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Abstract. We recall the notion of a nonholonomic system by means of
an example of classical mechanics, namely the vertical rolling disk. For
a general mechanical system with nonholonomic constraints, we present
a Lagrangian formulation of the nonholonomic and vakonomic dynamics
using the method of anholonomic frames. We use this approach to deal
with the issue of when a nonholonomic system can be interpreted as the
restriction of a special type of Euler-Lagrange system.
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1 The vertical rolling disk

In this introductory section, we first recall how the notion of a nonholonomic system
appears in classical mechanics. We do so by means of a typical problem from rigid
body dynamics, namely that of a homogeneous disk, such as a coin, rolling on a
horizontal plane while remaining vertical. Let the notations be as in the figure. If C
is the centre of mass of the disk, the equations of motion are given by Euler’s laws:

{
M r̈C = F,

L̇C = MC .

There are three forces working on the disk: gravity Mg, a reaction force R1 due to
the disk’s contact with the horizontal floor in a point A and a reaction force R2 in C
which ensures that the disk remains in a vertical position during the motion.

We can choose the coordinates of the system as follows. Let (x, y) be the Cartesian
coordinates of the centre of mass C. Since we assume the coin to remain vertical
during the motion, the z-component of the centre of mass is equal to R, the radius
of the disk. In fact, the condition z = R is an example of a holonomic constraint,
but we will not go deeper into that matter here. Further, let ϕ be the angle of
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the disk with the (x, z)-plane, and θ be the angle of a fixed line on the disk with a
vertical line. To completely determine the motion of the disk one needs to know at
each instant the position of the centre of mass rC(t) and the amount the disk has
rotated from its initial position. This last quantity is completely determined by the
angular velocity ωωω, which is here just a superposition of two elementary rotations
ωωω = θ̇eφ + ϕ̇ez. Here, eφ is a unit vector that lies in the direction perpendicular to
the vertical plane of the disk. Also the reaction force R2 lies in that direction, i.e.
R2 = ρeϕ. With that, and the first of Euler’s laws, the first reaction force must be of
the form R1 = ν1ex + ν2ey + Mgez. We can now write Euler’s laws in the following
equivalent fashion: {

M r̈C = Mg + R1 + R2,
d
dt (IC(ωωω)) = (−Rez)×R1.

When projected to the coordinate axes, these equations become

Mẍ = ν1 − ρ sin(ϕ)θ̇,

Mÿ = ν2 + ρ cos(ϕ)θ̇,

Iθ̈ = −Rν1 cos(ϕ)−Rν2 sin(ϕ),
Jϕ̈ = 0,

Iθ̇ϕ̇ = −Rν2 cos(ϕ) + Rν1 sin(ϕ).

From these equations, one wishes to determine (x(t), y(t), θ(t), ϕ(t)). However, the
dynamical evolution of the reaction forces ρ(t) and (ν1(t), ν2(t)) is unknown. We can
use the equation in θ̇ϕ̇ to eliminate ρ from the picture: if we put λ1 = ν1 − ρ sin(ϕ)θ̇
and λ2 = ν2 + ρ cos(ϕ)θ̇, the first equations become

(1.1) Mẍ = λ1, Mÿ = λ2, Iθ̈ = −Rλ1 cos(ϕ)−Rλ2 sin(ϕ), Jϕ̈ = 0.

Once all variables have been determined, we can determine ρ from the equation ρRθ̇ =
Iθ̇ϕ̇ + RM cos(ϕ)ÿ −RM sin(ϕ)ẍ.

Obviously we cannot solve equations (1.1) unless we assume an extra hypothesis
in the model. One typical type of extra assumption is the one where one assumes
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that the disk rolls fast enough on the plane to prevent slipping: that is, one assumes
that during the motion the velocity of the instantaneous contact point A vanishes,
ṙA = 0, or, equivalently, ṙC = ωωω × AC, which, in the chosen coordinates amounts
to ẋ = R cos(ϕ)θ̇ and ẏ = R sin(ϕ)θ̇. The assumption ‘rolling without slipping’ is
a typical example of a nonholonomic constraint. This means that it is a velocity-
dependent constraint which cannot be integrated to a constraint that depends only
on the position of the body.

