Fields associated to Lagrangian dynamical systems

V. Obădeanu

Abstract

The general theory of uperfields gives us, in particular, fields associated to classical Lagrangean systems. We get a unitary theory.

Mathematics Subject Classification: 53B40, 53B50, 70F20, 70H03, 70H25, 78A25. Key words: Dynamical Sistems, Mechanics, fields, waves.

I. Uperfields associated to Newtonian dynamical systems

1.1. The Lagrange form. The Lorentz conditions

Let us consider a Newtonian dynamical system described by:

$$
\begin{equation*}
\ddot{q}^{i}=F^{i}(t, q, \dot{q}),(\mathbf{m}=1),\left(\dot{q}^{i}=v^{i}, \dot{v}^{i}=F^{i}(t, q, v)\right) \tag{1.1}
\end{equation*}
$$

We associate to it the equivalent system of equations:

$$
\begin{align*}
& \theta^{i}=d q^{i}-v^{i} d t=0 \\
& \psi^{i}=d v^{i}-F^{i}(t, q, v) d t=0
\end{align*}
$$

and the Lagrange-Gallissot 2-form:

$$
\begin{equation*}
\Omega_{G}=d v^{i} \wedge d q^{i}+\left(F^{i} d q^{i}-v^{i} d v^{i}\right) \wedge d t \tag{1.2}
\end{equation*}
$$

The characteristics of the form Ω_{G} are the trajectories of the dynamical system (1.1).
In general, a 2-form:

$$
\Omega=A_{i j} d v^{i} \wedge d q^{j}+\left(E_{i} d q^{i}-P_{i} d v^{i}\right) \wedge d t+\frac{1}{2} B_{i j} d q^{i} \wedge d q^{j}+\frac{1}{2} Q_{i j} d v^{i} \wedge d v^{j}
$$

with:

$$
\operatorname{det}\left(\begin{array}{cc}
B_{i j} & -A_{j i} \tag{1.3}\\
A_{i j} & Q_{i j}
\end{array}\right) \neq 0
$$

have the characteristics given by:

$$
\begin{align*}
B_{i j} d q^{j}-A_{j i} d v^{j}+E_{i} d t & =0 \\
A_{i j} d q^{j}+Q_{i j} d v^{j}-P_{i} d t & =0 \tag{1.4}
\end{align*}
$$

Proposition 1. The characteristics of the 2-form (1.2') are the trajectories of the system (1.1) if and only if the Lorentz conditions:

$$
\begin{align*}
& B_{i j} v^{j}-A_{j i} F^{j}+E_{i}=0 \\
& A_{i j} v^{j}+Q_{i j} F^{j}-P_{i}=0
\end{align*}
$$

hold.
It follows by (1.1) and (1.4).
The 2 -forms (1.2') which satisfy the condition (1.3) and the Lorentz conditions (1.4'), are called equivalent (they admit the same characteristics). There equivalent class is a dynamical notion.

1.2. The behaviour of the coefficients of the form Ω on a change of local

 chart on the base manifold MOn a change of local chart on M and respectively a change of vectorial chart on $T M$ defined by:

$$
\begin{align*}
& \bar{q}^{i}=\bar{q}^{i}\left(q^{h}\right), \quad d \bar{q}^{i}=\frac{\partial \bar{q}^{i}}{\partial q^{h}} d q^{h} \tag{1.5}\\
& \bar{v}^{i}=\frac{\partial \bar{q}^{i}}{\partial q^{h}} v^{h}, \quad d \bar{v}^{i}=\frac{\partial \bar{q}^{i}}{\partial q^{h}} d v^{h}+\frac{\partial \bar{v}^{i}}{\partial q^{h}} d q^{h}
\end{align*}
$$

the coefficients of the form Ω change by the rules:

