Classification of ξ -Ricci-semisymmetric (κ, μ) - manifolds

Mukut Mani Tripathi

Abstract. It is proved that for a non-Sasakian η -Einstein (κ, μ) -manifold M the following three conditions are equivalent: (a) M is flat and 3-dimensional, (b) M is Ricci-semisymmetric, and (c) M is ξ -Ricci-semisymmetric. Then it is proved that an ξ -Ricci-semisymmetric (κ, μ) -manifold M^{2n+1} is either flat and 3-dimensional, or locally isometric to $E^{n+1} \times S^n(4)$, or an Einstein-Sasakian manifold.

Mathematics Subject Classification: 53C25, 53D10.

Key words: contact metric manifold, (κ, μ) -manifold, Sasakian manifold, Einstein manifold, η -Einstein manifold, Ricci tensor, Ricci-symmetric and Ricci-semisymmetric manifold.

1 Introduction

A Riemannian manifold M is said to be Ricci-semisymmetric (or Ricci-semiparallel) if its Ricci tensor S is semisymmetric, that is, its curvature tensor R satisfies $R(X,Y) \cdot S = 0, X, Y \in TM$, where R(X,Y) acts on S as a derivation. Riccisemisymmetric Riemannian manifolds are natural generalizations of symmetric spaces $(\nabla R = 0)$, Einstein spaces, semi-symmetric spaces $(R(X,Y) \cdot R = 0)$ and Riccisymmetric Riemannian manifolds $(\nabla S = 0)$. In [6], V.A. Mirzoyan proved that a Riemannian manifold is Ricci-semisymmetric if and only if it is 2-dimensional or an Einstein space or a semi-Einstein space or locally a product of such spaces. Here, a semi-Einstein space is a Riemannian manifold M such that, for each $p \in M$, the tangent space T_pM decomposes as a direct sum $T_p^{(0)} \oplus T_p^{(1)}$, where $T_p^{(0)}$ is the null space of the curvature tensor and on $T_p^{(1)}$ the Ricci tensor is a nonzero multiple of the metric tensor.

In contact geometry, S. Tanno [11] showed that for a K-contact manifold M the following four conditions are equivalent: (a) M is an Einstein manifold, (b) M is with parallel Ricci tensor (that is, M is Ricci-symmetric), (c) M satisfies $R(X, Y) \cdot S = 0$ (that is, M is Ricci-semisymmetric) and (d) M satisfies $R(\xi, X) \cdot S = 0$, where ξ is the structure vector field.

Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 134-142.

[©] Balkan Society of Geometers, Geometry Balkan Press 2006.

Since a Sasakian manifold is always a *K*-contact manifold, therefore this result is also true for a Sasakian manifold. Thus, a Ricci-semisymmetric Sasakian manifold is an Einstein manifold. This generalizes a result of M. Okumura [7], which states that a Ricci-symmetric Sasakian manifold is an Einstein manifold.

Both K-contact manifolds and Sasakian manifolds are special classes of contact metric manifolds. In fact, a contact metric manifold is a K-contact manifold if the structure vector filed ξ is Killing; and is a Sasakian manifold if it is normal. Thus, it is a natural motivation to extend this study in contact metric manifolds.

Since we shall need the condition $R(\xi, X) \cdot S = 0$ too many times, we give the following definition.

Definition 1.1. A contact metric manifold is ξ -*Ricci-semisymmetric* if it satisfies $R(\xi, X) \cdot S = 0$.

In [9], D. Perrone proved the following

Theorem 1.2. [9] Let M^{2n+1} $(2n + 1 \ge 5)$ be an ξ -Ricci-semisymmetric contact metric manifold such that

(1.1)
$$R(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y)$$

for some function κ on M^{2n+1} , then either M^{2n+1} is locally isometric to the Riemannian product $E^{n+1} \times S^n(4)$ or M^{2n+1} is an Einstein-Sasakian manifold.

