
The semilinear Feng and FMV spectra

Petronela Catană

Abstract. In this paper we describe and compare two semilinear spectra
defined for a pair (L,F), where L is a linear Fredholm operator of index
zero and F is a continuous nonlinear operator. These spectra have been
introduced in [8] and are useful in applications to boundary value problems
for both ordinary and partial differential equations.
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1 Introduction

The last 30 years have presented an opportunity to study several spectra for nonlinear
operators which are modelled on familiar spectra defined for bounded linear operators
between Banach spaces.

In 1978, a nonlinear spectrum of a continuous operator F in a Banach space X was
introduced by Furi, Martelli and Vignoli [10]. This spectrum is based on solvability
properties of the operator equation F(x)=G(x) in X, where G is a compact opera-
tor. In a similar way, Feng [8] defined another spectrum, for G satisfying boundary
conditions on spheres. The FMV-spectrum is one of the most useful nonlinear spec-
trum from the point of view of applications with topological character by means of
the stable solvability. In addition it may be disjoint from the eigenvalues. The notion
of F-regularity may be used to define another spectrum in rather the same way as
the definition of FMV-spectrum by means of FMV-regularity. The FMV theory was
successful until 1997 when Feng [8] introduced a new spectrum with other concepts
of solvability and characteristics, based on the class of k-epi maps, which is closed,
bounded, upper semicontinuous and contains all the eigenvalues, as in the linear case.

Another contribution was made in 1990 by J. Mawhin [10], using the theory of co-
incidence degree. The classical Leray-Schauder degree was replaced by the coincidence
degree, suitable to boundary value problems. The semilinear versions of the Feng and
FMV spectra take into account maps of the form L - F , where L is a linear (not neces-
sarily invertible) operator and F is nonlinear.The semilinear Feng spectrum, denoted
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by σF (L,F ) has been introduced by Feng and Webb [9], for a semilinear pair (L,F ),
where L is a linear densely defined Fredholm operator of index zero and F is a con-
tinuous nonlinear operator with some additional requirements. This situation arises
in applications to differential equations for the class of (L, k)-epi maps. When L = I,
this class reduces to the class of k-epi maps and the semilinear spectrum reduces to
the usual Feng spectrum [8]. The semilinear FMV-spectrum, denoted by σFMV (L,F )
imitates the Feng-Webb construction for the FMV- spectrum of an auxiliary map, but
simpler than the map considered by Feng and Webb [9].

2 Characteristics of nonlinear operators

Let F be a continuous operator between two Banach spaces X and Y over k. We
recall a useful topological characteristic in the theory and applications of both lin-
ear and nonlinear analysis and some numerical characteristics for nonlinear operators
to describe mapping properties, such as compactness, Lipschitz continuity or quasi-
boundedness. The measure of noncompactness of a bounded subset M of X is defined
by:

α(M) = inf{ε : ε > 0,M has a finite ε-net in X},(2.1)

where by a finite ε-net for M we understand a finite set {x1, ..., xn} ⊂ X with the
property that M ⊆ [x1 + Bε(x)] ∪ ... ∪ [xn + Bε(x)], for the closed ball with centre θ
and radius ε > 0 in X.

Given F ∈ C (X, Y ) , the set of all continuous operators from X into Y, we will
use the following notations (see [3] ) :

[F ]Lip = sup
x 6=y

‖F (x)−F (y)‖
‖x−y‖ and [F ]lip = inf

x6=y

‖F (x)−F (y)‖
‖x−y‖(2.2)

[F ]Q = lim sup
‖x‖→∞

‖F (x)‖
‖x‖ and [F ]q = lim inf

‖x‖→∞
‖F (x)‖
‖x‖(2.3)

[F ]B = sup
x 6=θ

‖F (x)‖
‖x‖ and [F ]b = inf

x 6=θ

‖F (x)‖
‖x‖(2.4)

meaning that F is a Lipschitz continuous operator in the case of (2.2), quasi-
bounded in the case of (2.3), and linear bounded in the case of (2.4).