$$
\left(\begin{array}{ccc}
\bar{B}_{h k} & -\bar{A}_{k h} & \bar{E}_{h} \\
\bar{A}_{h k} & \bar{Q}_{h k} & -\bar{P}_{h} \\
-\bar{E}_{k} & \bar{P}_{k} & 0
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial q^{i}}{\partial \bar{q}^{h}} & \frac{\partial v^{i}}{\partial \bar{q}^{h}} & 0 \\
0 & \frac{\partial v^{i}}{\partial \bar{v}^{h}} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
B_{i j} & -A_{j i} & E_{i} \\
A_{i j} & Q_{i j} & -P_{i} \\
-E_{j} & P_{j} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{\partial q^{j}}{\partial \bar{q}^{k}} & 0 & 0 \\
\frac{\partial v^{j}}{\partial \bar{q}^{k}} & \frac{\partial v^{j}}{\partial \bar{v}^{k}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

By this relation follows:

$$
\begin{align*}
& \bar{P}_{h}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} P_{i}, \quad \bar{E}_{h}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} E_{i}-\frac{\partial v^{i}}{\partial \bar{q}^{h}} P_{i}, \quad \bar{Q}_{h k}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}} Q_{i j} \\
& \bar{A}_{h k}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}} A_{i j}+\frac{1}{2}\left(\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial v^{j}}{\partial \bar{q}^{k}}-\frac{\partial q^{j}}{\partial \bar{q}^{h}} \frac{\partial v^{i}}{\partial \bar{q}^{k}}\right) Q_{i j}, \tag{1.6}\\
& \bar{B}_{h k}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}} B_{i j}+\left(\frac{\partial v^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}}-\frac{\partial v^{i}}{\partial \bar{q}^{k}} \frac{\partial q^{j}}{\partial \bar{q}^{h}}\right) A_{i j}+\frac{1}{2}\left(\frac{\partial v^{i}}{\partial \bar{q}^{h}} \frac{\partial v^{j}}{\partial \bar{q}^{k}}-\frac{\partial v^{j}}{\partial \bar{q}^{h}} \frac{\partial v^{i}}{\partial \bar{q}^{k}}\right) Q_{i j}
\end{align*}
$$

1.3. The Maxwell's principle.

We say that a 2 -form (1.2') for which the condition (1.3) holds, satisfies the Maxwell's principle ([4]) if it is closed. By $d \Omega=0$, the Maxwell's equations:

$$
\begin{array}{lc}
\frac{\partial A_{h i}}{\partial q^{j}}-\frac{\partial A_{h j}}{\partial q^{i}}+\frac{\partial B_{i j}}{\partial v^{h}}=0, & \frac{\partial A_{j h}}{\partial v^{i}}-\frac{\partial A_{i h}}{\partial v^{j}}+\frac{\partial Q_{i j}}{\partial q^{h}}=0 \\
\frac{\partial A_{i j}}{\partial t}+\frac{\partial E_{j}}{\partial v^{i}}+\frac{\partial P_{i}}{\partial q^{j}}=0, & \frac{\partial B_{i j}}{\partial t}+\frac{\partial E_{j}}{\partial q^{i}}-\frac{\partial E_{i}}{\partial q^{j}}=0 \\
\frac{\partial Q_{i j}}{\partial t}+\frac{\partial P_{i}}{\partial v^{j}}-\frac{\partial P_{j}}{\partial v^{i}}=0, \quad \sum_{(i, j, h)} \frac{\partial B_{i j}}{\partial q^{h}}=0, \quad \sum_{(i, j, h)} \frac{\partial Q_{i j}}{\partial v^{h}}=0
\end{array}
$$

follow.
The coefficients $A_{i j}, B_{i j}, Q_{i j}, E_{i}, P_{i}$, which satisfy the condition (1.3), the Lorentz conditions (1.4) and the Maxwell's equations (1.7), are called coefficients of the uperfield, the form Ω is called uperfield form.

Given a solution of the equations (1.7), any other system of functions is a solution if and only if the difference between the two solutions is a first integral ([2]). For given initial conditions, the solution of the equations (1.7) exists and it is unique ([2]).

