Connections on k-symplectic manifolds

Adara M. Blaga

Abstract. On a k-symplectic manifold will be defined a canonical connection which induces on the reduced manifold a canonical connection, too. Two reduced standard k-symplectic manifolds with respect to the action of a Lie group G are considered, and the relation between the induced canonical connections is established.

M.S.C. 2000: 37J15, 53B10, 53D20, 65P10. Key words: k-symplectic manifold, canonical connections.

1 Introduction

Having a k-symplectic manifold, one can obtain, by Marsden-Weinstein reduction, other k-symplectic manifolds. This procedure is well known and important in the symplectic mechanics, having many applications in fluids [8], electromagnetism and plasma physics [7], etc. We proved that under certain assumptions [2], a k-symplectic manifold can be reduced to a k-symplectic manifold, too.

In the present paper, using a momentum map for an appropriate action of a Lie group G on the standard k-symplectic manifold $(T_k^1)^*\mathbb{R}^n$ endowed with the canonical k-symplectic structure induced from (\mathbb{R}^n, ω_0) [1], we shall describe the Marsden-Weinstein reduction in this case. Then, by the mean of a diffeomorphism between $T_k^1\mathbb{R}^n$ and $(T_k^1)^*\mathbb{R}^n$ (for instance, the Legendre transformation associated to a regular Lagrangian), we can define a k-symplectic structure on the k-tangent bundle $T_k^1\mathbb{R}^n$, that will be reduced, too. We proved that on a k-symplectic manifold, there exists a canonical connection [3]. This canonical connection induces a canonical connection on the reduced manifold. Finally, we shall discuss the relation between the two induced canonical connections on the reduced manifolds.

2 k-symplectic structures

Definition 2.1. [1] A k-symplectic manifold $(M, \omega_i, V)_{1 \le i \le k}$ is an (n+nk)-dimensional smooth manifold M together with k 2-forms ω_i , $1 \le i \le k$, and an nk-dimensional distribution V that satisfy the conditions:

Balkan Journal of Geometry and Its Applications, Vol.14, No.2, 2009, pp. 28-33.

[©] Balkan Society of Geometers, Geometry Balkan Press 2009.

Connections on k-symplectic manifolds

- 1. ω_i is closed, for every $1 \le i \le k$;
- 2. $\bigcap_{i=1}^{k} \ker \omega_i = \{0\};$ 3. $\omega_{i|_{V\times V}} = 0$, for every $1 \le i \le k$.

The canonical model for this structure is the k-cotangent bundle $(T_k^1)^*N$ of an arbitrary manifold N, which can be identified with the vector bundle $J^1(N, \mathbb{R}^k)_0$ whose total space is the manifold of 1-jets of maps with target $0 \in \mathbb{R}^k$, and projection $\tau^*(j_{x,0}^1\sigma) = x$. Identify $(T_k^1)^*N$ with the Whitney sum of k copies of T^*N [6],

$$(T_k^1)^*N \cong T^*N \oplus \ldots^k \oplus T^*N, \ j_{x,0}\sigma \mapsto (j_{x,0}^1\sigma^1, \ldots, j_{x,0}^k\sigma^k),$$

where $\sigma^i = \pi_i \circ \sigma : N \longrightarrow \mathbb{R}$ is the *i*-th component of σ . The *k*-symplectic structure on $(T_k^1)^*N$ is given by $\omega_i = (\tau_i^*)^*(\omega_0)$ and $V_{j_{x,0}^1\sigma} = \ker(\tau^*)_*(j_{x,0}^1\sigma)$, where $\tau_i^*: (T_k^1)^*N \longrightarrow T^*N$ is the projection on the *i*-th copy T^*N of $(T_k^1)^*N$ and ω_0 is the standard symplectic structure on T^*N .

Let $(M, \omega_i, V)_{1 \le i \le k}$ be a k-symplectic manifold. Consider the bundle morphism

$$\Omega^{\#}: T_k^1 M \longrightarrow T^* M, \ \Omega^{\#}(X_1, \dots, X_k) := \sum_{j=1}^k i_{X_j} \omega_j$$

Definition 2.2. A k-Hamiltonian system is an ordered k-tuple of vector fields $(X_1,\ldots,X_k) \in T_k^1 M$ such that there exists a smooth function $H: M \longrightarrow \mathbb{R}$, called the Hamiltonian of (X_1, \ldots, X_k) , with the property

(2.1)
$$\Omega^{\#}(X_1,\ldots,X_k) = dH.$$

We will denote by $((X_1)_H, \ldots, (X_k)_H)$ the k-Hamiltonian system corresponding to H.

