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Abstract. The notion of self-concordant function on Euclidean spaces
was introduced and studied by Nesterov and Nemirovsky [6]. They have
used these functions to design numerical optimization algorithms based
on interior-point methods ([7]). In [12], Constantin Udrişte makes an ex-
tension of this study to the Riemannian context of optimization methods.
In this paper, we use a decomposable function to introduce a new class of
self-concordant functions, defined on Riemannian manifolds endowed with
metrics of diagonal type. While §1 is introductory in nature, §2 contains
our results. We state and prove sufficient conditions for a function to be
self-concordant and make two case studies. Examples we found could be
used as self-concordant functions to design Newton-type algorithms on
smooth manifolds in the sense of Jiang, Moore and Ji [5]. We also solve a
very important problem in Riemannian geometry, rised by Professor Con-
stantin Udrişte during the preparation of this paper, regarding the exis-
tence of the metric generated by a function which is self self-concordant.
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1 Introduction

Nesterov and Nemirovsky [6] showed that the logarithmic barrier functions for the fol-
lowing problems are self-concordant: linear and convex quadratic programming with
convex quadratic constraints, primal geometric programming, matrix norm minimiza-
tion etc. In [4], D. den Hertog proved that the logarithmic barrier function satisfies
the condition to be self-concordant for other important classes of problems.

Many optimization problems can be better stated on manifolds rather than Eu-
clidean space, for example, Newton type methods, [5], or interior-point method in
the sense of D. den Hertog [3], [4]. Therefore, it is natural to make a study of self-
concordant functions on Riemannian manifolds.

In [12], Constantin Udrişte refers to the general framework of the logarithmic
barrier method for smooth convex programming on Riemannian manifolds and shows
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that the central path is a minus gradient line and gives the Riemannian generalization
for some remarkable results of Nesterov and Nemirovsky. In [5], it is proposed a
damped Newton algorithm for optimization of self-concordant functions.

We introduce a class of self-concordant functions defined on the Riemannian man-
ifold M = Rn

+, endowed with the diagonal metric

g(x1, . . . , xn) =




1
g2
1(x1)

0 · · · 0

...

0 0 · · · 1
g2

n(xn)




, (D)

where the functions
1
gi

admit upper bounded primitives.

Remark 1.1. Such kind of metrics are used by Papa Quiroz [8] and Rapcsák [9],
[10] to solve wide classes of problems arising on linear optimizations and nonlinear
optimizations, respectively.

It is known [8] that this metric has as Christoffel coefficients Γi
ii = − 1

gi(xi)
·

∂gi(xi)
∂xi

, for all i = 1, n, and 0 otherwise. Moreover, R`
ijk = 0, for all i, j, k = 1, n.

Remark 1.2. The metrics of diagonal type are particular cases of Hessian type metrics.

Indeed, the decomposable function H =
n∑

i=1

Hi(xi), satisfies the following equations

∂2H

∂xi∂xj
= H ′′

i (xi)δij , i = 1, n, j = 1, n.

The Hessian type metrics are useful tools in solving specific problems of WDVV
(Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory [1]

2 Main results

Given (M, g) a Riemannian manifold, we denote by ∇ the Levi-Civita connection
induced by the metric g.

Consider a function f : M → R, defined on an open domain, as closed mapping,
that is {(f(P ), P ), P ∈ dom (f)} is a closed set in the product manifold R × M .
Suppose f be at least three times differentiable.

Definition 2.1. The function f is said to be k-self-concordant, k ≥ 0, with respect
to the Levi-Civita connection ∇ defined on M if the following condition holds:

∣∣∇3f(x)(Xx, Xx, Xx)
∣∣ ≤ 2k

(∇2f(x)(Xx, Xx)
) 3

2 , ∀x ∈ M, ∀Xx ∈ TxM.

We are looking for decomposable self-concordant functions f : Rn
+ → R, of the

form

(2.1) f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + · · ·+ fn(xn),

where fi : R+ → R are differentiable functions.
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Remark 2.2. The form (2.1) is suggested by the linearity of the set of self-concordant
functions [6].

It follows

∂f

∂xi
=

∂fi

∂xi
;

∂2f

∂(xi)2
=

∂2fi

∂(xi)2
;

∂2f

∂xi∂xj
= 0, ∀i 6= j.

By direct calculation, we obtain f,ij = 0, for all i 6= j; f,ii =
∂2fi

∂(xi)2
+

∂gi

∂xi

gi(xi)
· ∂fi

∂xi
;

f,ijk = 0 if at least two of the three indices i, j, k are different, and

f,iii =

∂

∂xi

[
gi(xi)

∂

∂xi

(
gi(xi)

∂fi

∂xi

)]

g2
i (xi)

.