II. Field theory

2.1. The canonical isomorphism

Given the dynamical system (1.1), we associate to it the Lagrange 2-form (1.2').
Let us consider the non-singular matrix Δ with its inverse Δ^{-1} :

$$
\Delta=\left(\begin{array}{cc}
B_{i j} & -A_{j i} \tag{2.1}\\
A_{i j} & Q_{i j}
\end{array}\right), \quad \Delta^{-1}=\left(\begin{array}{cc}
Q^{i j} & A^{i j} \\
-A^{j i} & B^{i j}
\end{array}\right)
$$

By $\Delta \cdot \Delta^{-1}=I$ we obtain the relations:

$$
\begin{array}{ll}
B_{i j} Q^{j h}+A^{h j} A_{j i}=\delta_{i}^{h}, & B_{i j} A^{j h}+B^{h j} A_{j i}=0, \\
A_{i j} A^{j h}+Q_{i j} B^{j h}=\delta_{i}^{h}, & A_{i j} Q^{j h}+A^{h j} Q_{j i}=0
\end{array}
$$

which define the components of the inverse matrix.
We can now define a natural isomorphism, denoted by $\hat{\Delta}, \hat{\Delta}: T(\mathbf{R} \times T M) \rightarrow$ $T^{*}(\mathbf{R} \times T M)$, locally expressed by:

$$
\hat{\Delta}=\left(\Delta_{a b}\right)=\left(\begin{array}{ccc}
B_{i j} & -A_{j i} & E_{i} \\
A_{i j} & Q_{i j} & -P_{i} \\
-E_{j} & P_{j} & 1
\end{array}\right):\left(\begin{array}{c}
X^{i} \\
Y^{i} \\
Z
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
B_{i j} & -A_{j i} & E_{i} \\
A_{i j} & Q_{i j} & -P_{i} \\
-E_{j} & P_{j} & 1
\end{array}\right)\left(\begin{array}{c}
X^{j} \\
Y^{j} \\
Z
\end{array}\right)=\left(\begin{array}{c}
a_{i} \\
b_{i} \\
c
\end{array}\right)
$$

$(a, b=\overline{1,2 m+1})$, where:
$a_{i}=B_{i j} X^{j}-A_{j i} Y^{j}+E_{i} Z, \quad b_{i}=A_{i j} X^{j}+Q_{i j} Y^{j}-P_{i} Z, \quad c=-E_{i} X^{i}+P_{i} Y^{i}+Z$.
Proposition 2. The necessary and sufficient condition so that the non-autonomous semispray $S=\frac{\partial}{\partial t}+v^{i} \frac{\partial}{\partial q^{i}}+F^{i} \frac{\partial}{\partial v^{i}}$ to become, by the canonical isomorphism, $d t$, $(\Delta(S)=d t)$, is that the Lorentz conditions to be satisfied.

Indeed, this follows by:

$$
\hat{\Delta}:\left(\begin{array}{c}
v^{i} \\
F^{i} \\
1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
B_{i j} & -A_{j i} & E_{i} \\
A_{i j} & Q_{i j} & -P_{i} \\
-E_{j} & P_{j} & 1
\end{array}\right)\left(\begin{array}{c}
v^{j} \\
F^{j} \\
1
\end{array}\right)=\left(\begin{array}{c}
B_{i j} v^{j}-A_{j i} F^{j}+E_{i} \\
A_{i j} v^{j}+Q_{i j} F^{j}-P_{i} \\
-E_{j} v^{j}+P_{j} F^{j}+1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