Let X and Y be two infinite dimensional Banach spaces. Recall that a continuous
operator F : X → Y is α−Lipschitz if there exists k > 0 such that α (F (M)) ≤
kα(M), for any bounded subset M ⊂ X.

We set
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[F ]A = inf {k : k > 0, α (F (M)) ≤ kα(M)}(2.5)

and we say that [F ]A is the measure of noncompactness or the α-norm of F . For
the reverse condition, let

[F ]a = sup {k : k > 0, α (F (M)) ≥ kα(M)}(2.6)

The equivalent representation, as in the linear case, are useful in infinite dimen-
sional spaces :

[F ]A = sup
α(M)>0

α(F (M))
α(M) and [F ]a = inf

α(M)>0

α(F (M))
α(M)(2.7)

We define several subsets of k by means of the lower characteristics [F ]lip ,
[F ]q , [F ]b and [F ]a :





σlip(F ) = {λ ∈ k : [λI − F ]lip = 0}
σq(F ) = {λ ∈ k : [λI − F ]q = 0}
σb(F ) = {λ ∈ k : [λI − F ]b = 0}
σa(F ) = {λ ∈ k : [λI − F ]a = 0}

(2.8)

3 Some definitions involving nonlinear operators

Definition 3.1 ([8]). A map F : X → Y is said to be stably solvable if given any
compact map G : X → Y with zero quasinorm, there exists at least one element X
of X such that F (x) = G(x).

Definition 3.2 ([10]): A map F is said to be FMV-regular if it is stably solvable
and [F ]q and [F ]a are both positive.

Let be ρFMV (F ) = {λ ∈ C : λI − F is FMV − regular} the FMV-resolvent set
of F and its complement σFMV (F ) = C \ ρFMV (F ) the FMV spectrum of F.

Let X and Y be Banach spaces over k = R or k = C and let Ω be an open,
bounded, connected subset of X with θ ∈ Ω.

Definition 3.3. A continuous operator F : Ω → Y is called epi operator on Ω if
F (x) 6= θ on ∂Ω and for any compact operator G : Ω → Y satisfying G(x) ≡ θ on
∂Ω, the equation F (x) = G(x) has a solution x ∈ Ω.More generaly, we call F a k-epi
operator on Ω with k ≥ 0 if the property mentioned before holds for all operators
with [G]A ≤ k, (not only for compact operators).

For F : Ω → Y and Ω ∈ F(x), the family of all open, bounded and connected
subsets Ω of X with θ ∈ Ω, we introduce :
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vΩ(F ) = inf
{

k : k > 0, F is not k − epi on Ω
}

(3.1)

v(F ) = inf
Ω∈F(x)

vΩ(F ),(3.2)

where v(F ) represents the measure of solvability of F.

The epi and k-epi operators were introduced by Furi, Martelli and Vignoli [10]
and then the concept was generalized to (p, k)-epi mappings. The (p, k)-epi mappings
have analogue properties with the properties of the topological degree, more precisely,
with the homotopy property and the boundary dependence property, see [15]. The
homotopy property gives a continuation principle for epi and k-epi operators and may
be compared with its similar results in the topological degree theory.

Definition 3.4. A continuous operator F : Ω → Y is said to be p-admissible if
F (x) 6= p for p ∈ Y and x ∈ ∂Ω. A 0-admissible operator F : Ω → Y is said to be
(0, k)−epi if for each k-set contraction G : Ω → Y with G(x) ≡ 0 on ∂Ω the equation
F (x) = G(x) has a solution in Ω. A p-admissible mapping F : Ω → Y is said to be
(p, k)− epiif the map F − pdefined by (F − p) (x) = F (x)− p , x ∈ Ω, is (0, k)− epi.

Definition 3.5. (see [8]): Let be F : X → X continuous. F is said to be regular
if [F ]a > 0, [F ]b > 0 and F is epi on Ω for all open subsets Ω of X.

If λI − F is regular, for λ ∈ C, then λ is in the resolvent set of F, denoted by
ρF (F ) and the spectrum of F is defined by

σF (F ) = {λ ∈ C : λI − F is not regular} = C\ρ(F ).(3.3)

Proposition 1. 3.1. If F is a regular map, then F is surjective.