In [8], B. J. Papantoniou generalized the above result and proved the following

Theorem 1.3. [8] Let M^{2n+1} be an ξ -Ricci-semisymmetric contact metric manifold such that

(1.2)
$$R(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY)$$

for some $(\kappa, \mu) \in \mathbb{R}^2$. Then M^{2n+1} is either (a) locally isometric to $E^{n+1} \times S^n(4)$, or (b) an Einstein-Sasakian manifold, or (c) an η -Einstein manifold if $\kappa^2 + \mu^2(\kappa - 1) \neq 0$.

However, when we put $\mu = 0$, in the condition (1.2) of Theorem 1.3, we do not get conclusions of Theorem 1.2 directly. Thus, it is necessary to have a closer look into Theorem 1.3. As a result, in this paper we classify ξ -Ricci-semisymmetric (κ, μ)-manifolds completely.

To achieve our goal, we organize the paper as follows. Section 2 contains a brief introduction to contact metric manifolds, (κ, μ) -manifolds and $N(\kappa)$ -contact metric manifolds. Section 3 contains some basic results. In section 4, we give an improved version of Theorem 1.2. Next, in Section 5 we give a brief account of η -Einstein (κ, μ) manifolds. Then we prove a structure theorem for an ξ -Ricci-semisymmetric non-Sasakian η -Einstein (κ, μ) -manifold. In the last section, using the results of sections 3, 4 and 5 we prove the main result, which is as follows:

Theorem 1.4. Let M^{2n+1} be an ξ -Ricci-semisymmetric (κ, μ) -manifold. Then one of the following statements is true.

(a) M^{2n+1} is flat and 3-dimensional.

(b) M^{2n+1} is locally isometric to $E^{n+1} \times S^n(4)$.

(c) M^{2n+1} is an Einstein-Sasakian manifold.

2 Contact metric manifolds

A differentiable 1-form η on a (2n+1)-dimensional differentiable manifold M is called a *contact form* if $\eta \wedge (d\eta)^n \neq 0$ everywhere on M, and M equipped with a contact form is a *contact manifold*. Since rank of $d\eta$ is 2n on the Grassmann algebra $\bigwedge T_p^*M$ at each point $p \in M$, therefore there exists a unique global vector field ξ , called the *characteristic vector field*, such that

(2.1)
$$\eta(\xi) = 1$$
, and $d\eta(\xi, \cdot) = 0$.

Moreover, it is well-known that there exist a (1, 1)-tensor field φ and a Riemannian metric g such that

(2.2)
$$\varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad \eta \left(X \right) = g \left(X, \xi \right),$$

(2.3)
$$\varphi^2 = -I + \eta \otimes \xi, \quad d\eta \left(X, Y \right) = g \left(X, \varphi Y \right),$$

(2.4)
$$g(X,Y) = g(\varphi X,\varphi Y) + \eta(X)\eta(Y)$$

for $X, Y \in TM$. The structure (η, ξ, φ, g) is called a *contact metric structure* and the manifold M endowed with such a structure is said to be a *contact metric manifold*.

The contact metric structure (η, ξ, φ, g) on M gives rise to a natural almost Hermitian structure on the product manifold $M \times \mathbb{R}$. If this structure is integrable, then M is said to be a *Sasakian manifold*. A Sasakian manifold is characterized by the condition

(2.5)
$$\nabla_X \varphi = R_0(\xi, X), \qquad X \in TM,$$

where ∇ is Levi-Civita connection and

$$R_0(X,Y) Z = g(Y,Z) X - g(X,Z) Y, \qquad X,Y,Z \in TM$$

Also, a contact metric manifold M is Sasakian if and only if the curvature tensor R satisfies

(2.6)
$$R(X,Y)\xi = R_0(X,Y)\xi, \quad X,Y \in TM.$$

In a contact metric manifold M, the (1, 1)-tensor field h is defined by half of the Lie derivative of φ in the direction ξ . The tensor field h is symmetric and satisfies

