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Abstract. In this paper we establish the Lp-Minkowski inequality and
Lp-Aleksandrov-Fenchel type inequality for Lp-dual mixed volumes of star
duality of mixed intersection bodies, respectively. As applications, we get
some related results. The paper new contributions that illustrate this du-
ality of projection and intersection bodies will be presented.
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1 Introduction

The intersection operator and the class of intersection bodies were defined by Lutwak
[23]. The closure of the class of intersection bodies was studied by Goody, Lutwak,
and Weil [12]. The intersection operator and the class of intersection bodies played
a critical role in Gardner [8] and Zhang [32] solution of the famous Busemann-Petty
problem in three dimensions and four dimensions, respectively. (See also Gardner,
Koldobsky, Schlumprecht [11].)

Just as the period from the mid 60’s to the mid 80’s was a time of great advances
in the understanding of the projection operator and the class of projection bodies,
during the past 20 years significant advances have been made in our understanding of
the intersection operator and the class of intersection bodies by Koldobsky, Campi,
Goodey, Gardner, Lutwak, Grinberg, Fallert, Weil, Zhang, Ludwig and others (see,
e.g.,[1]-[7], [9]-[10], [12]-[23], [29], [32]-[34].)

As Lutwak [23] shows (and as is further elaborated in Gardner’s book [9]), there
is a duality between projection and intersection bodies (that at present is not yet
understood). Consider the following illustrative example: It is well known that the
projections (onto lower dimensional subspaces) of projection bodies are themselves
projection bodies. Lutwak conjectured the ”dual”: When intersection bodies are in-
tersected with lower dimensional subspaces, the results are intersection bodies (within
the lower dimensional subspaces). This was proven by Fallert, Goodey and Weil [4]. In
this paper new contributions that illustrate this mysterious duality will be presented.
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In [26] (see also [24]-[25]), Lutwak introduced mixed projection bodies and derived
their fundamental inequalities. Following Lutwak, Zhao and Leng [34] established
polar forms of Lutwak’s mixed projection bodies inequalities. In this work we shall
derive, for star duality of intersection bodies, the analogous inequalities for polar
mixed projection bodies inequalities.

The setting for this paper is n-dimensional Euclidean space Rn(n > 2). Let Cn

denote the set of non-empty convex figures(compact, convex subsets) and Kn denote
the subset of Cn consisting of all convex bodies (compact, convex subsets with non-
empty interiors) in Rn. We reserve the letter u for unit vectors, and the letter B
is reserved for the unit ball centered at the origin. The surface of B is Sn−1. For
u ∈ Sn−1, let Eu denote the hyperplane, through the origin, that is orthogonal to u.
We will use Ku to denote the image of K under an orthogonal projection onto the
hyperplane Eu. We use V (K) for the n-dimensional volume of convex body K. The
support function of K ∈ Kn, h(K, ·), defined on Rn by h(K, ·) = Max{x · y : y ∈ K}.
Let δ denote the Hausdorff metric on Kn; i.e., for K, L ∈ Kn, δ(K,L) = |hK − hL|∞,
where | · |∞ denotes the sup-norm on the space of continuous functions, C(Sn−1).

Associated with a compact subset K of Rn, which is star-shaped with respect
to the origin, its radial function ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1, by
ρ(K,u) = Max{λ ≥ 0 : λu ∈ K}. If ρ(K, ·) is positive and continuous, K will be
called a star body. Let ϕn denote the set of star bodies with 0 in Rn.

2 Background material and main results

2.1 Star duality and polar

In [29], Moszyńska introduced the notion of star duality of star body(See also
Moszyńska [30]) as follows.

For the star bodies with 0 in the kernel and positive continuous radial function,
such a duality ◦ was introduced; it is called the star duality.

Let i : Rn \ 0 −→ Rn \ 0 be inversion with respect to Sn−1: i(x) := x
‖x‖2 .

Definition 2.1 For every K ∈ ϕn, K◦ := cl(Rn \ i(K)).
Definition 2.2 For every K ∈ ϕn,

(2.1) ρ(K◦, u) =
1

ρ(K, u)
.

If K is a convex body that contains the origin in its interior, the polar body of K,
K∗, was defined by K∗ := {x ∈ Rn : x · y ≤ 1, y ∈ K}.