4 The semilinear Feng spectrum

Extending the theory of the Feng spectrum to a semilinear pair (L,F), where L is
a linear Fredholm operator of index zero and F is a continuous nonlinear operator,
we will obtain the Feng semilinear spectrum, denoted by σF (L,F ) in such a way
that for L = I we get the usual Feng spectrum σF (F ) defined by (3.3).We adopt the
terminology from [13].

Let X and Y be two Banach spaces and L : D (L) → Y , with D (L) = X, a
closed linear Fredholm operator of index zero and let F : X → Y be a continuous
nonlinear operator. The spaces X and Y admit the decompositions X = N (L)⊕X0

and Y = Y0 ⊕ R (L) . When L is of index zero, the subspaces N (L) and Y0 have the
same finite dimension. Denote by P : X → N (L) and Q : Y → Y0 the corresponding
projections. The restriction LP of L to D (L)∩X0 into R (L) is invertible and denote
KPQ := L−1

P (I −Q) : Y → X0. Let Π : Y → Y/R (L) be the quotient mapand
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Λ : Y/R (L) → N (L) the natural linear isomorphism induced by L.Let F : X → Y be

a continuous nonlinear operator and we are interested in the solution of the semilinear
equation Lu− Fu = 0.

Definition 4.1. An operator F : X → Y is said to be (L, α) − Lipschitz if
[KPQ]A < ∞,L− compact if [KPQ]A = 0 and (L,α)− contractive if [KPQ]A < 1.

Let be FL(x) the family of all open, bounded and connected subsets Ω of X with
the property that ΩL = Ω ∩D (L) 6= ∅. An operator F : Ω → Y is called (L.k)− epi

on ΩLif F (x) 6= Lx on ∂ΩL and for any operator G : Ω → Y satisfying [KPQG]A ≤ k
and G(x) ≡ θ on ∂ΩL, the equation Lx−F (x) = G(x) has a solution x ∈ ΩL. If k=0,
F is said to be L− epi operator.

For λ ∈ k we associate with (L,F) an operator φλ(L,F ) : X → X defined by :

φλ(L,F )(x) = λ(I − P )x− (ΛQ + KPQ)F (x)(4.1)

For λ, µ ∈ k we easily derive the identity

φλ(L, F )− φµ(L,F ) = (λ− µ) (I − P )(4.2)

Lemma 4.1 ([12]). Then L + Λ−1P : D (L) → Y is a linear isomorphism with
the inverse :

(
L + Λ−1P

)−1 = ΛQ + KPQ(4.3)

This lemma is illustrated by a simple example involving the theory of periodic
boundary value problems for ordinary differential equations.

For fixed ω > 0, denote by Cω = Cω (R) the space of all continuous ω−periodic
functions x : R → Rn with the natural norm ‖x‖Cω

= max
0≤t≤ω

|x (t)| and by C1
ω =

C1
ω (R) the space of all continuously differentiable ω−periodic functions x : R → R

with the norm ‖x‖C1
ω

= max
0≤t≤ω

|x (t)| + max
0≤t≤ω

∣∣∣x′ (t)
∣∣∣ . Moreover,

∧
Cω =

∧
Cω (R) and

∧
C

1

ω =
∧
C

1

ω (R) are the subspaces of all x ∈ Cω or C1
ω satisfying the condition

Px = 1
ω

∫ ω

0
x (t) dt = 0.(4.4)

This operator P is, in fact, a continuous projection which maps Cω onto Rn and

induces the decompositions Cω =
∧
Cω ⊕ Rn and C1

ω =
∧
C

1

ω ⊕ Rn .Let X = C1
ω, Y =

Cω and L : X → Y defined by Lx = x
′
. We have D (L) = X, N (L) = Y0 =

Rn, R (L) =
∧
Cωand X0 =

∧
C

1

ω, hence L : X → Y is a Fredholm operator with
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dim N (L) = co dim R (L) , i.e., of index zero. The projections P : C1
ω → Rn and