(2.7)
$$h\xi = 0, \ h\varphi + \varphi h = 0, \ \nabla \xi = -\varphi - \varphi h, \ \operatorname{trace}(h) = \operatorname{trace}(\varphi h) = 0.$$

The (κ, μ) -nullity distribution $N(\kappa, \mu)$ ([2],[8]) of a contact metric manifold M is defined by

$$N(\kappa,\mu):p\to N_p(\kappa,\mu)=\{Z\in T_pM\mid R(X,Y)Z=(\kappa I+\mu h)R_0(X,Y)Z\}$$

for all $X, Y \in TM$, where $(\kappa, \mu) \in \mathbb{R}^2$. A contact metric manifold M with $\xi \in N(\kappa, \mu)$ is called a (κ, μ) -manifold. In this case, we have $h^2 = (\kappa - 1)\varphi^2$. In fact,

136

 (κ,μ) -manifolds exist for all values of $\kappa \leq 1$ and all μ . The class of (κ,μ) -manifolds contains Sasakian manifolds for $\kappa = 1$ and h = 0. For $\kappa < 1$, the curvature is completely determined for (κ,μ) -manifolds; in particular, they have constant scalar curvature. Characteristic examples of non-Sasakian (κ,μ) -manifolds are the tangent sphere bundles of Riemannian manifolds of constant sectional curvature not equal to one and certain Lie groups [4]. If the dimension of a contact metric manifold M is greater than three and in the definition of (κ,μ) -manifold we assume that κ and μ are some smooth functions on M independent of the choice of vector fields X and Y, then the functions κ and μ must be constant [5]. If $\mu = 0$, the (κ,μ) -nullity distribution $N(\kappa,\mu)$ is reduced to the κ -nullity distribution $N(\kappa)$ [12]. If $\xi \in N(\kappa)$, then we call a contact metric manifold M an $N(\kappa)$ -contact metric manifold [12]. For more details we refer to [1].

3 Some basic results

For a (κ, μ) -manifold M^{2n+1} , we have

(3.1)
$$S(X,\xi) = 2n\kappa\eta(X), \qquad X \in TM,$$

(3.2)
$$R(\xi, X) = R_0(\xi, (\kappa I + \mu h) X) \qquad X \in TM.$$

From (3.2) it follows that

(3.3)
$$\eta\left(R\left(\xi,X\right)Y\right) = \kappa\left(g\left(X,Y\right) - \eta(X)\eta(Y)\right) + \mu g\left(hX,Y\right),$$

(3.4)
$$R(\xi, X)\xi = \kappa \left(\eta \left(X\right)\xi - X\right) - \mu h X.$$

From (3.1) and (3.3) we get

$$(3.5) \qquad S\left(R\left(\xi, X\right)Y, \xi\right) = 2n\kappa\left(\kappa\left(g\left(X, Y\right) - \eta(X)\eta(Y)\right) + \mu g\left(hX, Y\right)\right),$$

and from (3.1) and (3.4), it follows that

$$(3.6) \qquad S\left(R\left(\xi,X\right)\xi,Y\right) = 2n\kappa^2\eta\left(X\right)\eta\left(Y\right) - \kappa S\left(X,Y\right) - \mu S\left(hX,Y\right).$$

Lemma 3.1. Let M^{2n+1} be an ξ -Ricci-semisymmetric (κ, μ) -manifold. Then

$$(3.7) \qquad \qquad S\left(\left(\kappa I + \mu h\right)X, Y\right) - 2n\kappa g\left(\left(\kappa I + \mu h\right)X, Y\right) = 0.$$

Proof. The condition $R(\xi, X) \cdot S = 0$ implies that

(3.8)
$$S(R(\xi, X)Y, \xi) + S(Y, R(\xi, X)\xi) = 0,$$

which in view of (3.5) and (3.6) gives (3.7). \Box

In a non-Sasakian $(\kappa,\mu)\text{-manifold }M^{2n+1}$ the Ricci operator Q is given by [2]

