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Abstract. In this paper, we introduce the lightlike ruled surfaces in semi-
Euclidean space R4

1 and classify the lightlike ruled surfaces in R4
1. It is

also investigated that their induced connection is a metric connection.
Furthermore, we give the conditions of becoming striction line of base
(directrix) curve.
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1 Introduction

The ruled surfaces in Euclidean 3-space is one of the important topics of differential
geometry. Because, the ruled surfaces have the most important positions in the study
of rational design problems in spatial mechanisms and physical applications. Hence,
the ruled surfaces have been studied by many authors, [1], [8],..., etc. In those studies,
many properties of the ruled surfaces have been investigated.

After then, the ruled surfaces have been generalized to Euclidean n-space, [11],
[6]. These ruled surfaces have been considered as submanifolds and various geomet-
ric properties have been studied. It is known that the theory of submanifolds of a
Riemannian (or semi-Riemannian) manifold is one of the most important topics of
differential geometry (see for example, Chen [2] and O’Neill [10] ).

Recently, the differential geometry of the ruled surfaces by means of the Lorentzian
metric has been studied by several authors [12], [9]. Particularly, in those studies the
various properties of the ruled surfaces with non-degenerate reduced metric have been
investigated. For example, the time-like ruled surfaces in Minkowski 3-space studied by
Turgut and Hacısalihoǧlu in [12]. The classification of the ruled surfaces in Minkowski
3-space given by Kim and et all in [9].

Furthermore, the lightlike submanifolds of a semi-Riemannian manifold have been
studied by some authors in [3], [4]. Also, the totally umbilical half lightlike subman-
ifolds of semi-Riemannian manifolds have been investigated by Duggal and Jin in
[5].
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Our goal in this study is to introduce the lightlike ruled surfaces in R4
1. We have

used technics given by Duggal and Jin in [5]. We have divided the lightlike ruled
surfaces in R4

1 into two classes. For each class of lightlike ruled surfaces, the totally
geodesic, totally umbilical and as being a case the metric connection of induced metric
have been investigated. Also, we have investigated the condition of becoming striction
line of base (directrix) curve of each of the light-like ruled surfaces.

2 Preliminaries

Let R4
1 be the 4-dimensional semi-Euclidean space of a index 1 with the natural metric

g. So, for x = (x1, x2, x3, x4) ∈ R4
1,

g(x, x) = −(x1)2 + (x2)2 + (x3)2 + (x4)2.(2.1)

A vector x of R4
1 is said to be spacelike if g(x, x) > 0, (or x = 0), timelike if g(x, x) < 0

and lightlike (or null) if g(x, x) = 0. For any two vectors x, y of R4
1 is called orthogonal

if g(x, y) = 0. A timelike or lightlike vector in R4
1 is said to be causal.

Lemma 2.1. [7] There are no causal vectors in R4
1 orthogonal to a time-like vector,

and two null vector are orthogonal if and only if they are linearly dependent.

We recall that the geometrical properties of the 1-lightlike 2-surfaces in R4
1 . The

1-lightlike 2-surface in R4
1 is a half lightlike submanifold of R4

1, of codimension 2, [5].
Let M be a 1-lightlike surface in R4

1. Then the induced metric g is degenerate on M .
Thus, there exits a lightlike vector field ξ1 which is locally defined on a open subset
U of M such that

g(ξ1, ξ1) = 0, g(ξ1, X) = 0,

for any X ∈ Γ(TM). Then, for each tangent space TxM , x ∈ M , we consider

TxM⊥ = {u : g(u, v) = 0, ∀v ∈ TxM}

which is a degenerate 2-dimensional subspace of TxR4
1. Since M is a lightlike surface,

both TxM and TxM⊥ are degenerate orthogonal subspaces but no longer complemen-
tary. Thus, for each x ∈ M , TxM

⋂
TxM⊥ 6= φ and there exists a lightlike distribution

Rad TM which is called radical distribution. Then, the radical distribution Rad TM
is a smooth distribution which is locally spanned by ξ1. Hence, Rad TM is a subbun-
dle of TM and TM⊥ with rank 1. Such a surface M in R4

1 is called a half-lightlike
(1-lightlike) surface in R4

1 [5]. In this case, there exists a supplementary distribution to
Rad TM in TM . We choose such a non-degenerate distribution S(TM) of M which
is spanned by a unit spacelike vector field U . Thus we have

TM = Rad TM⊥S(TM).(2.2)

We consider the orthogonal complementary distribution S(TM)⊥ to S(TM) in TR4
1.