Definition 2.3. A k-symplectic action of a Lie group G on M is an action Φ : $G \times M \longrightarrow M$ such that

(2.2)
$$(\Phi_g)^* \omega_i = \omega_i, \quad \forall \ g \in G, \forall i \in \overline{1,k},$$

where $\Phi_g: M \longrightarrow M, \Phi_g(x) := \Phi(g, x)$. Let $\mathcal{G}^k = \mathcal{G} \times \stackrel{k}{\ldots} \times \mathcal{G}$ and $\mathcal{G}^{*^k} = \mathcal{G}^* \times \stackrel{k}{\ldots} \times \mathcal{G}^*$, where \mathcal{G}^* is the dual of the Lie algebra \mathcal{G} of G.

Definition 2.4. A momentum map for the k-symplectic action $\Phi: G \times M \longrightarrow M$ is a map $J: M \longrightarrow \mathcal{G}^{*^k}$ defined by

(2.3)
$$(X_i)_{\widehat{J}(\xi_1,\dots,\xi_k)} := (\xi_i)_M, \quad \forall (\xi_1,\dots,\xi_k) \in \mathcal{G}^k, \forall i \in \overline{1,k},$$

where $\widehat{J}(\xi_1, \ldots, \xi_k) : M \longrightarrow \mathbb{R}$, $\widehat{J}(\xi_1, \ldots, \xi_k)(x) := J(x)(\xi_1, \ldots, \xi_k)$ and $(\xi_i)_M$ are the fundamental vector fields on M corresponding to the elements $\xi_i \in \mathcal{G}, i \in \{1, \ldots, k\}$.

For $g \in G$, define $Ad_g{}^k : \mathcal{G}^k \longrightarrow \mathcal{G}^k$, $Ad_g{}^k(\xi_1, \ldots, \xi_k) := (Ad_g\xi_1, \ldots, Ad_g\xi_k)$, where $Ad : G \longrightarrow Aut(G)$ denotes the adjoint representation and $Ad_g = Ad(g)$, and $Ad_g{}^{*^k} : \mathcal{G}^{*^k} \longrightarrow \mathcal{G}^{*^k}, Ad_g{}^{*^k}(\mu) = \mu \circ Ad_g{}^k$. A momentum map $J : M \longrightarrow \mathcal{G}^{*^k}$ is called (Φ, Ad^{*^k}) -equivariant if

(2.4)
$$J(\Phi_g(x)) = Ad_{g^{-1}}^{*^k}J(x), \ \forall g \in G, \ \forall x \in M.$$

Consider G a Lie group and $\Phi: G \times M \longrightarrow M$ a k-symplectic action of G on the k-symplectic manifold $(M, \omega_i, V)_{1 \le i \le k}$. Let $J : M \longrightarrow \mathcal{G}^{*^k}$ be a (Φ, Ad^{*^k}) equivariant momentum map for Φ and $\mu \in \mathcal{G}^{*^k}$ a regular value of J. Then $J^{-1}(\mu)$ is a smooth manifold. The isotropy subgroup of μ with respect to the k-coadjoint action, $G_{\mu} := \{g \in G \mid Ad_{g^{-1}}^{*^{k}}(\mu) = \mu\} \subset G$, leaves invariant $J^{-1}(\mu)$. Assume that G_{μ} acts freely and properly on $J^{-1}(\mu)$. Then the quotient space $M_{\mu} := J^{-1}(\mu)/G_{\mu}$ is also a smooth manifold. A reduction type theorem for k-symplectic manifolds holds:

Theorem 2.5. [2] Under the hypotheses above, on $M_{\mu} := J^{-1}(\mu)/G_{\mu}$ there exists a unique k-symplectic structure $((\omega_{\mu})_i, V_{\mu})_{1 \leq i \leq k}$, such that

(2.5)
$$\pi_{\mu}^{*}(\omega_{\mu})_{i} = i_{\mu}^{*}\omega_{i}, \ \forall i \in \overline{1,k},$$

where $\pi_{\mu}: J^{-1}(\mu) \longrightarrow M_{\mu}$ is the canonical projection and $i_{\mu}: J^{-1}(\mu) \longrightarrow M$ the canonical inclusion.