(3.9)
$$Q = (2(n-1) - n\mu)I + (2(n-1) + \mu)h + (2(1-n) + n(2\kappa + \mu))\eta \otimes \xi.$$

Consequently, the Ricci tensor S and the scalar curvature r are given by

(3.10)
$$S(X,Y) = (2(n-1) - n\mu)g(X,Y) + (2(n-1) + \mu)g(hX,Y) + (2(1-n) + n(2\kappa + \mu))\eta(X)\eta(Y),$$

(3.11)
$$r = 2n \left(2n - 2 + \kappa - n\mu\right).$$

From (3.10), we have

(3.12)
$$S(hX,Y) = (2(n-1) - n\mu)g(hX,Y) - (\kappa - 1)(2(n-1) + \mu)g(X,Y) + (\kappa - 1)(2(n-1) + \mu)\eta(X)\eta(Y),$$

where $\eta \circ h = 0$, $h^2 = (\kappa - 1) \varphi^2$ and (2.4) are used.

We also recall the following three theorems for later use.

Theorem 3.2. ([1], p. 101) Let M^{2n+1} be a contact metric manifold satisfying $R(X,Y)\xi = 0$. Then, M^{2n+1} is locally isometric to $E^{n+1}(0) \times S^n(4)$ for n > 1 and flat for n = 1.

Theorem 3.3. [13] A Ricci flat (κ, μ) -manifold is flat and 3-dimensional.

Theorem 3.4. [13] A non-Sasakian Einstein (κ, μ) -manifold is 3-dimensional and flat.

The above theorem is a generalization of a result of S. Tanno [12], which states that if an $N(\kappa)$ -contact metric manifold of dimension ≥ 5 is Einstein, then it is necessarily Sasakian.

4 $N(\kappa)$ -contact metric manifolds

Let M^{2n+1} be a contact metric manifold. If $\mu = 0$, the (κ, μ) -nullity distribution $N(\kappa, \mu)$ is reduced to the κ -nullity distribution $N(\kappa)$ [12]. If $\xi \in N(\kappa)$, then we call a contact metric manifold M an $N(\kappa)$ -contact metric manifold. The condition (1.1) of Theorem 1.2 is the condition for a contact metric manifold to be an $N(\kappa)$ -contact metric manifold. If the dimension of a contact metric manifold is greater than three, then in the condition (1.1) of Theorem 1.2 the function κ must be constant [5]. Now, we give an improved version of Theorem 1.2 as follows.

Theorem 4.1. Let M^{2n+1} be an ξ -Ricci-semisymmetric $N(\kappa)$ -contact metric manifold. Then either

(a) M^{2n+1} is flat and 3-dimensional, or

(b) M^{2n+1} is locally isometric to $E^{n+1} \times S^n(4)$, or

(c) M^{2n+1} is an Einstein-Sasakian manifold.

Proof. Let M^{2n+1} be an ξ -Ricci-semisymmetric $N(\kappa)$ -contact metric manifold. Then, in view of Lemma 3.1, we have

(4.1)
$$\kappa \left(S\left(X,Y\right) -2n\kappa g\left(X,Y\right) \right) =0.$$

Therefore, either $S = 2n\kappa g$ or $\kappa = 0$. In the first case M^{2n+1} reduces to an Einstein manifold. Therefore in view of Theorem 3.4, we have either the statement (a) or the statement (c). If $\kappa = 0$, in view of Theorem 3.2, we get either the statement (a) or the statement (b). The converse is straightforward. \Box

As an immediate consequence of Theorem 4.1, we have Theorem 3 of Sharma and Koufogiorgos [10] as the following

Corollary 4.2. Let M^{2n+1} (n > 1) be an $N(\kappa)$ -contact metric manifold. If M^{2n+1} is Ricci-symmetric then either

(a) M^{2n+1} is locally isometric to $E^{n+1} \times S^n(4)$, or

(b) M^{2n+1} is an Einstein-Sasakian manifold.

