G ) o'
or

e (2 (o)) - (G

If we use the kinetic energy T = %51Jyny7 we can write

b dOT T
CTdt ot dxt

Now, we suppose that the pullback w = F;(z)dz® is a completely integrable (closed)
1-form, i.e., it is associated to a conservative force. Setting w = —dV = —

AV g
e, e,
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F; = — 9% and introducing the Lagrangian L = T — V, it follows the Euler-Lagrange

Ox'
ODEs
d OL OL

dt it Ozt
whose solutions are the curves z(t).

Particularly, the previous theory survive for any changing of coordinates.
Summing up, for single-time case, it appears the following

:O’

Theorem. 1) A constrained conservative movement is described by the Euler-
Lagrange ODEs.

2) For conservative systems, the Euler-Lagrange ODEs represents the invariant
form of Newton law , with or without constraints.

3 First integrals in single-time Lagrangian
dynamics

If L(x(t),«(t)) is an autonomous Lagrangian, satisfying the regularity condition

det ( 6;9;8%. _7) # 0 (see the Legendrian duality), then the Hamiltonian

H(z,p) = (2, p) % (2, i, p)) — L(z, (2. ))

ozt (
or shortly
H(z,p) = pii*(z,p) — L(z, p)
is a first integral both for Euler-Lagrange and Hamilton equations. Which chances
we have to find new first integrals?
Noether Theorem Let T(t,x) be the flow generated by the C* vector field X (z) =

(X%(x)). If the autonomous Lagrangian L is invariant under this flow, then the func-
tion

. oL
I(z, &) = @(

s a first integral of the movement generated by the Lagrangian L.

z, )X (z)

Proof. We denote x5(t) = T'(s,z(t)). The invariance of L means

0= T2 a(t), (0 om0 = o (H(6), 1)) T (o)) (1) + 2 ) () X (1)

Consequently, by the derivation formulas and by the Euler-Lagrange equations, we
find _
oL axX*

(x,x)) Xi(x) + %(x,:c)%(x)x]

dl . d OL
G060 = (555

- (jtgf (2, ) = Sf Ws)) Xi(z) = 0.

In this way, the function I(z, %) is a first integral.
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4 Multitime Euler-Lagrange PDEs obtained from
the mechanical work

We start from the Newton law (1.2). Now we use the identity

oyl oy’ oy’ oy’ oy’ Ay
of3 — o _ op
01307 G otP Ba (5”5 OtP 9 ) 01507 5y Da (&;z)

or otherwise

1 I J I J
—F7, =D, (5U§058y6y> _(5”505% 8. (8y)
m

otP ozt OtP Ozt \ Ot™
Since )
87311 B oy’ ozt
otr Ozt ot
the Jacobian matrix satisfies "
oyl _ oy’
oz Qxt
It follows
oy’ oy’ oyl 0 (oy’
T A o3 A o3 A
an(s'y = a (m51J§ 8#’ o ; 5’7) m51J5 atﬁ (9171 ot (S,Y
or
oyl oy 0 [m oy’ oy’
F26) = Dy | mép ;078 = 2062 | — — | =6,,077 =2 =5
iy <m L0 98 921 ) T 9xi \ 2 atP ot v
or

o (m oy’ oy’ a (m oy’ oy’
o SA _ oB — oI
Fiaty = Da (ax; (2 o110 508 o )) D (2 0155 55 o)

Contracting A with « and o with ~, we find

o (m oy’ oy’ 0 oy’ oy’
o B2 ZId VBZI_ZTI
Fio = Fi=Da (az( 01197 545 am)) axz( 0110 58 o )

If we use the multitemporal kinetic energy

oy" oy’

0 vB8ZI
51 10 50 o

then we can write

or  oT
YOzt Oxt’
Now, we suppose that the pullback w = F;(x)dxz® is a completely integrable (cl_osed)
1-form, i e it is associated to a conservative force. Setting w = —dV = BV zdz’, i

F;, = 6 V. and introducing the Lagrangian L = T — V, it follows the multztempoml
FEuler-Lagrange PDFEs

Fi=D

oL 9L
“Ozi,  Oxt
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whose solutions are m-sheets x(t).
Particularly, the previous theory survive for any changing of coordinates.
Summing up, for multitime case, it appears the following

Theorem. 1) A constrained conservative movement is described by the Euler-
Lagrange PDEs.