2.2 The uperfield equations. The waves equation

1. The volume form

On $\mathbf{R} \times T M$ we build the following volume form:

$$
\eta=\sqrt{|\operatorname{det} \Delta|} d q^{1} \wedge \cdots \wedge d q^{m} \wedge d v^{1} \wedge \cdots \wedge d v^{m} \wedge d t
$$

where the matrix Δ is defined by (2.1).
2. Differential operators
a) The Hodge-de Rham adjunction operator is defined, for any p-form $\alpha \in$ $\Lambda^{p}(\mathbf{R} \times T M)$, by associating to it a $(n-p)$-form $* \alpha \in \Lambda^{n-p}(\mathbf{R} \times T M)$, where $n=$ $2 m+1$, given by:

$$
(* \alpha)\left(X_{1}, \ldots, X_{n-p}\right) \eta=\alpha \wedge \Delta X_{1} \wedge \cdots \wedge \Delta X_{n-p}
$$

Locally, this operator is expressed by:

$$
(* \alpha)_{a_{p+1}, \ldots, a_{n}}=\frac{1}{p!} \eta_{a_{1}, \ldots, a_{p}, a_{p+1}, \ldots, a_{n}} \alpha^{a_{1}, \ldots, a_{p}},
$$

where $\alpha^{a_{1}, \ldots, a_{p}}=\Delta^{a_{1} b_{1}} \ldots \Delta^{a_{p} b_{p}} \alpha_{b_{1}, \ldots, b_{p}},\left(a_{i}, b_{i}=\overline{1, n}\right)$, are the contravariant components of the p-form α.
b) The codifferentiation operator is given by:

$$
\delta=(-1)^{p+1} *^{-1} d *
$$

c) The Laplace d'Alembert operator is defined by:

$$
\square=\delta d+d \delta: \alpha \rightarrow \square \alpha
$$

3. The propagation equation of the uperfield (the waves equation)

If Ω is the (closed) Lagrange 2-form, the propagation equation of the uperfield is:

$$
\square \Omega=d \delta \Omega
$$

Remarks. By the rules of transformations (1.6) of the components of the 2-form Ω, follows that the functions $Q_{i j}$ and P_{i} give us the distinguished objects: $P=P_{i} d q^{i}$ (a covector - the impulse form) and $Q=\frac{1}{2} Q_{i j} d q^{i} \wedge d q^{j}$ (a 2-form). The functions P_{i} and E_{i} are the components of a covector $\varepsilon=E_{i} d q^{i}-P_{i} d v^{i}$ on $T M$ (parameterized by t); $\pi=Q-P \wedge d t$ is a 2 - d-form on $\mathbf{R} \times M$.

We have the following special cases:
a. If $m=2 p$ and $\operatorname{det}\left(Q_{i j}\right) \neq 0$, the 2-form $Q=\frac{1}{2} Q_{i j} d q^{i} \wedge d q^{j}$ has the property that $\eta=Q^{p}=\sqrt{\left|\operatorname{det}\left(Q_{i j}\right)\right|} d q^{1} \wedge \cdots \wedge d q^{m}$ is a distinguished volume form on M, parameterized by t.
b. If $m=2 p+1$ and $\operatorname{det}\left(\begin{array}{cc}Q_{i j} & -P_{i} \\ P_{j} & 0\end{array}\right) \neq 0$, the 2 -form $\pi=Q-P \wedge d t$ has the property that $\eta_{t}=\pi^{p+1}=\sqrt{\left|\operatorname{det}\left(\begin{array}{cc}Q_{i j} & -P_{i} \\ P_{j} & 0\end{array}\right)\right|} d q^{1} \wedge \cdots \wedge d q^{m} \wedge d t$ is a distinguished volume form on $\mathbf{R} \times M$.
2.3 The transformations of the uperfield coefficients on a family of differentiable changes of chart

Let us consider a change of chart on the manifold $\mathbf{R} \times T M$, given by:

$$
\begin{array}{ll}
\bar{q}^{i}=\bar{q}^{i}\left(t, q^{h}\right), & d \bar{q}^{i}=\frac{\partial \bar{q}^{i}}{\partial q^{h}} d q^{h}+\frac{\partial \bar{q}^{i}}{\partial t} d t \tag{2.2}\\
\bar{v}^{i}=\frac{\partial \bar{q}^{i}}{\partial q^{h}} v^{h}+\frac{\partial \bar{q}^{i}}{\partial t}, & d \bar{v}^{i}=\frac{\partial \bar{q}^{i}}{\partial q^{h}} d v^{h}+\frac{\partial \bar{v}^{i}}{\partial q^{h}} d q^{h}+\frac{\partial \bar{v}^{i}}{\partial t} d t .
\end{array}
$$