5 Non-Sasakian η -Einstein (κ , μ)-manifolds

A contact metric manifold M is said to be η -Einstein ([7] or see [1] p. 105) if the Ricci operator Q satisfies

$$(5.1) Q = aI + b\eta \otimes \xi,$$

where a and b are some smooth functions on the manifold. In particular if b = 0, then M becomes an *Einstein manifold*. In dimensions ≥ 5 it is known that for any η -Einstein K-contact manifold, a and b are constants [11].

In [3], it is proved that a 3-dimensional contact metric manifold is η -Einstein if and only if it is an $N(\kappa)$ -contact metric manifold. More precisely, in a 3-dimensional $N(\kappa)$ -contact metric manifold, we have

(5.2)
$$Q = \left(\frac{r}{2} - \kappa\right)I + \left(3\kappa - \frac{r}{2}\right)\eta \otimes \xi.$$

From (3.9) and (5.1), we see that a non-Sasakian (κ, μ) -manifold M^{2n+1} is η -Einstein if and only if $\mu = -2(n-1)$. In a non-Sasakian η -Einstein (κ, μ) -manifold M^{2n+1} , we have

(5.3)
$$Q = 2(n^2 - 1)I + 2(1 + n\kappa - n^2)\eta \otimes \xi,$$

(5.4)
$$S = 2(n^2 - 1)g + 2(1 + n\kappa - n^2)\eta \otimes \eta,$$

(5.5)
$$r = 2n \left(\kappa + 2 \left(n - 1\right) \left(n + 1\right)\right),$$

(5.6)
$$S(hX,Y) = 2(n^2 - 1)g(hX,Y).$$

Example 5.1. A contact metric manifold, obtained by a \mathcal{D} -homothetic deformation of the contact metric structure on the tangent sphere bundle of a Riemannian manifold M^{n+1} of constant curvature $\frac{n^2 \pm 2n+1}{n^2-1}$, is a non-Sasakian η -Einstein (κ, μ)-manifold.

Now, we prove the following

Theorem 5.2. Let M^{2n+1} be a non-Sasakian η -Einstein (κ, μ) -manifold. Then the following conditions are equivalent:

- (a) M^{2n+1} is flat and 3-dimensional.
- (b) M^{2n+1} is Ricci-semisymmetric.
- (c) M^{2n+1} is ξ -Ricci-semisymmetric.

Proof. Let M^{2n+1} be a non-Sasakian η -Einstein (κ, μ) -manifold. Then $(\mathbf{a}) \to (\mathbf{b}) \to (\mathbf{c})$ is obvious. Now, we assume the condition (\mathbf{c}) . From (3.5), we get

(5.7)
$$S(R(\xi, X)Y, \xi) = 2n\kappa^2(g(X, Y) - \eta(X)\eta(Y)) - 4n(n-1)\kappa g(hX, Y).$$

In view of (5.4) and (3.6), we get

(5.8)
$$S(R(\xi, X)\xi, Y) = -2(n^2 - 1)\kappa(g(X, Y) - \eta(X)\eta(Y)) + 4(n-1)(n^2 - 1)g(hX, Y).$$

If M satisfies $R(\xi, X) \cdot S = 0$, it follows that

$$S\left(R\left(\xi,X\right)Y,\xi\right) + S\left(Y,R\left(\xi,X\right)\xi\right) = 0,$$

which in view of (5.7) and (5.8) gives

(5.9)
$$0 = 2(1 + n\kappa - n^2)\kappa(g(X, Y) - \eta(X)\eta(Y)) - 4(n-1)(1 + n\kappa - n^2)g(hX, Y).$$