2) For conservative systems, the Euler-Lagrange PDEs represents the invariant
form of Newton law , with or without constraints.

5 First integrals in multitime Lagrangian dynamics

An autonomous multitime Lagrangian is a function of the form L(x,z.). We recon-
sider the multitime anti-trace Euler-Lagrange PDEs ([4], [5])

oL oL

—6) —Dg=— =0 At—E - L
dxi P s ozt ’ ( )
in order to introduce multitemporal anti-trace Hamilton PDEs. Starting from the
Lagrangian L(z,z~(x,p)), satisfying the regularity condition

2
det 57L #0
O, 0}y
(see the Legendrian duality), define the Hamiltonian

H(w,p) = 4 (0. 0) o (i, 2,)) — L, 24 ()

e}

or shortly
H(x,p) = pf‘x’a(x,p) - L(xvp)

Theorem (multitime anti-trace Hamilton PDEs) Let x(-) be a solution of
multitemporal anti-trace Euler-Lagrange PDEs (At—E—L). Define p(-) = (pf(+)) via
Legendrian duality. Then the pair x(-),p(+)) is a solution of multitemporal anti-trace
Hamilton PDEs

0 )= gp?(xm,p(t)), O (1) = a5 22 1), 00 (At )

Moreover, if the Lagrangian L(x, x~(z,p)) is autonomous, then the Hamiltonian H (x,p)
is a first integral of the system (At-H).

Here we have a system of nm(m + 1) PDEs of first order with n(1 +m) unknown
functions z°(-), p2(-).

Proof.: We find
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By hypothesis p?(t) = 2L (z(t), z,(t)) if and only if gTroi(t) = x4 (z(t),p(t)). Conse-

7
ozl

quently, multitemporal anti-trace Euler-Lagrange PDEs (At — E — L) imply

= 05 G (w(t), 24 (x(2), p(t))) = —05 Gok (2(2), p(1)),
i.e., we find the multitemporal anti-trace Hamilton PDEs on the second place,

008 1) = 03 21 (a(0),pla).

Moreover, the equality %(x,p) = a¢ (x,p) produces gTIi(m(t),p(t)) =zt (2(t), p(t)).
On the other hand, p¥(t) = gl_Li (x(t),z4(t)) and so z4(t) = zo(x(t),p(t)). In this
way, it appears the multitemporal anti-trace Hamilton PDEs on the first place,

02" OH

w(t) = —5(x(t),p(t)).

Op;

Since the Hamiltonian is autonomous, using multitemporal anti-trace Hamilton
PDEs, we find ‘
_ OH 9z'  OH op)
C 0zt ot Op) ot
If the Lagrangian is autonomous, then the Hamiltonian is a first integral both for

multitemporal anti-trace Euler-Lagrange PDEs and multitemporal anti-trace Hamil-
ton PDEs. Which chances we have to find new first integrals?

Theorem Let T(t,z) be the m-flow generated by the C' wector fields X, (x) =
(X% (z)). If the autonomous Lagrangian L is invariant under this flow, then the
function

D H

oL -
I(z,2,) = @(LIW)XZB(I)
s a first integral of the movement generated by the Lagrangian L via multitemporal
anti-trace Euler-Lagrange PDEs.

Proof. We denote z;(t) = T'(s,z(t)). The invariance of L means

oL 0X i, OL ;
@(x(t),xy(t)) 57 (2(0)2a(t)+55(2(t), 24 ()Xo (2(2))-

O = DaL(xs (t)a ‘rs’y(t)”S:O =

Consequently, by derivation formulas and by multitemporal anti-trace Euler-Lagrange
PDEs, we find

) 0X? )
Dal(2(t), . (1)) = (Dagjgﬁu,m) Xj(a) + %(x,%)axf(x)wa

oL oL .

In this way, the function I(z,z,) is a first integral.
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6 Conclusion

The results explained in the previous sections show that the Euler-Lagrange ODEs
or PDEs, for the Lagrangian L = T — V, can be obtained using the elementary
mechanical work, Newton law and techniques from differential geometry. On the
other hand, the Euler-Lagrange ODEs or PDEs are usually introduced via variational
calculus [16]. Tt follows that the conservative Newton law is invariant representable
as Euler-Lagrange equations.

Other results regarding the multitemporal Euler-Lagrange or Hamilton PDEs can
be found in our papers [2]-[15].

Acknowledgements. Partially supported by University Politehnica of Bucharest,
and by Academy of Romanian Scientists.