With the extra assumption, we can easily eliminate the reaction forces (λ1, λ2)
from the equations. In the end, the equations one needs to solve are simply

(1.2) θ̈ = 0, ϕ̈ = 0, ẋ = R cos(ϕ)θ̇, ẏ = R sin(ϕ)θ̇.

This is a mixed set of first- and second-order ordinary differential equations. One
easily verifies that its solution set is given by θ(t) = uθt + θ0 and ϕ(t) = uϕt + ϕ0. If
uϕ 6= 0, then the disk follows a circular path:

x(t) =
(

uθ

uϕ

)
R sin(ϕ(t)) + x0 and y(t) = −

(
uθ

uϕ

)
R cos(ϕ(t)) + y0.

On the other hand, if uϕ = 0, the disk evolves on a fixed line:

x(t) = R cos(ϕ0)uθt + x0 and y(t) = R sin(ϕ0)uθt + y0.

Nonholonomic constraints arise naturally in the context of mechanical systems
with rigid bodies rolling without slipping over a surface. Another typical example is
the Chaplygin sleigh. This is a rigid body where one of the contact points with the
surface forms a knife edge. The nonholonomic constraint assumed is that there is
no motion perpendicular to the knife edge, or that the velocity of the contact point
remains in the direction of a fixed axis of the body. Typical engineering problems that
involve such constraints arise for example in robotics, where the wheels of a mobile
robot are often required to roll without slipping, or where one is interested in guiding
the motion of a cutting tool. Basic reference books on nonholonomic systems are
[1, 3, 6].

2 The vertical rolling disk as the restriction of a
Lagrangian system

The main question we wish to address in this section is the following. Can the
solutions of the nonholonomic problem of the vertical rolling disk be interpreted as
(part of the) solutions of the Euler-Lagrange equations,

d

dt

(
∂L̃

∂q̇j

)
− ∂L̃

∂qj
= 0,

of a regular Lagrangian L̃ in (qi) = (x, y, ϕ, θ)?
A Lagrangian L̃ is regular if the matrix of functions

(
∂2L̃

∂q̇i∂q̇j

)
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is everywhere non-singular. In that case, the Euler-Lagrange equations can be writ-
ten explicitly in the normal form of a system of second-order ordinary differential
equations

q̈i = f i(q, q̇).

In what follows, we will always interpret the solutions of the Euler-Lagrange equations
as defining (base) integral curves of the second-order differential equations field Γ̃,
given by

Γ̃ = q̇i ∂

∂qi
+ f i(q, q̇)

∂

∂q̇i
.

Remark that this vector field is completely determined by the assumption that it is
a second-order differential equations field (i.e. that its coefficients along ∂/∂qi are
exactly the velocities q̇i) and by the equations

(2.1) Γ̃

(
∂L̃

∂q̇i

)
− ∂L̃

∂qi
= 0.

The fact that, after eliminating the reaction forces from (1.1), we end up with a
mixed set of first-and second-order differential equations indicates that the equations
of motion of a nonholonomic system cannot be viewed an sich as the Euler-Lagrange
equations of some regular Lagrangian. In fact, the principle that governs nonholo-
nomic systems is rather an extended version of Hamilton’s principle. Consider a
mechanical system, with n generalized coordinates (qi), subject to forces that can
be derived from a potential V (q). If T (q, q̇) stands for the kinetic energy of the sys-
tem, the function L(q, q̇) = T (q, q̇) − V (q) is called the Lagrangian of the system.
Suppose that the system is subject to m additional nonholonomic constraints of the
form ab

j(q)q̇
j = 0, b = 1, . . . ,m < n. Then, the (extended) principle of Hamilton (see

e.g. [1]) postulates that the trajectory q(t) between times t1 and t2 is such that the
constraints are satisfied and that

δ

∫ t2

t1

L(q(t), q̇(t))dt = 0,

for all variations satisfying ab
jδq

j = 0. One easily demonstrates that these trajectories
are exactly the solutions of the equations





ab
j(q) q̇j = 0,
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= λba

b
j .