Then there exists a unit spacelike vector field ξ2 belong to Γ(S(TM)⊥) such that
g(ξ2, X) = 0, for all X ∈ Γ(TM). Since Rad TM is a 1-lightlike vector subbundle of
TM⊥, we may consider a supplementary distribution D to Rad TM such that it is
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locally spanned by ξ2. The distribution D is called a screen canonical affine normal
bundle of M . Then we have

S(TM)⊥ = D⊥D⊥,

where D⊥ is the orthogonal complementary distribution to D in S(TM)⊥. Thus,
there exists a unique locally defined vector field N1 ∈ Γ(D⊥) satisfying

g(N1, ξ1) = 1, g(N1, N1) = g(N1, ξ2) = 0.(2.3)

Hence, the canonical affine normal bundle tr(TM) of M is given by

tr(TM) = D⊥ltr(TM),

where ltr(TM) is a 1-dimensional vector bundle locally represented by N1 with respect
to the screen distribution S(TM). Thus we have the following decomposition:

TR4
1 = S(TM)⊥(Rad TM ⊕ tr(TM))

= S(TM)⊥D⊥(Rad TM ⊕ ltr(TM)).(2.4)

Denote by P the projection of TM on S(TM) with respect to the decomposition (2.4)
and obtain

X = PX + η(X)(2.5)

for any X ∈ Γ(TM), where η is a local differential 1-form on M given by

η(X) = g(X, N1).(2.6)

From (2.2) and (2.3) we choose the field of frames {ξ1, U} and {ξ1, U, ξ2, N1} on M .
Let ∇ be the standard Levi-Civita connection of R4

1 and ∇ be the induced connection
on M . According to (2.2) and (2.3) we get

∇XY = ∇XY + h(X,Y )
∇XN1 = −AN1X +∇⊥XN1(2.7)
∇Xξ2 = −Aξ2X +∇⊥Xξ2

for any X, Y ∈ Γ(TM), where ∇XY , AN1X, Aξ2X ∈ Γ(TM) and h(X, Y ), ∇⊥XN1,
∇⊥Xξ2 ∈ Γ(tr(TM)). It is well known that ∇ is a torsion-free linear connection on
M , but not the metric connection. Here AN1 and Aξ2 are linear operators on Γ(TM)
which are called shape operators and h is a symmetric bilinear form on M which
is called the second fundamental form of M . Moreover, we rewrite on the locally
coordinate neighborhood U of M ,

∇XY = ∇XY + D1(X,Y )N1 + D2(X, Y )ξ2(2.8)
∇XN1 = −AN1X + ρ1(X)N1 + ρ2(X)ξ2(2.9)
∇Xξ2 = −Aξ2X + ε1(X)N1 + ε2(X)ξ2(2.10)

for any X, Y ∈ Γ(TM), where Di(X, Y ) = g(h(X, Y ), ξi), ρi(X) = g(∇⊥XN1, ξi) and
εi(X) = g(∇⊥Xξ2, ξi), i = 1, 2, on U . From (2.8) and (2.9), we have
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D1(X, ξ1) = 0, g(AN1X, N1) = 0.(2.11)

Since ∇ is a metric connection, from (2.6) and (2.8), we obtain

(∇Xg)(Y, Z) = D1(X, Y )η(Z) + D1(X,Z)η(Y )(2.12)

for any X,Y, Z ∈ Γ(TM).
We consider the decomposition (2.2), then we have

∇XPY = ∇∗XPY + h∗(X, PY )(2.13)