2.2 Lp-dual mixed volumes

The classical dual mixed volume of star bodies K1, . . . , Kn is written as[27]

Ṽ (K1, . . . , Kn). If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the dual mixed
volumes is written as Ṽi(K,L). The dual mixed volumes Ṽi(K,B) is written as W̃i(K).
If Ki ∈ ϕn(i = 1, 2, . . . , n−1), then the dual mixed volume of Ki∩Eu(i = 1, 2, . . . , n−
1) will be denoted by ṽ(K1 ∩ Eu, . . . , Kn−1 ∩ Eu). If K1 = . . . = Kn−1−i = K and
Kn−i = . . . = Kn−1 = L, then ṽ(K1∩Eu, . . . , Kn−1∩Eu) is written ṽi(K∩Eu, L∩Eu).
If L = B, then ṽi(K ∩ Eu, B ∩ Eu) is written w̃i(K ∩ Eu).
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Let K, L ∈ ϕn and p 6= 0, define a star body K+̃pL by

(2.2) ρ(K+̃pL, u)p = ρ(K,u)p + ρ(L, u)p.

The operation +̃p is called Lp-radial addition. The radial addition +̃ is the special
case of the Lp-radial addition.

The Lp-dual volume was defined:

(2.3) Ṽp(K) =
1
n

∫

Sn−1
ρ(K,u)pdS(u), −∞ < p < +∞.

2.3 Intersection bodies and its star duality

For K ∈ ϕn, there is a unique star body IK whose radial function satisfies for
u ∈ Sn−1,

(2.4) ρ(IK, u) = v(K ∩ Eu),

It is called the intersection bodies of K. From a result of Busemann, it follows that
IK is a convex if K is convex and centrally symmetric with respect to the origin.
Clearly any intersection body is centered. Volume of the intersection bodies is given
by V (IK) = 1

n

∫
Sn−1 v(K ∩ Eu)ndS(u).

The mixed intersection bodies of K1, . . . , Kn−1 ∈ ϕn, I(K1, . . . ,Kn−1), whose
radial function is defined by

(2.5) ρ(I(K1, . . . , Kn−1), u) = ṽ(K1 ∩ Eu, . . . , Kn−1 ∩ Eu),

where ṽ is (n− 1)-dimensional dual mixed volume.
If K ∈ ϕn with ρ(K, u) ∈ C(Sn−1), and i ∈ R is positive, the intersec-

tion body of order i of K is the centered star body IiK such that ρ(IiK) =
1

n−1

∫
Sn−1 ρ(K,u)n−i−1dS(u), for u ∈ Sn−1, where IiK = I(K, . . . , K︸ ︷︷ ︸

n−i−1

, B, . . . , B︸ ︷︷ ︸
i

). If

K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = L, then I(K1, . . . , Kn−1) is written
as Ii(K,L). If L = B, then Ii(K, L) is written as IiK is called the ith intersection
body of K. For I0K simply write IK.

The star duality of the mixed intersection bodies of K1, . . . , Kn−1 ∈ ϕn will be
written as I◦(K1, . . . , Kn−1). If K1 = · · · = Kn−i−1 = K,Kn−i = · · · = Kn−1 = L,
then I◦(K1, . . . , Kn−1) is written as I◦i (K,L). If L = B, then I◦i (K, L) is written as
I◦i K is called the star duality ith intersection body of K. For I◦0K simply write I◦K.

The following property will be used later: If K,L, M, K1, . . . , Kn−1 ∈ ϕn, and
λ, µ, λ1, . . . , λn−1 > 0, then

(2.6) I(λK+̃µL,M) = λI(K, M)+̃µI(L, M), M = (K1, . . . ,Kn−2).

In this paper we establish Minkowski-type inequality and Aleksabdrov-Fenchel-
type inequality for star duality Lp-dual mixed volumes of mixed intersection bodies,
respectively.
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3 The Minkowski inequality for Lp-dual mixed volumes of star duality
of mixed intersection bodies

If K, D ∈ ϕn, then the dual Quermassintegral sum function of star bodies K and
D, Sw̃i(K, D), is defined by[36]

Sw̃i(K, D) = W̃i(K) + W̃i(D), (0 ≤ i ≤ n− 1).

Similarly, Lp-dual volume sum function of star bodies K and D, Sṽp
(K,D), is

denoted as
Sṽp

(K, D) = Ṽp(K) + Ṽp(D), (−∞ < p < ∞).

Theorem 3.1 Let K, L, D, D′ ∈ ϕn. Let D′ be a dilates copy of D, and −∞ <
p < 0.