These equations define a system of n + m differential equations that can be solved
for the n + m unknown functions qj(t) and λa(t). The terms λba

b
j in the right-hand

side are related to the reaction forces. As before, the multipliers λa can easily be
eliminated from the picture.

In case of the vertical rolling disk, the Lagrangian is (up to a constant)

(2.2) L = T =
1
2
M ṙ2

C +
1
2
IC(ωωω,ωωω) =

1
2
M(ẋ2 + ẏ2) +

1
2
Iθ̇2 +

1
2
Jϕ̇2.
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Next to the constraints, the equations of motion are therefore




d

dt

(
∂T

∂ẋ

)
− ∂T

∂x
= λ1,

d

dt

(
∂T

∂ẏ

)
− ∂T

∂y
= λ2,

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= −λ1R cos(ϕ)− λ2R sin(ϕ),

d

dt

(
∂T

∂ϕ̇

)
− ∂T

∂ϕ
= 0,

which is obviously equivalent to the system (1.1).
After the elimination of the unknown λa we arrive at the mixed set of coupled

first- and second-order equations (1.2). There are, however, infinitely many systems
of second-order equations (only), whose solution set contains the solutions of the
nonholonomic equations. For example, the second-order system

(2.3) θ̈ = 0, ϕ̈ = 0, ẍ = −R sin(ϕ)θ̇ϕ̇, ÿ = R cos(ϕ)θ̇ϕ̇

has, for uϕ 6= 0, the solutions θ(t) = uθt + θ0, ϕ(t) = uϕt + ϕ0 and

x(t) =
(

uθ

uϕ

)
R sin(ϕ(t)) + uxt + x0 and y(t) = −

(
uθ

uϕ

)
R cos(ϕ(t)) + uyt + y0.

By restricting our attention only to those solutions for which ẋ = cos(ϕ)θ̇ and ẏ =
sin(ϕ)θ̇ (i.e. ux = uy = 0), we get back the solutions of the nonholonomic equations
(and similarly for solutions with uϕ = 0). Some other examples of second-order
systems with a similar property are the systems

(2.4) θ̈ = 0, ϕ̈ = 0, ẍ = − sin(ϕ)
cos(ϕ)

ẋϕ̇, ÿ =
cos(ϕ)
sin(ϕ)

ẏϕ̇

and

(2.5) θ̈ = 0, ϕ̈ = 0, ẍ = −ẏϕ̇, ÿ = ẋϕ̇.

One can, of course, think of many more systems which show that behavior.
The question whether any of the above second-order systems is equivalent to a

variational system is an example to the so-called ‘inverse problem of the calculus of
variations’ (see e.g. [7]). From [2] we know that there is no regular Lagrangian for
the system (2.3) and that

L̃ = 1
2 ϕ̇2 +

√
I + MR2

2

(
θ̇2

ϕ̇
+

ẋ2

cos(ϕ)ϕ̇
+

ẏ2

sin(ϕ)ϕ̇

)

and

L̃ = 1
2 ϕ̇2 + 1

2 θ̇2 −
√

I + MR2

2

(
ẋ2

cos(ϕ)ϕ̇
+

ẏ2

sin(ϕ)ϕ̇

)
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are both (independent) Lagrangians for the system (2.4). A result from [8] shows that

L̃ = 1
2 ϕ̇2 + 1

2 θ̇2 +
1
2ϕ̇

(
(ẋ2 − ẏ2) cos(ϕ) + 2ẋẏ sin(ϕ)

)

is a regular Lagrangian for the third system.
This way of looking for Lagrangians has some serious disadvantages. First of all,

there are infinitely many of those ‘associated’ second-order systems. If we use the
methods of the inverse problem to decide whether one of them is not variational,
there is no guarantee that there will not be another one which is. Secondly, it is
extremely difficult to solve the inverse problem, even for a particular case. In most
cases, the success of finding a Lagrangian relies on making a number of educated
guesses.