∇Xξ1 = −A∗ξ1
X +∇∗⊥X ξ1(2.14)

for any X, Y ∈ Γ(TM), where ∇∗XPY , A∗ξ1
X ∈ Γ(S(TM)) and h∗(X,PY ), ∇∗⊥X ξ1 ∈

Γ(Rad TM).
If h (resp. h∗) is vanish on M , then M (resp. S(TM)) is called totally geodesic. M

(resp. S(TM)) is to be totally umbilical in R4
1 if there exists a smooth affine normal

vector field Z ∈ Γ(tr(TM)) (resp. a smooth vector field W ∈ Γ(Rad TM)) on M ,
called the affine normal curvature vector field of M , such that h(X, Y ) = Z g(X,Y )
(resp. h∗(X, PY ) = W g(X, PY )), for all X, Y ∈ Γ(TM).

The following lemma will be used later:

Lemma 2.2. [4] Let M be a 1-lightlike submanifold of a semi-Riemannian manifold
(M, g). Suppose U is a coordinate neighborhood of M and ξ1 ∈ Γ(Rad TM |U ) every-
where non-zero on U . Then there exists a unique section N1 of S(TM⊥)⊥ which is
given by

N1 =
1

g(V, ξ1)
{V − g(V, V )

2g(V, ξ1)
ξ1}(2.15)

such that g(N1, ξ1) = 1, g(N1, N1) = 0, where V ∈ Γ(S(TM⊥)⊥|U ) such that V is
non-null and g(V, ξ1) 6= 0.

For the dependence of all the induced geometric objects of M, we refer to [4] and
[5].

Let

α : I → R4
1

u → α(u) = (α1(u), α2(u), α3(u), α4(u))(2.16)

be a differentiable curve, where I is open interval such that 0 ∈ I and let ` be a
straight line along α given by

` : R → R4
1

v → `(v) = α(u) + ve(u),(2.17)

where e(u) is the director vector of ` at the point α(u) such that e(u) and the tangent
vector of α are linearly independent at every point of the curve α. We assume that
g(α

′
, e) = 0, g(α

′
, α

′
) = ε1 and g(e, e) = ε, where ε1 = ±1 or ε1 = 0, ε = ±1 or ε = 0
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and α′ = dα
du , i.e. α′ and e are orthogonal and given by arc-length or null-arc.

A ruled surface M in R4
1 is given by (the image of) a map φ : I → R4

1 of the form

φ(u, v) = α(u) + ve(u),(2.18)

where we call α a base curve and the various positions of the generating line ` the
rulings of the surface. If e is constant along α, then M is called cylindrical (or de-
velopable) ruled surface, otherwise it is called non-cylindrical (or skew) ruled surface.
Then the tangent bundle TM of M is spanned by {φu, φv}, where

φu =
∂φ

∂u
= α

′
+ ve

′
(2.19)

φv =
∂φ

∂v
= e(2.20)

and g(φu, φv) = 0. The distribution A(u) spanned by {e, e′} is called asymptotic bun-
dle of M with respect to generating line `. The vector subbundle T (u) spanned by
the set {α′, e, e′} is said to be tangential bundle of M with respect to generating line
`. If g(α′, e′) = 0, then we call the curve α a striction curve. Denote by g the induced
tensor field on M of g. If g is non-degenerate on M , then M is a semi-Riemannian
ruled surface, otherwise M is a lightlike (degenerate) ruled surface in R4

1.

In this study, we consider only the lightlike ruled surfaces in R4
1. For those ruled

surfaces, we give some results, theorems and examples.

3 The classification of lightlike ruled surfaces in R4
1

We consider the ruled surface M in R4
1 given by (2.18). Then, from (2.19) and (2.20),

the induced metric is given by

[gij ] =




g11 g12

g21 g22


 ,

where g11 = g(φu, φu) = g(α′, α′) + 2vg(α′, e′) + v2g(e′, e′), g12 = g21 = g(φu, φv) = 0
and g22 = g(φv, φv) = ε. If det[gij ] = 0, then M is a lightlike ruled surface. Thus, M
is a lightlike ruled surface if and only if g11 = 0 or g22 = ε = 0.