3 Canonical connections on k-symplectic manifolds

Let $(M, \omega_i, V)_{1 \le i \le k}$ be a k-symplectic manifold. For every $1 \le i \le k$, define

(3.1)
$$V_{i_x} := \bigcap_{j \neq i} \ker(\omega_{j_x}).$$

Denote by \mathcal{F} the foliation integral to the distribution V and by \mathcal{F}_i the foliation integral to V_i . It follows that [3]:

- (a) for each $i \in \{1, ..., k\}$ the distribution $V_i = (V_{i_x})_{x \in M}$ is integrable;
- (b) $V = V_1 \oplus \cdots \oplus V_k;$
- (c) for each $j \in \{1, \ldots, k\}$ the map

$$(3.2) i_j: V_j \longrightarrow (N\mathcal{F})^*, \ X \mapsto i_X \omega_j$$

is an isomorphism, where $N\mathcal{F}$ denotes the normal bundle of \mathcal{F} .

Consider Q an n-dimensional integrable distribution on M transversal to \mathcal{F} (and denote by \mathcal{G} the foliation integral to Q), such that

- (1) $\omega_i(Y, Y') = 0$ for any $Y, Y' \in \Gamma(Q)$ and for every $1 \le i \le k$;
- (2) $[X, Y] \in \Gamma(V_i \oplus Q)$ for any $X \in \Gamma(V_i)$ and for any $Y \in \Gamma(Q)$.

Connections on k-symplectic manifolds

Lemma 3.1. [3] Let $Y, Y' \in \Gamma(Q)$. For each $j \in \{1, ..., k\}$, the map

(3.3)
$$\psi_{i}^{YY'}: W \mapsto (\mathcal{L}_{Y}i_{Y'}\omega_{j})(W)$$

$$\left(\mathcal{L}_{Y}i_{Y'}\omega_{j}\right)(W)=Y\left(\omega_{j}\left(Y',W\right)\right)-\omega_{j}\left(Y',\left[Y,W\right]\right),$$

for any $W \in \Gamma(TM)$, belongs to V_i^* .

Theorem 3.2. [3] Let $(M, \omega_i, V)_{1 \le i \le k}$ be a k-symplectic manifold and let Q be an integrable distribution supplementary to V verifying the above conditions (1), (2) and such that

(3.4)
$$(i_1^*)^{-1}(\psi_1^{YY'}) = \dots = (i_k^*)^{-1}(\psi_k^{YY'})$$

for any $Y, Y' \in \Gamma(Q)$, where $\psi_1^{YY'}, \ldots, \psi_k^{YY'}$ are the maps defined in Lemma 3.1. Then there exists a unique connection ∇ on M satisfying the following properties:

- 1. $\nabla \mathcal{F}_i \subset \mathcal{F}_i$ for each $i \in \{1, \ldots, k\}$, and $\nabla Q \subset Q$,
- 2. $\nabla \omega_1 = \cdots = \nabla \omega_k = 0$,
- 3. T(X,Y) = 0 for any $X \in \Gamma(V)$ and for any $Y \in \Gamma(Q)$,

where T denotes the torsion tensor field of ∇ .

Remark that the splitting

$$TM = V \oplus Q = V_1 \oplus \dots \oplus V_k \oplus Q$$

induces a canonical isomorphism between Q and $N\mathcal{F} := TM/V$, the normal bundle to the foliation \mathcal{F} . So, we shall define a connection ∇^{V_i} on each subbundle V_i , a connection ∇^Q on Q and then we take the sum of these connections for defining a global connection on M: for any $V, W \in \Gamma(TM)$, let

(3.5)
$$\nabla_V W := \nabla_V^{V_1} W_{V_1} + \dots + \nabla_V^{V_k} W_{V_k} + \nabla_V^Q W_Q.$$

Proposition 3.3. [3] The connection ∇ defined in Theorem 3.2. is torsion free along the leaves of the foliations \mathcal{F} and \mathcal{G} .

Proposition 3.4. [3] The curvature tensor field of the connection ∇ defined in Theorem 3.2. vanishes along the leaves of the foliations \mathcal{F} and \mathcal{G} .