It would therefore be better if there were a direct way to construct a Lagrangian
for a given nonholonomic system. It seems that such a construction method is at the
basis of an observation from Fernandez and Bloch in [5]. Among other things, they
show that the solution set of the Euler-Lagrange equations of the regular Lagrangian

L̃ = − 1
2M(ẋ2 + ẏ2) + 1

2Iθ̇2 + 1
2Jϕ̇2 + MRθ̇(cos(ϕ)ẋ + sin(ϕ)ẏ)

is such that, when restricted to the constraints, it is the solution set of the nonholo-
nomic equations (1.1). This is easy to see. The Euler-Lagrange equations of L̃ are
equivalent with

Jϕ̈ = −MR[sin(ϕ)ẋ− cos(ϕ)ẏ]θ̇,

(I + MR2)θ̈ = MR[sin(ϕ)ẋ− cos(ϕ)ẏ]ϕ̇,

(I + MR2)ẍ = −R(I + MR2) sin(ϕ)θ̇ϕ̇ + MR2 cos(ϕ)[sin(ϕ)ẋ− cos(ϕ)ẏ]ϕ̇,

(I + MR2)ÿ = R(I + MR2) cos(ϕ)θ̇ϕ̇ + MR2 sin(ϕ)[sin(ϕ)ẋ− cos(ϕ)ẏ]ϕ̇.

Given that sin(ϕ)ẋ− cos(ϕ)ẏ = 0 on the constraints, these equations become on the
constraints:

θ̈ = 0, ϕ̈ = 0, ẍ = −R sin(ϕ)θ̇ϕ̇, ÿ = R cos(ϕ)θ̇ϕ̇,

which is the system (2.3) again. We had already shown that those solutions of (2.3)
which satisfy the constraints, are also solutions of the mixed system (1.2).

Contrary to the Lagrangians for the systems (2.4) and (2.5), the Lagrangian of
Fernandez and Bloch has a very suggestive form. If we set v1 = ẋ − R cos(ϕ) θ̇ and
v2 = ẏ −R sin(ϕ) θ̇, the Lagrangian L̃ becomes

(2.6) L̃ = L− ∂L

∂ṡa
va, sa = (x, y),

where L stands here for the nonholonomic Lagrangian (2.2) of the disk. This brings
some immediate questions to mind. How general is this phenomenon? And, what are
the conditions for it to occur for an arbitrary given nonholonomic system? The above
expression of the Lagrangian looks a bit like the Lagrangian one uses for vakonomic
systems. Therefore, it will be of interest, in one of the next sections, to see the relation
of this phenomenon with the theory of vakonomic systems. A basic reference for the
theory of vakonomic systems is [9].
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3 A formulation of the nonholonomic dynamics
using anholonomic frames

We denote by Q the configuration space and TQ, its tangent bundle, the velocity
phase space. We wish to interpret the solutions of the nonholonomic equations (1.1)
as the integral curves of a vector field Γ on TQ. Moreover, we will need an expression
of that vector field in terms of an anholonomic frame.

Let us first remind the reader that there are two canonical ways to lift a vector
field X = Xi∂/∂qi on Q to one on TQ. The first lift is the complete lift

XC = Xi ∂

∂qi
+

∂Xi

∂qj
q̇j ∂

∂q̇i
,

which is a vector field whose flow consists of the tangent maps of the flow of X. The
second is the vertical lift

XV = Xi ∂

∂q̇i
.