References

[1] A.Pitea, Null Lagrangian forms on 2-nd order jet bundles, J. Adv. Math. Studies,
3, 1 (2010), 73-82.

[2] A. Pitea, C. Udriste, St. Mititelu, PDI& P D E-constrained optimization problems
with curvilinear functional quotients as objective vectors, Balkan J. Geom. Appl.
14, 2 (2009), 75-88.

[3] C. Udriste, Multi-time mazimum principle, Short Communication, International
Congress of Mathematicians, Madrid, August 22-30, ICM Abstracts, 2006, p. 47,
Plenary Lecture at 6-th WSEAS International Conference on Circuits, Systems,
Electronics, Control&Signal Processing (CSECS’07), p. 10-11 and 12-th WSEAS
International Conference on Applied Mathematics, Cairo, Egypt, December 29-
31, 2007, p. ii.

[4] C. Udriste, I. Tevy, Multi-time Euler-Lagrange-Hamilton theory, WSEAS Trans-
actions on Mathematics, 6, 6 (2007), 701-709.

[5] C. Udriste, I. Tevy, Multi-time Euler-Lagrange dynamics, Proceedings of the 7th
WSEAS International Conference on Systems Theory and Scientific Computation
(ISTASC’07), Vouliagmeni Beach, Athens, Greece, August 24-26, 2007, 66-71.

[6] C. Udrigte, Controllability and observability of multitime linear PDE systems,
Proceedings of The Sixth Congress of Romanian Mathematicians, Bucharest,
Romania, June 28 - July 4, 2007, vol. 1, 313-319.

[7] C. Udriste, Multi-time stochastic control theory, Selected Topics on Circuits, Sys-
tems, Electronics, Control&Signal Processing, Proceedings of the 6-th WSEAS
International Conference on Circuits, Systems, Electronics, Control&Signal Pro-
cessing (CSECS’07), Cairo, Egypt, December 29-31, 2007, 171-176.

[8] C. Udriste, Finsler optimal control and Geometric Dynamics, Mathematics and
Computers in Science and Engineering, Proceedings of the American Conference
on Applied Mathematics, Cambridge, Massachusetts, 2008, 33-38.

[9] C. Udriste, Lagrangians constructed from Hamiltonian systems, Mathematics a
Computers in Business and Economics, Proceedings of the 9th WSEAS Inter-
national Conference on Mathematics a Computers in Business and Economics
(MCBE-08), Bucharest, Romania, June 24-26, 2008, 30-33.



Elementary work, Newton law and Fuler-Lagrange equations 107

[10] C. Udriste, Multitime controllability, observability and bang-bang principle, Jour-
nal of Optimization Theory and Applications 139, 1(2008), 141-157.

[11] C. Udrigte, L. Matei, Lagrange-Hamilton Theories (in Romanian), Monographs
and Textbooks 8, Geometry Balkan Press, Bucharest, 2008.

[12] C. Udriste, O. Dogaru, I. Tevy, Null Lagrangian forms and Euler-Lagrange PDEs,
J. Adv. Math. Studies, 1, 1-2 (2008), 143 - 156.

[13] C. Udrigte, Simplified multitime maximum principle, Balkan J. Geom. Appl. 14,
1 (2009), 102-119.

[14] C. Udrigte, Nonholonomic approach of multitime mazimum principle, Balkan J.
Geom. Appl. 14, 2 (2009), 111-126.

[15] C. Udrigte, I. Tevy, Multitime Linear-Quadratic Regulator Problem Based on
Curvilinear Integral, Balkan J. Geom. Appl. 14, 2 (2009), 127-137.

[16] E. T. Whittaker, A Treatise on The Analytical Dynamics of Particles & Rigid
Bodies, Cambridge University Press, 1989.

Authors’ addresses:

Constantin Udrigte, Oltin Dogaru and Ionel Tevy

University Politehnica of Bucharest, Faculty of Applied Sciences,
Department of Mathematics-Informatics I,

313 Splaiul Independentei, 060042 Bucharest, Romania.

E-mail: udriste@mathem.pub.ro, anet.udri@yahoo.com;
oltin.horia@yahoo.com; vascatevy@yahoo.fr

Dumitru Bala

Drobeta Turnu Severin, 4 Aleea Privighetorilor,
Bl. T3, Sc. 3, Ap. 14, Jud. Mehedinti, Romania.
E-mail: dumitru_bala@yahoo.com