The coefficients of the uperfield change by the rules:

$$
\left(\begin{array}{ccc}
\bar{B}_{h k} & -\bar{A}_{k h} & \bar{E}_{h} \\
\bar{A}_{h k} & \bar{Q}_{h k} & -\bar{P}_{h} \\
-\bar{E}_{k} & \bar{P}_{k} & 0
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial q^{i}}{\partial \bar{q}^{h}} & \frac{\partial v^{i}}{\partial \bar{q}^{h}} & 0 \\
0 & \frac{\partial v^{i}}{\partial \bar{v}^{h}} & 0 \\
\frac{\partial q^{i}}{\partial t} & \frac{\partial v^{i}}{\partial t} & 1
\end{array}\right)\left(\begin{array}{ccc}
B_{i j} & -A_{j i} & E_{i} \\
A_{i j} & Q_{i j} & -P_{i} \\
-E_{j} & P_{j} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{\partial q^{j}}{\partial \bar{q}^{k}} & 0 & \frac{\partial q^{j}}{\partial t} \\
\frac{\partial v^{j}}{\partial \bar{q}^{k}} & \frac{\partial v^{j}}{\partial \bar{v}^{k}} & \frac{\partial v^{j}}{\partial t} \\
0 & 0 & 1
\end{array}\right)
$$

By these relations follows that the functions $A_{i j}, B_{i j}$ and $Q_{i j}$ change by the same rules as given in (1.6) and the functions E_{i} and P_{i} change by the rules:

$$
\begin{align*}
\bar{P}_{h} & =\frac{\partial q^{i}}{\partial \bar{q}^{h}}\left(P_{i}-\frac{\partial q^{j}}{\partial t} A_{i j}-\frac{\partial v^{j}}{\partial t} Q_{i j}\right) \\
\bar{E}_{h} & =\frac{\partial q^{i}}{\partial \bar{q}^{h}} E_{i}-\frac{\partial v^{i}}{\partial \bar{q}^{h}} P_{i}+\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial t} B_{i j}+ \tag{2.3}\\
& +\left(\frac{\partial v^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial t}-\frac{\partial q^{j}}{\partial \bar{q}^{h}} \frac{\partial v^{i}}{\partial t}\right) A_{i j}+\frac{\partial v^{i}}{\partial \bar{q}^{h}} \frac{\partial v^{j}}{\partial t} Q_{i j} .
\end{align*}
$$

III. Fields associated to classical Lagrangean dynamical systems

Proposition 3. A necessary condition so that a second order dynamical system to be Lagrangean is that the system is written in main form:

$$
\begin{equation*}
F_{k}=A_{k i}(t, q, v) \dot{v}^{i}+B_{k}(t, q, v)=0, \quad(v=\dot{q}) \tag{3.1}
\end{equation*}
$$

The system is non-degenerated if the property:

$$
\operatorname{det}\left(\frac{\partial F_{i}}{\partial \dot{v}^{j}}\right)=\operatorname{det}\left(A_{i j}\right) \neq 0
$$

holds.
Such a system of equations, which is a model of the dynamics of a real system, is not unique. We say that two systems $F_{i}=0$ and $G_{i}=0$ are equivalent if they admit the same solutions. We consider the class of systems $G_{i}=F_{j} D_{i}^{j}=0$, where $D_{i}^{j}=D_{i}^{j}(t, q, v), \operatorname{det}\left(D_{i}^{j}\right) \neq 0, \forall(t, q, v) \in \mathbf{R} \times T M$.