This vector field is tangent to the fibres of τ : TQ → Q and on a particular fibre TqQ
its value is constant and coincides with X(q).

If {Xi} is a frame, that is a (possibly locally defined) basis of vector fields on Q,
then an equivalent expression for the equations (2.1) determining the Euler-Lagrange
field Γ is

Γ(XV
i (L))−XC

i (L) = 0.

The frame {Xi} is called anholonomic if the Lie brackets [Xi, Xj ] = Rk
ijXk do not

all vanish. Each frame {Xi} defines a set of quasi-velocities vi for a tangent vector
vq ∈ TqQ. They are the coefficients of the tangent vector with respect to the frame,
i.e. vq = viXi(q). Later on, we will need expressions for the derivatives of the vi

along XC
i and XV

i . In general, if [Xi, Xj ] = Rk
ijXk then

XC
i (vj) = −Rj

ikvk and XV
i (vj) = δj

i

(see [4] for details).
Let us now come back to the situation of a mechanical system that is subject

to some nonholonomic constraints. The constraints define a distribution D on Q or,
equivalently, a submanifold C of TQ. Let us choose a frame {Xi} = {Xα, Xa} of
vector fields on Q whose first m members {Xα} span D. If we decompose a general
tangent vector vq as vq = vαXα(q) + vaXa(q) (so that the quasi-velocities are now
(vα, va)), then the condition for it to lie in C is simply va = 0. Moreover, a vector
field Γ on C is tangent to C if and only if Γ(va) = 0. A vector field Γ on C is then of
second-order type (i.e. satisfies τ∗(q,u)Γ = u, for all (q, u) ∈ C) and is tangent to C if
it is of the form Γ = vαXC

α + ΓαXV
α .

We say that L is regular with respect to D if the matrix of functions
(
XV

α(XV
β (L))

)

is nonsingular on C. The following statement now easily follows (see also [4]).

Proposition 1. If L is regular with respect to D there is a unique vector field Γ on
C which is of second-order type, is tangent to C, and is such that on C
(3.1) Γ(XV

α(L))−XC
α(L) = 0.
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The vector field Γ obtained in this way defines the nonholonomic dynamics of the
constrained system. The non-zero functions

(3.2) λa = Γ(XV
a (L))−XC

a (L)

can be interpreted as the multipliers in this framework.

4 Nonholonomic systems as restricted
Euler-Lagrange systems

We now wish to come to an explication of why the construction (2.6) gives a La-
grangian for the example of the vertical rolling disk. As a first step we will establish
a set of conditions for the existence of a Lagrangian of a general form, of which the
one in (2.6) is a particular case, which has the required property. We continue to use
the notation of the previous section.

Proposition 2. If there are functions Φa defined on a neighborhood of C in TQ such
that on C

ΦaRa
αβvβ = 0 and Γ(Φa) + ΦbR

b
aαvα = λa,

where the λa are the multipliers, as given by the expression (3.2), then the nonholo-
nomic field Γ is the restriction to C of an Euler-Lagrange field of the Lagrangian
L̃ = L− Φava.

Proof. We derive the Euler-Lagrange expressions Γ(XV
i (L̃))−XC

i (L̃) for Γ with respect
to the Lagrangian L̃ = L − Φava. Recall that XC

i (vj) = −Rj
ikvk and XV

i (vj) = δj
i .

We have

XV
i (L̃) = XV

i (L)−XV
i (Φa)va − Φaδa

i ,

XC
i (L̃) = XC

i (L)−XC
i (Φa)va + ΦaRa

ijv
j ,

whence on C (where va = 0 and Γ(va) = 0)

Γ(XV
α(L̃))−XC

α(L̃) = Γ(XV
α(L))−XC

α(L)− ΦaRa
αβvβ = −ΦaRa

αβvβ ,

while

Γ(XV
a (L̃))−XC

a (L̃) = Γ(XV
a (L))−XC

a (L)− Γ(Φa)− ΦbR
b
aαvα

= λa − Γ(Φa)− ΦbR
b
aαvα.