(i) If 0 < j < n− 1, then

(3.1) Sṽp(I◦j (K,L), I◦j (D, D′))n−1 ≤ Sṽp(I◦K, I◦D)n−j−1Sṽp(I◦L, I◦D′)j ,

with equality if and only if K and L are dilates.
(ii) If j > n− 1, then

(3.2) Sṽp(I◦j (K,L), I◦j (D, D′))n−1 ≥ Sṽp(I◦K, I◦D)n−j−1Sṽp(I◦L, I◦D′)j ,

with equality if and only if K and L are dilates.
The following Lemmas will be required to prove Theorem 3.1.
Lemma 3.1 If K,L ∈ ϕn, −∞ < p < ∞, then

(3.3) Ṽp(I◦K) =
1
n

∫

Sn−1
v(K ∩ u)−pdS(u),

(3.4) Ṽp(I◦j K) =
1
n

∫

Sn−1
w̃j(K ∩ u)−pdS(u),

(3.5) Ṽp(I◦j (K, L)) =
1
n

∫

Sn−1
ṽj(K ∩ u, L ∩ u)−pdS(u).

Proof From (2.1), (2.3) and (2.5), we obtain that

Ṽp(I◦j (K,L)) =
1
n

∫

Sn−1
ρ(I◦j (K, L), u)pdS(u)

=
1
n

∫

Sn−1
ρ(Ij(K,L), u)−pdS(u)

=
1
n

∫

Sn−1
ṽj(K ∩ u, L ∩ u)−pdS(u).

The proof of the identity (3.5) is complete.
Taking for K = L in (3.5), (3.5) changes to (3.3). Taking for L = B in (3.5), (3.5)

changes to (3.4).
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Lutwak, Yang and Zhang [28] introduced a elementary inequality as follows.
Lemma 3.2 If a, b ≥ 0 and c, d > 0, then for p > 1

(3.6) (a + b)p(c + d)1−p ≤ apc1−p + bpd1−p,

with equality if and only if ad = bc.
In fact, the following reverse of inequality (3.6) easy follows:
Lemma 3.3 If a, b, c, d > 0, then for 0 < p < 1

(3.7) (a + b)p(c + d)1−p ≥ apc1−p + bpd1−p,

with equality if and only if ad = bc.
Lemma 3.4 ([37]). If If K,L ∈ ϕn and i < n− 1 , then

(3.8) W̃i(K,L)n−i ≤ W̃i(K)n−i−1W̃i(L),

with equality if and only if K is a dilation of L.
The inequality is reverse for i > n or (n− 1) < i < n.
Proof of Theorem 3.1 We first give the proof of the case j > n− 1 as follows.
In view of the reverse of inequality (3.8), we obtain that

(3.9) ṽj(K ∩ Eu, L ∩ Eu)−p ≥ v(K ∩ Eu)
−p(n−j−1)

n−1 v(L ∩ Eu)
−jp
n−1 .

with equality if and only if K ∩Eu and L∩Eu are dilates, it follows if and only if K
and L are dilates.

From Lemma 3.1, (3.9) and in view of reverse Hölder inequality for integral, we
have

Ṽp(I◦j (K, L)) =
1
n

∫

Sn−1
ṽj (K ∩ Eu, L ∩ Eu))−p

dS(u)

≥ 1
n

∫

Sn−1
v(K ∩ Eu)

−p(n−j−1)
n−1 v(L ∩ Eu)

−jp
n−1 dS(u)

≥
(

1
n

∫

Sn−1
v(K ∩ Eu)−pdS(u)

) (n−j−1)
n−1

(
1
n

∫

Sn−1
v(L ∩ Eu)−pdS(u)

) j
n−1

(3.10) = Ṽp(I◦K)
(n−j−1)

n−1 Ṽp(I◦L)
j

n−1 .

In view of the equality conditions of (3.10) and Hölder inequality for integral, it follows
that the equality holds if and only if K and L are dilates.

Therefore, from the inequality (3.10) and in view of D′ is a dilates copy of D ,
we obtain that

Ṽp(I◦j (K,L))n−1 ≥ Ṽp(I◦K)n−j−1Ṽp(I◦L)j ,

and
Ṽp(I◦j (D,D′))n−1 = Ṽp(I◦D)n−j−1Ṽp(I◦D′)j .

Hence, from Lemma 3.2, we have

Sṽp(I◦j (K, L), I◦j (D, D′))
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≥ Ṽp(I◦K)(n−j−1)/(n−1)Ṽp(I◦L)j/(n−1) + Ṽp(I◦D)(n−j−1)/(n−1)Ṽp(I◦D′)j/(n−1)

≥ Sṽp
(I◦K, I◦D)

n−j−1
n−1 Sṽp

(I◦L, I◦D′)
j

n−1 ,

with equality if and only if K is a dilation of L.
Similarly, from Lemma 3.1, inequalities (3.7), (3.8) and in view of Hölder inequality

for integral, the proof of the case 0 < j < (n− 1) can be completed by the same steps
as in the proof of the case j > (n−1) with suitable changes. Here, we omit the details.