Without loosing the generality, we can assume that the system we consider from the above equivalence class, satisfies $A_{i j}=A_{j i}$.

The functions $A_{i j}$ are the components of a d-metric on M, they change, on a change of local chart, by the rules:

$$
\bar{A}_{h k}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}} A_{i j} .
$$

If $\left(A^{i j}\right)$ is the inverse of the matrix $\left(A_{i j}\right)$ and if we multiply (3.1) by $A^{h i}$, we obtain the equations (1.1), where:

$$
F^{i}=-A^{i j} B_{j}
$$

The coefficients $-B_{i}=A_{i j} F^{j}$ are the covariant components of the field of force F^{i}, with respect to the metric given by $A_{i j}$. We have:

Proposition 4. A dynamical system (3.1) is Lagrangean if and only if it is selfadjoint ([3]).

The self-adjointness conditions are:

$$
\begin{align*}
& \operatorname{det}\left(A_{i j}\right) \neq 0, A_{i j}=A_{j i}, \frac{\partial A_{i k}}{\partial v^{j}}=\frac{A_{j k}}{\partial v^{i}} \\
& \frac{\partial B_{i}}{\partial v^{j}}+\frac{\partial B_{j}}{\partial v^{i}}=2\left(\frac{\partial}{\partial t}+v^{k} \frac{\partial}{\partial q^{k}}\right) A_{i j} \tag{3.2}\\
& \frac{\partial B_{i}}{\partial q^{j}}-\frac{\partial B_{j}}{\partial q^{i}}=\frac{1}{2}\left(\frac{\partial}{\partial t}+v^{k} \frac{\partial}{\partial q^{k}}\right)\left(\frac{\partial B_{i}}{\partial v^{j}}-\frac{\partial B_{j}}{\partial v^{i}}\right) .
\end{align*}
$$

Proposition 5. A dynamical system (1.1) is equivalent with a selfadjoint (Lagrangean) system if and only if the Lagrange 2-form (1.2') has the components $Q_{i j} \equiv 0$ ([2]).

Indeed, in this case, the Maxwell's equations (1.7) become the Helmholtz equations (3.2).

Let us associate to the system (3.1) the Pfaff forms:

$$
\begin{align*}
& \theta^{i}=d q^{i}-v^{i} d t \\
& \psi_{i}=A_{i j} d v^{j}+B_{i} d t
\end{align*}
$$

The corresponding Lagrange 2-form is:

$$
\begin{equation*}
\Omega=\psi_{i} \wedge \theta^{i}+\frac{1}{2} B_{i j} \theta^{i} \wedge \theta^{j} \tag{3.3}
\end{equation*}
$$

where the coefficients $B_{i j}$ are, for the moment, arbitrary.
We have:

$$
\Omega=A_{i j} d v^{i} \wedge d q^{j}+\left(E_{i} d q^{i}-P_{i} d v^{i}\right) \wedge d t+\frac{1}{2} B_{i j} d q^{i} \wedge d q^{j}
$$

The Lorentz conditions (1.4) become:

$$
\begin{align*}
& E_{i}+B_{i j} v^{j}=-B_{i}, \\
& P_{i}-A_{i j} v^{j}=0 . \tag{3.4}
\end{align*}
$$

The characteristics of the above 2 -form are the trajectories of the system (3.1). By the Maxwell's equations we obtain the coefficients $B_{i j}$.

The first set of the relations (3.4) tells us that the field of force of components $-B_{i}$ is a Lorentz field with respect to the coefficients of the field $\left(E_{i}, B_{i j}\right)$, the field of force being $F^{i}=A^{i h}\left(E_{h}+B_{h k} v^{k}\right)$.

The second set of the relations (3.4) tells us that the functions P_{i} are the covariant components of the field of velocities with respect to the d-metric $A_{i j}$. We call them impulse functions.

The field of force F can be considered of mechanical (newtonian) nature as being contravariant (spray), or as a Lorentz field of force, of electromagnetic nature as being covariant.