Thus the necessary and sufficient conditions for Γ to satisfy the Euler-Lagrange equa-
tions of L̃ on C are that the equations

ΦaRa
αβvβ = 0 and Γ(Φa) + ΦbR

b
aαvα = λa

hold on C. ¤



86 T. Mestdag and M. Crampin

Notice that since Γ is tangent to C these conditions depend only on the values of
the Φa on C. Let us set Φa|C = φa. Then we could rewrite the conditions as

(4.1) φaRa
αβvβ = 0 and Γ(φa) + φbR

b
aαvα = λa,

and when they are satisfied the conclusion of the proposition holds for any extensions
Φa of the φa off C.

These conditions turn out to have an important role to play in the context of an-
other interesting problem concerning constrained systems, namely determining when
the dynamics defined in (3.1) agrees with that obtained from the so-called vakonomic
formulation of systems with nonholonomic constraints.

One way of introducing the vakonomic approach is to regard the multipliers as
additional variables. The multipliers may be regarded as the components of a 1-
form (along a certain projection) with values in D0 ⊂ T ∗Q (the annihilator of D).
Therefore, we take D0 as state space for the vakonomic system. Once {Xα, Xa} have
been chosen we can identify D0 locally with Q × Rn−m. This is the same as saying
that we fix fibre coordinates µa on D0.

The vakonomic Lagrangian L̂ is the function on TD0 = T (Q× Rn−m) given by

(4.2) L̂ = L− µava.

This is in fact a singular Lagrangian, so there is no unique Euler-Lagrange field Γ̂.
One can easily verify that such a Γ̂ can only exist on C ×TRn−m ⊂ T (Q×Rn−m). It
is therefore natural to decompose Γ̂ according to this product structure as ΓC + Γµ.
With that, the Euler-Lagrange equations of L̂ are of the form

ΓC(XV
α(L))−XC

α(L) = µaRa
αβvβ ,

ΓC(XV
a (L))−XC

a (L) = µbR
b
aαvα + Γµ(µa).

These equations will not be enough to determine both ΓC and Γµ. We will regard the
Γµ(µa) (which are just the ∂/∂µa components of Γµ) as at our disposal: then once a
choice is made for Γµ, in favorable circumstances the equations will determine ΓC .

Comparison of the Lagrangian (2.6) with the vakonomic Lagrangian (4.2) suggests
that the µa should be thought of as functions on C. This will lead to an attempt to
fix ΓC in a natural way.

From now on, we assume that a section φ of C × Rn−m → C is given, in the form
µa = φa for functions φa on C, and we restrict things to im(φ). The Euler-Lagrange
equations above, when restricted to im(φ), become

ΓC(XV
α(L))−XC

α(L) = φaRa
αβvβ ,

ΓC(XV
a (L))−XC

a (L) = φbR
b
aαβvα + Aa,

where we have written Aa for the restriction of Γµ(µa) to im(φ). We have Γ̂|im(φ) =
ΓC + Γµ where now all coefficients are functions on C. Let us set

ΓC = vαXC
α + ΓαXV

α + ΓaXV
a .

Since ΓC is not necessarily tangent to C, the functions Γa are not necessarily zero.
However, one can show that our freedom to choose Aa can be used to ensure that the
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corresponding ΓC has Γa = 0, provided a certain non-degeneracy condition holds. In
fact, if we set XV

α(XV
β (L)) = gαβ and so on, then there is a unique choice of Aa such

that Γa = 0 if (gab − gαβgaαgbβ) is nonsingular on C. If that is the case, the vector
field

ΓC = vαXC
α + ΓαXV

α

can be determined from the equations

(4.3) ΓC(XV
α(L))−XC

α(L) = φaRa
αβvβ .