The proof of Theorem 3.1 is complete.
Remark 3.1 In Theorem 3.1, let D, D′ are single points, Theorem 3.1 changes

to Lp-Minkowski-type inequality for star dual of mixed intersection bodies.
Let D, D′ are single points and taking for p = −(n − i)(where, 0 ≤ i < n) in

Theorem 3.1., and in view of

Ṽ−(n−i)(I◦j (K,L)) = W̃i(Ij(K, L)), 0 ≤ i < n, K, L ∈ ϕn,

then Theorem 3.1 changes to the following result.
Corollary 3.1 Let K, L ∈ ϕn and 0 ≤ i < n.
(i) If 0 < j < n− 1, then

(3.11) W̃i(Ij(K, L))n−1 ≤ W̃i(IK)n−j−1W̃i(IL)j ,

with equality if and only if K and L are dilates.
(ii) If j > n− 1, then

(3.12) W̃i(Ij(K, L))n−1 ≥ W̃i(IK)n−j−1W̃i(IL)j ,

with equality if and only if K and L are dilates.
Remark 3.2 The inequality (3.11) is just the Minkowski inequality for mixed

intersection bodies which was given in [36].
A somewhat surprising consequence of Theorem 3.1 is the following version.
Corollary 3.2 If K,L ∈ η ⊂ ϕn, and −∞ < p < 0, while j ∈ R, and if either

(3.13) Ṽp(I◦j (K,M)) = Ṽp(I◦j (L,M)), for M ∈ η

or

(3.14) Ṽp(I◦j (M, K)) = Ṽp(I◦j (M,L)), for M ∈ η

hold, then it follows that K = L,up to translation.
This is just is the dual form of the following result which was given in [35].
If K, L ∈ γ ⊂ Kn, and 0 ≤ i < n, while 0 < j < n− 1 and if either

Wi(Π∗j (K, M)) = Wi(Π∗j (L,M)), for M ∈ γ

or
Wi(Π∗j (M,K)) = Wi(Π∗j (M, L)), for M ∈ γ

hold, then it follows that K = L,up to translation.
Proof Suppose that (3.13) holds. Take K for M in (3.13) and use Theorem 3.1,

we obtain that
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Ṽp(I◦K) = Ṽp(I◦j (L, K)) ≥ (≤)Ṽp(I◦L)
(n−j−1)

n−1 Ṽp(I◦K)
j

n−1 .

with equality if and only if K is a dilation of L. Hence

Ṽp(I◦K) ≥ (≤)Ṽp(I◦L).

with equality if and only if K is a dilation of L.
Similarly, take L for M in (3.13) and use again Theorem 3.1, we get

Ṽp(I◦K) ≤ (≥)Ṽp(I◦L),

with equality if and only if K is a dilation of L. Hence

Ṽp(I◦K) = Ṽp(I◦L).

and K is a dilation of L, in view of intersection bodies are centered, then there exist
λ > 0 such that K = λL, for 0 ≤ i < n− 1, therefore λ = 1.

Exactly the same sort of argument shows that condition (3.14) implies that K and
L must be translates.

4 The Aleksandrov-Fenchel inequality for Lp-dual mixed volumes of star
duality of mixed intersection bodies

The following Lemmas will be required to prove Theorem 4.1.
Lemma 4.1 ([27]). If K1, . . . ,Kn ∈ ϕn, then

Ṽ (K1, . . . ,Kn)r ≤
r∏

j=1

Ṽ (Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn),

with equality if and only if K1, . . . , Kn are all dilations of each other.
Lemma 4.2 If K1, . . . , Kn ∈ ϕn, then

Ṽp(I◦(K1, . . . , Kn−1)) =
1
n

∫

Sn−1
ṽ(K1 ∩ Eu, . . . , Kn−1 ∩ Eu)−pdS(u).