Q : Cω → Rn are given by (4.4). The operator LP x = x
′

is a bijection between
∧
C

1

ωand
∧
Cω, the projection Q associates to each y ∈ Cω the class of all function in Cω

while the isomorphism Λ maps every such a class onto this common integral mean.
The linear isomorphism ΛΠ + KPQ : Cω → C1

ω is represented by :

(ΛΠ + KPQ) y (t) =
∫ t

0

y (s) ds− t

ω

∫ ω

0

y (s) ds +
1
ω

∫ ω

0

(
1− ω

2
+ s

)
y (s) ds

and its inverse L + hΛ−1P : C1
ω → Cω has the form :

(
L + hΛ−1P

)
x (t) = x

′
(t) +

1
ω

∫ ω

0

x (s) ds.

Usually, the nonlinear operator F is a Nemytskij operator F (x) (t) = f (t, x (t)),
generated by a Carathéodory function f : [0, ω] × Rn → Rn, (see [14], appendix C).
For any λ ∈ R, the operator φλ(L,F ) : Cω → Cω has the form :

φλ(L,F )(x) (t) = λx (t) − λ
ω

∫ ω

0
x (s) ds − ∫ t

0
F (x) (s) ds + t

ω

∫ ω

0
F (x) (s) ds −

1
ω

∫ ω

0

(
1− ω

2 + s
)
F (x) (s) ds

The above lemma shows that the operator equation, from a space to itself

φλ(L,F )(x) = y(4.5)

is equivalent to the operator equation :

λLx− F (x) = z(4.6)

which acts between X and Y, where z =
(
L + hΛ−1P

)
y.We take into account of

the:

Remark 4.1 ([12]). The auxiliary operator (4.1) is independent of P and Q if L
is a linear bounded operator.

Let us introduce now the following subspectra :

σv(L, F ) = {λ ∈ k : v (φλ(L, F )) = 0}(4.7)

σa(L,F ) = {λ ∈ k : [φλ(L,F )]a = 0}(4.8)

σb(L, F ) = {λ ∈ k : [φλ(L,F )]b = 0} .(4.9)

Then, the semilinear Feng spectrum admits the decomposition :
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σF (L,F ) = σv (L, F ) ∪ σa(L,F ) ∪ σb (L,F )(4.10)

For L=I we get φλ (I, F ) = λI − F so σF (I, F ) = σF (F ) and for F=I we have :

φλ (L, I) = λ(I − P )− ΛQ−KPQ = (ΛQ + KPQ) (λL− I) ,

so

σF (L, I) =
{

1
λ

: λ ∈ σ (L) \ {0}
}

consists of the nonzero characteristic values of the linear operator L.

Assuming that L 6= Θ and the projection P : X → N (L) satisfies the property
that ‖I − P‖ 6= 0, we have then the following theorem.

Theorem 4.1. The spectrum σF (L,F ) is closed.

Proof. Fix λ ∈ k \ σF (L,F ) i.e. [φλ(L,F )]a > 0, [φλ(L,F )]b > 0 and
v (φλ(L,F )) > 0. We choose µ ∈ k such that :

|λ− µ| < min
{

[φλ(L,F )]a , v (φλ(L,F )) ,
[φλ(L,F )]b
‖I−P‖

}
.

We get from (4.2) that

[φµ(L, F )]a ≥ [φλ(L,F )]a − [(µ− λ) (I − P )]A = [φλ(L,F )]a − |µ− λ| > 0
and

‖φµ(L,F )(x)‖ ≥ ‖φλ(L,F )(x)‖ − |µ− λ| ‖(I − P )x‖ ≥
≥ ([φλ(L,F )]b − |µ− λ| ‖I − P‖) ‖x‖ .