Generalizing the result obtained by I. Vaisman in [10], we shall give a reduction type theorem for the canonical connection on a k-symplectic manifold as follows.

Let ∇ be the canonical connection defined in Theorem 3.2. Assume that the k-symplectic action Φ is a ∇ -affine action, that is, it preserves the connection ∇ and that $J^{-1}(\mu)$ is ∇ -self-parallel, that is, $TJ^{-1}(\mu)$ is preserved by ∇ -parallel translations along paths in $J^{-1}(\mu)$.

Theorem 3.5. Let $(M, \omega_i, V)_{1 \le i \le k}$ be a k-symplectic manifold on which we have a ∇ affine k-symplectic action Φ of a Lie group G and there exists a (Φ, Ad^{*^k}) -equivariant
momentum map $J : M \longrightarrow \mathcal{G}^{*^k}$. Assume that $\mu \in \mathcal{G}^{*^k}$ is a regular value of J and
that the isotropy group G_{μ} under the Ad^{*^k} -action on \mathcal{G}^{*^k} acts freely and properly
on $J^{-1}(\mu)$. Assume that $J^{-1}(\mu)$ is ∇ -self-parallel. Then the canonical connection ∇ defined in Theorem 3.2. induces a canonical connection ∇_{μ} on $M_{\mu} = J^{-1}(\mu)/G_{\mu}$.

The standard k-symplectic manifolds 4

For an arbitrary action $\Phi: G \times \mathbb{R}^n \to \mathbb{R}^n$ of a Lie group G on \mathbb{R}^n , define the lifted action $\Phi^{T_k^*}$ to the standard k-symplectic manifold $(T_k^1)^* \mathbb{R}^n$:

$$\Phi^{T_k^*}: G \times (T_k^1)^* \mathbb{R}^n \to (T_k^1)^* \mathbb{R}^n,$$

(4.1)
$$\Phi^{T_{k}^{*}}(g,\alpha_{1q},\ldots,\alpha_{kq}) := (\alpha_{1q} \circ (\Phi_{g^{-1}})_{*\Phi_{g}(q)},\ldots,\alpha_{kq} \circ (\Phi_{g^{-1}})_{*\Phi_{g}(q)}),$$

 $g \in G, (\alpha_1, \ldots, \alpha_k) \in (T_k^1)^* \mathbb{R}^n, q \in \mathbb{R}^n$, which is a k-symplectic action [9] and respectively, the lifted action Φ^{T_k} to $T_k^1 \mathbb{R}^n$:

$$\Phi^{T_k}: G \times T^1_k \mathbb{R}^n \to T^1_k \mathbb{R}^n,$$

(4.2)
$$\Phi^{T_k}(g, v_{1q}, \dots, v_{kq}) := ((\Phi_g)_{*q} v_{1q}, \dots, (\Phi_g)_{*q} v_{kq}),$$

 $g \in G, (v_1, \ldots, v_k) \in T_k^1 \mathbb{R}^n, q \in \mathbb{R}^n.$ If $F : T_k^1 \mathbb{R}^n \to (T_k^1)^* \mathbb{R}^n$ is a diffeomorfism, equivariant with respect to these actions, that is $\Phi_g^{T_k^*} \circ F = F \circ \Phi_g^{T_k}$, for any $g \in G$, then by taking the pull-back of the k-symplectic structure $(\omega_i, V)_{1 \leq i \leq k}$ on the standard k-symplectic manifold $(T_k^1)^* \mathbb{R}^n$, we can define a k-symplectic structure $((\omega_F)_i, V_F)_{1 \le i \le k}$ on $T_k^1 \mathbb{R}^n$ [6]:

$$(\omega_F)_i := F^* \omega_i, \quad V_F := \ker(\pi_F)_*$$

for any $1 \leq i \leq k$, where $\pi_F : T_k^1 \mathbb{R}^n \to \mathbb{R}^n, \pi_F(v_{1q}, \ldots, v_{kq}) := q$. Then F becomes a symplectomorphism between $(T_k^1 \mathbb{R}^n, (\omega_F)_i, V_F)_{1 \leq i \leq k}$ and $((T_k^1)^* \mathbb{R}^n, \omega_i, V)_{1 \leq i \leq k}$.