From (2.5) and (2.3), it follows.
Lemma 4.3 If fi ∈ C(Sn−1)and fi > 0(i = 1, 2, . . . , m), then

∫

Sn−1
f1(u) · · · fm(u)dS(u) ≤

m∏

i=1

‖fi(u)‖m,

with equality if and only if all fi are proportional.
The following Aleksandrov-Fenchel inequality for Lp-dual mixed volumes of star

duality of mixed intersection bodies will be proved:
Theorem 4.1 Let K1, . . . , Kn−1 ∈ ϕn, −∞ < p < 0, and 1 < r ≤ n− 1, then

(4.1) Ṽp(I◦(K1, . . . , Kn−1))r ≤
r∏

j=1

Ṽp(I◦(Kj , . . . ,Kj︸ ︷︷ ︸
r

, Kr+1, . . . ,Kn−1)),
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with equality if and only if K1, . . . , Kn−1 are all dilations of each other.
Proof From Lemma 4.1, we obtain that

(4.2)

ṽ(K1∩Eu, . . . , Kn−1∩Eu)p ≥




r∏
j=1

ṽ(Kj ∩ Eu, . . . , Kj ∩ Eu︸ ︷︷ ︸
r

, Kr+1 ∩ Eu, . . . , Kn−1 ∩ Eu)




p
r

,

with equality if and only if K1 ∩Eu, . . . ,Kn−1 ∩Eu are all dilations of each other, it
follows if and only if K1, . . . , Kn−1 are all dilations of each other. From (4.2) and in
view of Lemma 4.2 and Lemma 4.3, we obtain that

Ṽp(I◦(K1, . . . ,Kn−1)) =
1
n

∫

S(n−1)

ṽ(K1 ∩ Eu, . . . , Kn−1 ∩ Eu)−pdS(u)

≤ 1
n

∫

Su




r∏

j=1

ṽ(Kj ∩ Eu, . . . ,Kj ∩ Eu︸ ︷︷ ︸
r

,Kr+1 ∩ Eu, . . . ,Kn−1 ∩ Eu)




−p
r

dS(u)

≤



r∏

j=1

1
n

∫

Sn−1
ṽ(Kj ∩ Eu, . . . , Kj ∩ Eu︸ ︷︷ ︸

r

,Kr+1 ∩ Eu, . . . , Kn−1 ∩ Eu)−pdS(u)




1
r

=




r∏

j=1

Ṽp(I◦ (Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1))




1
r

.

In view of the equality conditions of (4.2) and inequality in Lemma 4.3, it follows that
the equality holds if and only if K1, . . . , Kn−1 are all dilations of each other. 2

Taking for p = −(n− i), i < n in (4.1), (4.1) changes to the following result.
Corollary 4.1 If K1, . . . , Kn−1 ∈ ϕn, 0 ≤ i < n, 0 < j < n−1 and 0 < r ≤ n−1

then

(4.3) W̃i(I(K1, . . . ,Kn−1))r ≤
r∏

j=1

W̃i(I(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)),

with equality if and only if K1, . . . , Kn−1 are all dilations of each other.
This is just a dual form of the following inequality which was given by Lutwak

[24].
The Aleksandrove-Fenchel inequality for mixed projection bodies. If K1, . . . , Kn−1 ∈

Kn, 0 ≤ i < n, 1 < j < n− 1 and 0 < r ≤ n− 1, then

Wi(Π(K1, . . . ,Kn−1))r ≥
r∏

j=1

Wi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)).

Corollary 4.2 If K1, . . . , Kn−1 ∈ ϕn and −∞ < p < 0, then

Ṽp(I◦(K1, K2, K3, . . . , Kn−1))
2 ≤ Ṽp(I◦(K1, K1, K3, . . . , Kn−1))Ṽp(I◦(K2, K2, K3, . . . , Kn−1)).
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This is just a dual form of the following inequality which was given by Lutwak [26].
If K1, . . . ,Kn−1 ∈ Kn, then

V (Π∗(K1, K2, K3, . . . , Kn−1))
2 ≤ V (Π∗(K1, K1, K3, . . . , Kn−1))V (Π∗(K2, K2, K3, . . . , Kn−1)).

From the cases r = n− 1 of inequality (4.1), it follows
Corollary 4.3 If K1, . . . , Kn−1 ∈ ϕn and −∞ < p < 0, then

(4.4) Ṽp(I◦(K1, . . . ,Kn−1))n−1 ≤ Ṽp(I◦K1) · · · Ṽp(I◦Kn−1),

with equality if and only if K1, . . . , Kn−1 are all dilations of each other.
This is just a dual form of the following inequality which was given by Lutwak

[26].
If K1, . . . ,Kn−1 ∈ Kn, then

V (Π∗(K1, . . . ,Kn−1))n−1 ≤ V (Π∗K1) · · ·V (Π∗Kn−1),

with equality if and only if K1, . . . , Kn−1 are homothetic of each other. Please see
references [31] and [21] about similar recent results.
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