We may set

ΓC(XV
a (L))−XC

a (L) = Λa = φbR
b
aαβvα + Aa.

Notice that

Γ̂(µa − φa) = Aa − ΓC(φa) = Λa − ΓC(φa)− φbR
b
aαβvα.

When we put these results together with Proposition 2 we obtain the following theo-
rem.

Theorem. Suppose that functions φa on C can be found to satisfy

φaRa
αβvβ = 0 and Γ(φa) + φbR

b
aαvα = λa.

Then

1. Γ is the restriction to C of an Euler-Lagrange field of the Lagrangian L̃ = L −
Φava defined on a neighborhood of C in TQ for any functions Φa such that
Φa|C = φa;

2. with an appropriate choice of Γµ, the vector field Γ̂ = Γ + Γµ is an Euler-
Lagrange field of the vakonomic problem with Lagrangian L − µava, which is
tangent to the section φ : µa = φa.

One kind of system for which this theory works in a particularly straightforward
way is the so-called Chaplygin system. For such systems, the Lagrangian is invariant
under the action of a Lie group G and the constraint distribution is a horizontal
distribution for the principal bundle Q → Q/G. We may then take the vector fields
{Xa} of the frame to be the fundamental vector fields of the action, in which case
XC

a (L) = 0, and XV
a (L) = pa, the component of momentum corresponding to Xa for

the unconstrained problem. The multiplier equation is just Γ(pa) = λa. If in addition
we take the remaining vector fields {Xα} of the frame to be G-invariant then Ri

aα = 0.
We then have a natural choice for φ, namely φa = pa; with this choice the condition
Γ(φa) + φbR

b
aαvα = λa is automatically satisfied, so in order for the conditions of the

theorem to be satisfied it is enough that paRa
αβvβ = 0.

For more details, and some deeper analysis of the issues concerning the consistency
of nonholonomic and vakonomic dynamics, we refer to [4].
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5 The vertical rolling disk again

We conclude by showing explicitly how this theory applies to the example with which
we began.

In the special case of the vertical rolling disk, we can use the anholonomic frame
given by

{Xα} =
{

X1 =
∂

∂ϕ
,X2 =

∂

∂θ
+ R cos(ϕ)

∂

∂x
+ R sin(ϕ)

∂

∂y

}
and {Xa} =

{
∂

∂x
,

∂

∂y

}
.

The only non-vanishing bracket is then

[X1, X2] = − sin(ϕ)
∂

∂x
+ cos(ϕ)

∂

∂y
.

The quantities v1 = ẋ − R cos(ϕ) θ̇ and v2 = ẏ − R sin(ϕ) θ̇ introduced at the end
of Section 2 are the quasi-velocities va for the given frame; the constraints are just
v1 = v2 = 0.

The vertical rolling disk is a typical example of a Chaplygin system. The Lie
group is simply R2 and the action is given by translations in the direction of the
(x, y)-coordinates. As a consequence, ∂L/∂x = 0 and ∂L/∂y = 0. As we pointed
out above, it follows that λx = Γ(∂L/∂ẋ) and λy = Γ(∂L/∂ẏ). Since moreover all
Rb

aα = 0, a perfect candidate for a section φ is therefore simply

φx =
∂L

∂ẋ
and φy =

∂L

∂ẏ
.

With this section the conditions φaRa
αβvβ = 0 in the theorem become

{ −Mẋ sin(ϕ)θ̇ + Mẏ cos(ϕ)θ̇ = 0,

Mẋ sin(ϕ)ϕ̇−Mẏ cos(ϕ)ϕ̇ = 0.

They are clearly always satisfied on C. We can continue to use ∂L/∂ẋ and ∂L/∂ẏ for
the Φa, and so obtain the Lagrangian (2.6).

This explains the observation about the vertical rolling disk in [5].
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