We have the properties: $\operatorname{det}\left(A_{i j}\right) \neq 0$ and $A_{i j}=A_{j i}$. The Maxwell's equations are:

$$
\begin{align*}
& \frac{\partial A_{i h}}{\partial v^{j}}-\frac{\partial A_{j h}}{\partial v^{i}}=0, \quad \frac{\partial B_{i j}}{\partial v^{h}}+\frac{\partial A_{h i}}{\partial q^{j}}-\frac{\partial A_{h j}}{\partial q^{i}}=0 \\
& \frac{\partial A_{i j}}{\partial t}+\frac{\partial E_{j}}{\partial v^{i}}+\frac{\partial P_{i}}{\partial q^{j}}=0, \quad \sum_{(i, j, h)} \frac{\partial B_{i j}}{\partial q^{h}}=0 \tag{3.5}\\
& \frac{\partial B_{i j}}{\partial t}+\frac{\partial E_{j}}{\partial q^{i}}-\frac{\partial E_{i}}{\partial q^{j}}=0, \quad \frac{\partial P_{j}}{\partial v^{i}}-\frac{\partial P_{i}}{\partial v^{j}}=0
\end{align*}
$$

By the second Lorentz relation (3.4), the last Maxwell equation and the property $A_{i j}=A_{j i}$ follows the first relation of (3.5). The forth and fifth relations of (3.5) can be written as: $\operatorname{rot} E+\frac{\partial B}{\partial t}=0$, $\operatorname{div} B=0$; they are the well-known Maxwell equations for the electric field E_{i} and the magnetic induction $B_{i j}$.

The magnetic induction is connected to the metric by the second relation (3.5) and the electric field is connected to the metric by the third relation (3.5) and the second Lorentz condition.

We call the subset $\left(E_{i}, B_{i j}\right)$ field.
The transformation rules (1.6) of the coefficients of field become:

$$
\begin{align*}
& \bar{P}_{h}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} P_{i}, \quad \bar{E}_{h}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} E_{i}-\frac{\partial v^{i}}{\partial \bar{q}^{h}} P_{i} \\
& \bar{A}_{h k}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}} A_{i j} \tag{3.6}\\
& \bar{B}_{h k}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}} B_{i j}+\left(\frac{\partial v^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial \bar{q}^{k}}-\frac{\partial v^{i}}{\partial \bar{q}^{k}} \frac{\partial q^{j}}{\partial \bar{q}^{h}}\right) A_{i j} .
\end{align*}
$$

Remarks. In this special case, the uperfield has two components:

1. A geometric component which contains a d-covector: the impulse P_{i} and a non-degenerated and symmetric two times covariant second order d-tensor: $A_{i j}$. They endow the configuration space with a Lagrangean structure.
2. A component of "field" $\left(E_{i}, B_{i j}\right)$ which satisfies the classical electromagnetic field equations.
3. The field $\left(E_{i}, B_{i j}\right)$ and the metric $A_{i j}$ allow us to build a (classical) field theory, where the Maxwell's equations hold.
4. Together, the coefficients E_{i} and P_{i} can be considered as a field of covectors on $T M: E_{i} d q^{i}-P_{i} d v^{i}$. On the evolution, this Pfaff form lead us to a conservation law.
5. The field of force F_{i}, considered as a semispray, let us to associate a nonlinear connection to the structure of the space.
6. By the rules of transformations (3.6) of the coefficients of the form Ω, on a change of local chart on M (respectively on $T M$), follows that by the uperfield's interpretation we obtain a unitary electro-gravitational theory.
7. This point of view holds if we consider a change of coordinates on $\mathbf{R} \times T M$ (2.2). In this case we have the relations:

$$
\begin{align*}
& \bar{P}_{h}=\frac{\partial q^{i}}{\partial \bar{q}^{h}}\left(P_{i}-\frac{\partial q^{j}}{\partial t} A_{i j}\right) \\
& \bar{E}_{h}=\frac{\partial q^{i}}{\partial \bar{q}^{h}} E_{i}-\frac{\partial v^{i}}{\partial \bar{q}^{h}} P_{i}+\frac{\partial q^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial t} B_{i j}+\left(\frac{\partial v^{i}}{\partial \bar{q}^{h}} \frac{\partial q^{j}}{\partial t}-\frac{\partial q^{j}}{\partial \bar{q}^{h}} \frac{\partial v^{i}}{\partial t}\right) A_{i j}
\end{align*}
$$