On the two standard k-symplectic manifolds described above, consider the two canonical connections ∇ on $(T_k^1)^*\mathbb{R}^n$ and $\overline{\nabla}$ on $T_k^1\mathbb{R}^n$ which induce, naturally, on the reduced manifolds $((T_k^1)^*\mathbb{R}^n)_{\mu}$ and $(T_k^1\mathbb{R}^n)_{\mu}$ respectively the reduced canonical connections ∇_{μ} and $\overline{\nabla}_{\mu}$ (see Theorem 3.5.). Then we have

Proposition 4.1. The two reduced connections are connected by the relation

(4.3)
$$[F]_* \circ \overline{\nabla}_{\mu} = \nabla_{\mu} \circ ([F]_* \times [F]_*).$$

Proof. Since F is a diffeomorphism compatible with the equivalence relations that define the quotient manifolds $((T_k^1)^*\mathbb{R}^n)_\mu$ and $(T_k^1\mathbb{R}^n)_\mu$, for any $\bar{X}, \bar{Y} \in \Gamma(T(((T_k^1)\mathbb{R}^n)_\mu))$, if π^{T_k} and $\pi^{T_k^*}$ denote the canonical projections, we obtain:

$$\begin{aligned} (\nabla_{\mu} \circ ([F]_{*} \times [F]_{*}))(\bar{X}, \bar{Y}) &= \nabla_{\mu} (([F]_{*} \circ \pi_{*}^{T_{k}})(X), ([F]_{*} \circ \pi_{*}^{T_{k}})(Y)) \\ &= \nabla_{\mu} ((\pi_{*}^{T_{k}^{*}} \circ F_{*})(X), (\pi_{*}^{T_{k}^{*}} \circ F_{*})(Y)) \\ &= (\nabla_{\mu} \circ (\pi_{*}^{T_{k}^{*}} \times \pi_{*}^{T_{k}^{*}}))(F_{*}(X), F_{*}(Y)) \\ &= (\pi_{*}^{T_{k}^{*}} \circ \nabla)(F_{*}(X), F_{*}(Y)) \\ &= (\pi_{*}^{T_{k}^{*}} \circ \nabla \circ (F_{*} \times F_{*}))(X, Y) \\ &= (\pi_{*}^{T_{k}^{*}} \circ F_{*} \circ \bar{\nabla})(X, Y) \\ &= ([F]_{*} \circ \pi_{*}^{T_{k}} \circ \bar{\nabla})(X, Y) \\ &= ([F]_{*} \circ \bar{\nabla}_{\mu} \circ (\pi_{*}^{T_{k}} \times \pi_{*}^{T_{k}}))(X, Y) \\ &= ([F]_{*} \circ \bar{\nabla}_{\mu})(\bar{X}, \bar{Y}). \ \Box \end{aligned}$$

References

- [1] A. Awane, *k-symplectic structures*, J. Math. Phys. 33 (1992), 4046-4052.
- [2] A. M. Blaga, The reduction of a k-symplectic manifold, Mathematica, Cluj-Napoca, 50 (73), 2 (2008), 149-158.
- [3] B. Cappelletti Montano, A. M. Blaga, Some geometric structures associated with a k-symplectic manifold, J. Phys. A: Math. Theor., 41 (2008).
- [4] S. Deshmukh, F. R. Al-Solany, *Hopf hypersurfaces in nearly Kaehler 6-sphere*, Balkan Journal of Geometry and Its Applications, 13, 1 (2008), 38-46.
- [5] M. Girtu, A framed f(3, -1) structure on a GL-tangent manifold, Balkan Journal of Geometry and Its Applications, 13, 1 (2008), 47-54.
- [6] M. De Leon, E. Merino, J. Qubiña, P. Rodrigues, M. R. Salgado, Hamiltonian systems on k-cosymplectic manifolds, J. Math. Phys. 39 (1998), 876-893.
- [7] J. M. Marsden, A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica D4 (1982), 394-406.
- [8] J. M. Marsden, A. Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Physica D4 (1983), 305-323.
- [9] F. Munteanu, A. M. Rey, M. R. Salgado, The Günther's formalism in classical field theory: momentum map and reduction, J. Math. Phys. 45 (2004), 1730-1751.
- [10] I. Vaisman, Connections under symplectic reduction, arXiv: math. SG / 0006023, 2000.

Authors' addresses:

Adara M. Blaga Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, 4 Bd. V. Pârvan, 300223, Timişoara, România. E-mail: adara@math.uvt.ro