For [φµ(L,F )]b > 0, we apply an homotopy argument with H (x, t) = t (µ− λ) (I−
P )x and F0 = φλ(L,F ). Then, [H]A ≤ |µ− λ| < v (φλ(L,F )) and H (x, 0) ≡ θ for
x ∈ X. If φλ(L,F ) (x) + t (µ− λ) (I − P )x = θ

for some t ∈ [0, 1] , then :

[φλ(L,F )]b ‖x‖ ≤ ‖φλ(L,F ) (x)‖ ≤ |µ− λ| ‖I − P‖ ‖x‖ ,

hence x = θ,a contradiction. As F0 is k-epi on Ω for Ω ∈ F (x) and k > 0, so using
again the homotopy property we get that F1 = F0 +H (·, 1) = φλ(L,F )+(µ− λ) (I−
P ) = φµ(L,F )

is (k − [H]A)−epi. Since v (φµ(L,F )) > 0 it follows that µ /∈ σF (L,F ) . Therefore
k \ σF (L,F ) is open and so σF (L,F ) is closed.

Definition 4.2. A scalar λ ∈ k is called aneigenvalue of the pair (L,F) if the
equation F (x) = λLx has a nontrivial solution x ∈ X. The set of all eigenvalues

σP (L,F )= {λ ∈ k : F (x) = λLx for some x 6= 0}
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is called the point spectrum of the pair (L,F).

Theorem 4.2. Let F : X → Y be L-compact, 1-homogeneous and odd. Then every
λ ∈ σF (L,F ) \ {0} is an eigenvalue for the pair (L,F).

Proof . It shows that every nonzero λ ∈ σF (L,F ) belongs to σb(L,F ). We suppose
that [φλ(L, F )]b > 0; hence ‖φλ(L,F )(x)‖ ≥ [φλ(L,F )]b ‖x‖ > 0, for all x ∈ X with
x 6= θ. Fix Ω ∈ F (X) and let G : Ω → X be compact with G(x) ≡ θ on ∂Ω. We show
that the equation φλ(L,F )(x) = G(x) is solvable in Ω, so φλ (L, F ) is epi on Ω. Let
be H : Ω → X defined by :

H(x) = Px + 1
λ (ΛΠ + KPQ)F (x) + 1

λG(x).

Clearly, H is compact and x − H(x) = 1
λφλ(L,F )(x) 6= θ on ∂Ω. The re-

striction H |∂Ωis odd. Applying the Borsuk theorem it follows that the degree
deg (I −H, Ω, θ) 6= 0, so there exists

∧
x ∈ Ω such that :

∧
x = P

∧
x + 1

λ (ΛΠ + KPQ)F
(∧
x
)

+ 1
λG

(∧
x
)

and so φλ(L, F ) is epi on Ω and λ /∈ σF (L,F ), contradicting the hypothesis.
The relation [φλ(L, F )]b = 0 is equivalent with the fact there exists a sequence

{xn} in X such that
∥∥∥λ(I − P )xn −

(
L + hΛ−1P

)−1
F (xn)

∥∥∥ ≤ 1
n ‖xn‖ .

We put en:= xn
‖xn‖

. By the homogeneity of F we have
∥∥∥λ(I − P )en −

(
L + hΛ−1P

)−1
F (en)

∥∥∥ → 0, n →∞.

The set M = {e1, e2, ...} satisfies [φλ(L,F )]a α(M) ≤ α (φλ(L,F )(M)) = 0
which proves that the sequence {en} admits a convergent subsequence {enk

}
with enk

→ e. By continuity, we have λ(I − P )e =
(
L + hΛ−1P

)−1
F (e) . Since(

L + hΛ−1P
)
(I − P ) = L it follows that λLe = F (e) , i.e., λ ∈ σP (L,F ).

5 The semilinear Furi-Martelli-Vignoli spectrum

Let X and Y be two Banach spaces, L : X → Y a closed linear Fredholm operator
of index zero and F : X → Y be a continuous nonlinear operator. We have again
the decompositions X = N (L) ⊕ X0 and Y = Y0 ⊕ R (L) , where N (L) and Y0

have the same finite dimension. We denote by P : X → N (L) the projection on the
nullspace of L and by hΛ−1 : N (L) → Y0 a fixed isomorphism. We have the same
hypothesis of work, but in addition, we suppose that L is bounded. This assumption is
not restrictive because every closed linear operator becomes bounded after a suitable
renorming of X. We use the relation (4.1) and, for λ ∈ k, we define φλ(L,F ) : X → X
by :
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φλ(L,F )(x) = λ (I − P )x− (
L + hΛ−1P

)−1
F (x).