8. By the relations $\left(2.1^{\prime}\right)$, if $Q_{i j}=0$, follows for the components of the inverse matrix Δ^{-1} of the field that: $\left(A^{i j}\right)$ is the inverse of the matrix $\left(A_{i j}\right)$ and the functions $B^{i j}$ are the contravariant components of $B_{i j}$, lifted with the components of the inverse matrix $\left(A^{i j}\right)$.

IV. The case of a dynamical system given by the Lagrange function

Given the Lagrange function $L=L(t, q, v)$, the Euler-Lagrange equations are:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0, \quad\left(d q^{i}=v^{i} d t\right)
$$

We have:

$$
\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} \dot{v}^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}} v^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial t}-\frac{\partial L}{\partial q^{i}}=0 .
$$

This system is written in the main form (3.1), where:

$$
\begin{aligned}
A_{i j} & =\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} \\
B_{i} & =\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}} v^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial t}-\frac{\partial L}{\partial q^{i}}
\end{aligned}
$$

The Lagrange form is:

$$
\begin{aligned}
& \Omega_{L}=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j}+\frac{1}{2}\left(\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}\right) d q^{i} \wedge d q^{j} \\
& +\left[\left(\frac{\partial L}{\partial q^{i}}-v^{h} \frac{\partial^{2} L}{\partial v^{h} \partial q^{i}}-\frac{\partial^{2} L}{\partial v^{i} \partial t}\right) d q^{i}-v^{h} \frac{\partial^{2} L}{\partial v^{h} \partial v^{i}} d v^{i}\right] \wedge d t
\end{aligned}
$$

In this case, it follows for the components of the field the expressions: $A_{i j}=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}$ (the metric), $B_{i j}=\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}$ (the magnetic induction), $P_{i}=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} v^{j}$ (the
impulse), $E_{i}=\frac{\partial L}{\partial q^{i}}-\frac{\partial^{2} L}{\partial v^{i} \partial t}-v^{h} \frac{\partial^{2} L}{\partial v^{h} \partial q^{i}}$ (the electric field). Obviously, this values satisfy the Maxwell's equations.

By the Lagrange equations, the field of force with the Lorentz expression: $F^{i}=$ $A^{i h}\left(E_{h}+B_{h k} v^{k}\right)$, lead us to: $F_{i}=\frac{\partial L}{\partial q^{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)+F^{h} A_{h i}=A_{i h} F^{h}$, which show that the Lorentz force F_{i} is the covariant expression of the Newtonian field F^{i}, with respect to the canonical d-metric $A_{i j}$.

References

[1] R. Miron, M. Anastasiei, Vector Bundles. Lagrange Spaces. Applications to Relativity Theory (Romanian), Academy Eds., Bucharest, 1987.
[2] V. Obădeanu, Fields and Waves associated to Newtonian Dynamical Systems, Tensor (to appear).
[3] R.M. Santilli, Foundations of Theoretical Mechanics (I); The Inverse Problem in Newtonian Mechanics, Springer-Verlag (1984), Foundations of Theoretical Mechanics (II); Birkhoffian generalization of Hamiltonian Mechanics, SpringerVerlag, 1983.
[4] J.-M. Souriau, Structure des systémes dynamiques, Dunod, Paris 1970.
Author's address:
Virgil Obădeanu
West University of Timişoara, Department of Mathematics, B-dul V. Pârvan Nr. 4, Timişoara, Romania.
email: obadeanu@math.uvt.ro