Contracting the above equation and using trace(h) = 0, we get

$$4n\left(1+n\kappa-n^2\right)\kappa=0.$$

Then, in view of (5.10), we get either $1+n\kappa-n^2=0$ or $\kappa=0$. If $1+n\kappa-n^2=0$, in view of (5.4) M^{2n+1} reduces to an Einstein manifold. Therefore in view of Theorem 3.4, we get the condition (a). If $\kappa=0$, then from (5.9), we get

$$4(n-1)^{2}(n+1)g(hX,Y) = 0.$$

Then either n = 1 or h = 0. If n = 1, we again get the condition (a). Since for a (κ, μ) -manifold, the conditions of being a Sasakian manifold, a K-contact manifold, $\kappa = 1$ and h = 0 are all equivalent; therefore h = 0 is not possible. This completes the proof. \Box

6 ξ -Ricci-semisymmetric (κ, μ)-manifolds

In this section we prove our main theorem as follows:

Proof of Theorem 1.4. Let M be an ξ -Ricci-semisymmetric (κ, μ) -manifold of dimension (2n + 1). We have following cases.

Case 1. Let $\mu = 0$. In view of Theorem 4.1, we have one of the statements (a), (b) and (c).

Case 2. Let $\mu \neq 0$ and $\kappa = 1$. Since a Ricci-semisymmetric Sasakian manifold is an Einstein manifold, in this case we have the statement (c).

Case 3. Let $\mu \neq 0$, $\kappa = 0$. Then from (3.7) and $h^2 = -\varphi^2$, we get S = 0. Now, in view of Theorem 3.3 we get $\mu = 0$, which is a contradiction. Thus, the **Case 3** is not possible.

Case 4. Let $\mu \neq 0$, $0 \neq \kappa < 1$. After eliminating g(hX, Y) and S(hX, Y) from (3.10), (3.7) and (3.12); we get

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y)$$

for some suitable a and b. Thus, M^{2n+1} is a non-Sasakian η -Einstein (κ, μ) -manifold. Then in view of Theorem 5.2, we have n = 1 and $\mu = -2(n-1) = 0$, which is a contradiction. Thus the **Case 4** is not possible. \Box

Acknowledgement. The author is thankful to Professor D. E. Blair for his helpful comments during preparation of this paper.

References

- D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002.
- [2] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214.
- [3] D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with Qφ = φQ, Kodai Math. J. 13 (1990), no. 3, 391– 401.
- [4] E. Boeckx, A full classification of contact metric (k, μ)-spaces, Illinois J. Math. 44 (2000), 212-219.
- [5] T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), no. 4, 440-447.
- [6] V. A. Mirzoyan, Structure theorems for Riemannian Ric-semisymmetric spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 1992, no. 6, 80-89.
- [7] M. Okumura, Some remarks on space with a certain contact structure, Tôhoku Math. J. 14 (1962), 135-145.
- [8] B. J. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R = 0$ and $\xi \in (k, \mu)$ -nullity distribution, Yokohama Math. J. 40 (1993), no. 2, 149-161.
- [9] D. Perrone, Contact Riemannian manifolds satisfying $R(X,\xi) \cdot R = 0$, Yokohama Math. J. 39 (1992), no. 2, 141-149.

- [10] R. Sharma and T. Koufogiorgos, Locally symmetric and Ricci-symmetric contact metric manifolds, Ann. Global Anal. Geom. 9 (1991), no. 2, 177-182.
- S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Ködai Math. Sem. Rep. 21 (1969), 448-458.
- [12] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tôhoku Math. J. 40 (1988), 441-448.
- [13] M. M. Tripathi and J.-S. Kim, On the concircular curvature tensor of a (κ, μ)manifold, Balkan J. Geom. Appl. 9 (2004), no. 1, 114-124.

Author's address:

Mukut Mani Tripathi Department of Mathematics and Astronomy, Lucknow University, Lucknow 226 007, India. email: mmtripathi66@yahoo.com