We use the following subspectra :

σq(L,F ) =
{

λ ∈ k : [φλ(L,F )]q = 0
}

(5.1)

σδ(L, F ) = {λ ∈ k : φλ(L,F ) is notstably solvable}(5.2)

The semilinear FMV-spectrum admits the following decomposition :

σFMV (L, F ) = σq (L, F ) ∪ σa(L,F ) ∪ σδ (L,F )(5.3)

where σa(L,F ) is given by (4.8).
For L=I we get L + hΛ−1P = I and φλ (I, F ) = λI − F, hence σFMV (I, F ) =

σFMV (F ) . Choosing F=I we get again the set of all nonzero characteristic values of
L.

Both semilinear spectra have a property in common and this fact results from the
next theorem.

Theorem 5.1. The spectrum σFMV (L,F ) is closed.

Proof . Fix λ ∈ k \ σFMV (L,F ) and let 0 < δ <
min{[φλ(L,F )]a, [φλ(L,F )]q}

‖I−P‖ .

For any µ which satisfies |µ− λ| < δ we have µ ∈ k \ σFMV (L,F ). From (4.2) we
get :

[φµ(L, F )]a ≥ [φλ(L,F )]a − |µ− λ| > 0 and
[φµ(L, F )]q ≥ [φλ(L,F )]q − |µ− λ| > 0 .

It follows that φµ(L,F ) is stably solvable for |µ− λ| < δ, since :

max
{

[φµ(L,F )− φλ (L,F )]A , [φµ(L,F )− φλ(L,F )]Q
}
≤

≤ |µ− λ| ‖I − P‖ < min
{

[φµ(L,F )]a , [φλ(L,F )]q
}

.

So, λ is an interior point of k \ σFMV (L,F ) and k \ σFMV (L,F ) is open.

Theorem 5.2. Let F be L-compact and odd. Then the following inclusion holds:
σFMV (L,F ) \ {0} ⊆ σq(L,F )

This theorem shows that every nonzero spectral point is an asymptotic eigenvalue
for the semilinear pair (L,F ).

Proof . Suppose that λ 6= 0, λ /∈ σq(L, F ) i.e. [φλ(L,F )]q > 0. Since F is compact,
we have [φµ (L,F )]a = 0 if and only if λ = 0, so λ /∈σa(L,F ). It remains to show that

λ /∈ σδ(L,F ), more precisely, to prove that λL− F is stably solvable.
Let G : X → Y be compact with [G]Q = 0. For λ 6= 0 and [φλ(L,F )]q > 0 there

exists R1 > 0 and δ > 0 such that :
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∥∥∥λ−1
(
L + hΛ−1P

)−1 (λL− F ) (x)
∥∥∥ ≥ δ ‖x‖

with‖x‖ ≥ R1. We can find R2 > 0 such that :

∥∥∥λ−1
(
L + hΛ−1P

)−1
G (x)

∥∥∥ ≥ δ
2 ‖x‖

with ‖x‖ ≥ R2. For ‖x‖ ≥ R = max {R1, R2} and 0 ≤ µ ≤ 1 we have :

∥∥∥λ−1
(
L + hΛ−1P

)−1 (λL− F − µG) (x)
∥∥∥ ≥ δ

2 ‖x‖

andλ−1
(
L + hΛ−1P

)−1 (λL− F − µG) =

=(I − P )− λ−1
(
L + hΛ−1P

)−1 (F + µG)
is a compact perturbation of the identity.
Using again Borsuk’s theorem and the homotopy invariance of the Leray-Schauder

degree, we get :

deg
(
λ−1

(
L + hΛ−1P

)−1 (λL− F −G) , B0
R(x), θ

)
=

=deg
(
λ−1

(
L + hΛ−1P

)−1 (λL− F ) , B0
R(x), θ

)
≡ 1 (mod2) ,

so the equation λLx = F (x) + G(x) has a solution in BR(x).
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