If we put

f ′′i =
∂2fi

∂(xi)2
; f ′i =

∂fi

∂xi
, g′i =

∂gi

∂xi
,

then the covariant derivatives of the second order and of the third order of the function
f have the forms:

(∇2f)(X, X) =
n∑

i=1

f,ii(Xi)2 =
n∑

i=1

[
f ′′i (xi) +

g′i(x
i)

gi(xi)
f ′i(x

i)
]

(Xi)2

and

(∇3f)(X, X, X) =
n∑

i=1

f,iii(Xi)3 =
n∑

i=1

[
gi(xi)

(
f ′i(x

i)gi(xi)
)′]′

g2
i (xi)

(Xi)3.

According to Definition 2.1, the condition for f to be self-concordant is
(2.2)


n∑

i=1

[
gi(xi)

(
f ′i(x

i)gi(xi)
)′]′

g2
i (xi)

(Xi)3




2

≤ 4k2

[
n∑

i=1

(
f ′′i (xi) +

g′i(x
i)

gi(xi)
f ′i(x

i)
)

(Xi)2
]3

,

for all xi ∈ R+ and all Xi ∈ R.
If we use the relation

f ′′i (xi) +
g′i(x

i)
gi(xi)

f ′i(x
i) =

gi(xi)
(
f ′i(x

i)gi(xi)
)′

g2
i (xi)

and introduce

(2.3) Fi(xi) = gi(xi)
(
f ′i(x

i)gi(xi)
)′

,
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the inequality (2.2) can be written as

[
n∑

i=1

F ′i (x
i)

g2
i (xi)

(Xi)3
]2

≤ 4k2

[
n∑

i=1

Fi(xi)
g2

i (xi)
(Xi)2

]3

.

In the following, we need

Lemma 2.3. If ai and bi are real numbers, and bi 6= 0, i = 1, n, then

(
n∑

i=1

a3
i

b3
i

)2

≤
(

n∑

i=1

a2
i

b2
i

)3

.

The proof is a consequence of the Cauchy-Schwarz inequality

Using Lemma 2.3, we have

[
n∑

i=1

F ′i (x
i)

g2
i (xi)

(Xi)3
]2

=

[
n∑

i=1

(Xi)3(
gi(xi)

3
√

F ′i (xi)gi(xi)

)3

]2

≤
[

n∑

i=1

(Xi)2(
gi(xi)

3
√

F ′i (xi)gi(xi)

)2

]3

=

[
n∑

i=1

(
3

√
F ′i (xi)gi(xi)

)2

· (Xi)2

g2
i (xi)

]3

.(2.4)

But f must verify the inequality (2.2). In this respect, we constrain the right side
of (2.4) to be less than or equal to the right side of the inequality (2.2):

[
n∑

i=1

(
3

√
F ′i (xi)gi(xi)

)2

· (Xi)2

g2
i (xi)

]3

≤
[

n∑

i=1

3
√

4k2 · Fi(xi) · (Xi)2

g2
i (xi)

]3

.

Theorem 2.4. Suppose the function F is defined as in (2.3). If the connection ∇ is
generated by g, then sufficient conditions for the function f to be self-concordant with
respect to ∇ are given by

Fi(xi) ≥ 0,

(
3

√
F ′i (xi)gi(xi)

)2

≤ 3
√

4k2 · Fi(xi), ∀i = 1, n.

Remark 2.5. The sufficient conditions in Theorem 2.4 imply the study of two cases
as in the following. On one hand, we have to study the case of a differential equality,
and on the other hand the case of a differential inequality.

Case I of differential equality.

In this case, by
∫

1
gi(xi)

dxi we mean a negative primitive of the function
1
gi

, that

is
∫

1
gi(xi)

dxi < 0.

Let us determine the class of k-self-concordant functions f such that



A class of self-concordant functions on Riemannian manifolds 17

(
3

√
F ′i (xi)gi(xi)

)2

= 3
√

4k2 · Fi(xi), ∀i = 1, n.

We use the
3
2

power and we integrate. It follows

(
Fi(xi)

) 1
2 = − 1

k

∫
1

gi(xi)
dxi

.

But the right side must be non-negative and k > 0. We obtain
∫

1
gi(xi)

dxi < 0 and

(2.5) Fi(xi) =
1

k2

(∫
1

gi(xi)
dxi

)2 .

Taking into account the two forms of Fi given in (2.3) and (2.5), by integration,
we find

(2.6) fi(xi) =
1
k2

∫ [
1

gi(xi)
·
∫

1

gi(xi)
(∫

1
gi(xi)

dxi

)2 dxi

]
dxi.