Let M be a lightlike ruled surface in R4
1. The lightlike ruled surface M is said to

be type I or type II, according to the cases g11 = 0 or ε = 0, respectively. We note
that, in the case of type I, e is a spacelike vector field along α, i.e. ε = 1. If M is of
type II, then φu is a spacelike vector field along α, i.e. g11 > 0. We recall that g11

and ε are not vanish at the same time along α. If g11 = 0 and ε = 0, then φ can not
be an immersion with rank 2.
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3.1 Ruled surfaces of Type I

Let M be a ruled of type I in R4
1. Then g11 = 0, that is

g(e′, e′)v2 + 2g(α′, e′)v + g(α′, α′) = 0.(3.1.1)

The equation (3.1.1) is a second degree equation with respect to v. If the discriminant
4 = b2 − 4ac > 0 of (3.1.1), there are solutions in R and v1,2 = −b∓√4

2a , where
a = g(e′, e′), b = 2g(α′, e′) and c = g(α′, α′). Then, we set J = R \ {v1, v2} if 4 > 0,
J = R if 4 < 0. Thus the parametrization of M is given by

φ(u, v) = α(u) + v e(u), u ∈ I, v ∈ J.(3.1.2)

Hence, the lightlike ruled surface M is of type I if and only if

g(α′, α′) = g(e′, e′) = g(α′, e′) = 0.(3.1.3)

From (3.1.3), we obtain that α is a lightlike (null) curve and e′ is either lightlike
(null) vector field or e′ = 0 (i.e. M is cylindrical) along α. Since α′ and e are linear
independent and g(α′, e) = 0 along α, e is a unit spacelike vector field along α, that
is ε = 1. Since g(α′, e′) = 0 in (3.1.3), there is a smooth function λ on I such that

e′ = λα′.(3.1.4)

If e′ = 0, then λ is vanish on I. Thus, from (2.19) and (3.1.4), we get

φu = (1 + λv)α′.(3.1.5)

Then, the tangent bundle of M is spanned by {α′, e} and α′ is a lightlike (degenerate)
vector field on M . If we set ξ1 = α′, then the radical distribution Rad TM and the
screen distribution S(TM) are spanned by ξ1 and the spacelike vector field e, respec-
tively. Thus the ruled surface M is a half lightlike submanifold in R4

1, of codimension
2. Since Rad TM is the 1-dimensional vector subbundle of TM⊥, there exists a unit
spacelike vector field ξ2. Then we have the following orthogonal distribution

S(TM)⊥ = D⊥D⊥,

where D⊥ is the orthogonal complementary the distribution to D in S(TM)⊥. Thus
there exists a unique locally defined lightlike vector field N1 ∈ Γ(D⊥) such that

g(N1, ξ1) = 1, g(N1, N1) = g(N1, ξ2) = g(N1, e) = 0.(3.1.6)

Furthermore, the lightlike transversal vector bundle ltr(TM) is spanned by N1. Hence,
we have a local quasi orthonormal frame {ξ1, e, N1, ξ2} along α.

Let ∇ be the standard connection of R4
1 and ∇ be the induced connection on M ,

respectively. Then, from (2.7) and (3.1.5), we obtain

∇ξ1ξ1 = ∇ξ1ξ1 + h(ξ1, ξ1) =
1

1 + λv
α′′ =

a

1 + λv
ξ1 +

b

1 + λv
ξ2,(3.1.7)

∇ξ1e = ∇ξ1e + h(ξ1, e) =
1

1 + λv
e′ =

λ

1 + λv
ξ1,(3.1.8)

∇ξ1N1 = −AN1ξ1 +∇⊥ξ1
N1 = − λ

1 + λv
e− a

1 + λv
N1 + c ξ2,(3.1.9)

∇ξ1ξ2 = −Aξ2ξ1 +∇⊥ξ1
ξ2 = −c ξ1 − b

1 + λv
N1,(3.1.10)
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where a = g(α′′, N1), b = g(α′′, ξ2) and c = g(∇ξ1N1, ξ2) are smooth functions on I.
On the other hand, we have