Therefore, we proved

Theorem 2.6. Let us suppose that the manifold M = Rn
+ is endowed with the diag-

onal metric (D), where the functions gi satisfy the inequalities
∫

1
gi(xi)

dxi < 0, for

all i = 1, n. If the functions fi, i = 1, n, are given by (2.6), then the decomposable
function f , defined by (2.1), is k-self-concordant.

Examples:

1. Let M = Rn
+ and gi(xi) = exi

. Then
∫

1
gi(xi)

dxi = −e−xi

< 0.

Therefore, we can use Theorem 2.6 and we find a k-self-concordant function defined
by

f : Rn
+ → R, f(x1, x2, . . . , xn) =

1
k2

(x1 + x2 + · · ·+ xn).

2. Let M = Rn
+ and gi(xi) = − 1

xi
. Then

∫
1

gi(xi)
dxi = − (xi)2

2
< 0.

Therefore, we can use Theorem 2.6 and we find a k-self-concordant function defined
by

f : Rn
+ → R, f(x1, x2, . . . , xn) = − 2

k2
(ln x1 + ln x2 + · · ·+ ln xn).

Remark 2.7. To make a computer aided study of k-self-concordant functions we
can perform symbolic computations for integrals. In this respect, we recommend the
Maple software package [2], [13].
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Case II of differential inequality.
We determine a class of decomposable self-concordant functions satisfying the

differential inequality (
3
√

F ′(t)g(t)
)2

≤ 3
√

4k2 · F (t)

and with given initial conditions F (a) and F ′(a), a > 0 when g(t) > 0, for all t > 0.
In this respect, we shall use

Lemma 2.8. Let the functions F and H of C1-class defined on [a,∞) be given. If
F (a) = H(a) and F ′(t) ≤ H ′(t), for all t ≥ a, then F (t) ≤ H(t), for all t ≥ a.

The inequality given above can be written as

(2.7)
F ′(t)
F (t)

3
2
≤ 2k

g(t)
, t ≥ a.

The function
H(t) =

1(
k

∫ t

a

1
g(s)

ds +
1√
F (a)

)2 ,

satisfies the conditions H ′(t) =
2k

g(t)
H

3
2 (t) and H(a) = F (a).

We remark that the inequality (2.7) can be written as
F ′(t)
F (t)

3
2
≤ H ′(t)

H(t)
3
2
, t ≥ a, and

by Lemma 2.8, F (t) ≤ H(t), for all t ≥ a. Therefore

F (t) ≤ 1(
k

∫ t

a

1
g(s)

ds +
1√
F (a)

)2 , t ≥ a > 0.

Since F (t) = g(t)(f ′(t)g(t))′, we have

(f ′(t)g(t))′ ≤ 1
g(t)

· 1(
k

∫ t

a

1
g(s)

ds +
1√
F (a)

)2 .

If we integrate on the interval [a, t], we obtain

f ′(t)g(t)− f ′(a)g(a) ≤
∫ t

a

1
g(s)

· 1(
k

∫ s

a

1
g(σ)

dσ +
1√
F (a)

)2 ds.

Then

f ′(t) ≤ 1
g(t)

[
1(

k

∫ s

a

1
g(τ)

dτ +
1√
F (a)

)2 ds + f ′(a)g(a)

]
.
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If we integrate once again, we get

f(t) ≤
∫ t

a

1
g(τ)

[ ∫ τ

a

1(
k

∫ s

a

1
g(τ)

dτ +
1√
F (a)

)2 ds + f ′(a)g(a)

]
dτ + f(a).

Theorem 2.9. Let us suppose that the manifold M = Rn
+ is endowed with the diag-

onal metric (D). If the functions fi, i = 1, n, are given by

fi(xi) ≤
∫ xi

a

1
gi(τ)

[ ∫ τ

a

1(
k

∫ s

a

1
gi(τ)

dτ +
1√

Fi(a)

)2 ds + f ′i(a)gi(a)

]
dτ + fi(a),

and gi are positive functions for all i = 1, n, then the decomposable function f , defined
by (2.1), is k-self-concordant.

We can change the point of view. We can ask to find decomposable functions f

which are both self-concordant and generate the metric g, that is we have
1
gi

= f ′′i ,

for all i = 1, n. Using (2.6), we find

Theorem 2.10. The Shanon entropy [11] function

f : Rn
+ → R, f(x1, x2, . . . , xn) =

1
k2

(ln k2x1 + ln k2x2 + · · ·+ ln k2xn),

is self self-concordant.

Open problem. Find other types of self-concordant functions with respect to
metrics of diagonal type.
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[11] T. Schürmann, Bias analysis in entropy estimation, J. Phys. A: Math. Gen. 37
(2004), L295-L301.

[12] C. Udrişte, Optimization methods on Riemannian manifolds, Algebra, Groups
and Geometries, 14 (1997), 339-359.
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