∇eξ1 = ∇ee = ∇eN1 = ∇eξ2 = 0.(3.1.11)

From (2.7) and (3.1.7)-(3.1.11), we get

α′′ = a ξ1 + b ξ2,(3.1.12)

h(ξ1, ξ1) =
b

1 + λv
ξ2, h(ξ1, e) = h(e, e) = 0,(3.1.13)

AN1ξ1 =
λ

1 + λv
e, AN1e = 0,(3.1.14)

Aξ2ξ1 = c ξ1, Aξ2e = 0,(3.1.15)

and A∗ξ1
and h∗ are vanish on M .

It is known that a lightlike surface in the Lorentzian space is either totally geodesic
or totally umbilical [4].

Thus, from (3.1.12) and (3.1.13), we have the following theorem.

Theorem 3.1. Let M be a ruled surface of type I in R4
1. Then the following asser-

tions are equivalent:
(1) M is totally geodesic.
(2) b = 0.
(3) α′′ is a null vector.

Since the standard connection ∇ is a Levi-Civita connection, from (2.12), we
obtain

∇ξ1g = 0, ∇eg = 0.(3.1.16)

Thus, from(3.1.16), we have

Theorem 3.2. Let M be a ruled surface of type I in R4
1. Then the induced connection

∇ is always a metric connection.

Now we consider the asymptotic bundle A(u) of M . A(u) either 2-dimensional or
1-dimensional. If A(u) is 2-dimensional, then A(u) coincides with the tangent bundle
TM of M . If A(u) is 1-dimensional, then e′ = 0, i.e. M is a cylindrical ruled surface.
Hence, we have

Corollary 3.1. Let M be a ruled surface of type I in R4
1. If dimA(u) = 1 (resp.

dimA(u) = 2), then M is a cylindrical ruled surface (resp. a skew ruled surface).

From (3.1.4), we have the following corollary

Corollary 3.2. Let M be a ruled surface of type I in R4
1. Then α is a striction curve.
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Example 3.1. Consider the lightlike curve α in R4
1 given by

α(u) = (r + sin u, 0, r − sin u , 0), r ∈ R, u 6= kπ +
π

2
, k ∈ Z

and the unit spacelike vector field e along α is given by

e(u) = (cos u,
1√
2
, − cos u,

1√
2
).

Then the ruled surface M is parametrized by

φ(u, v) = α(u) + v e(u), v ∈ R.

Thus, we get

φu = (1 + vλ)α′, φv = e, g(φu, φv) = 0,

where λ = − tanu. Hence, the ruled surface M is a ruled surface of type I. Then,
the radical distribution Rad TM and the screen distribution S(TM) are spanned by
ξ1 = α′ and e, respectively. Furthermore, the lightlike transversal bundle ltr(TM) and
the screen canonical bundle D are spanned by

N1 = (−1 + 2 cos2 u

2 cos u
,−
√

2,
−1 + 2 cos2 u

2 cos u
, 0), ξ2 = (− cos u,− 1√

2
, cos u,

1√
2
),

respectively. Thus, we have the quasi-orthonormal frame {ξ1, e,N1, ξ2} of R4
1. Ac-

cording to the quasi-orthonormal frame {ξ1, e, N1, ξ2}, we obtain

∇ξ1ξ1 =
a

1 + λv
ξ1, a = − tanu, b = 0,

∇ξ1e =
λ

1 + λv
e, λ = − tan u,

∇ξ1N1 = − λ

1 + λv
e− a

1 + λv
N1 + c ξ2, c =

− tanu

1− v tan u
,

∇ξ1ξ2 = −cξ1.

This ruled surface is a totally geodesic ruled surface in R4
1.

Example 3.2. In R4
1 consider the lightlike curve α and the unit spacelike vector e

given by

α =
(

4
3
u3 + u,

√
2u2,

4
3
u3 − u,

√
2u2

)
, e =

(
0,

−1√
2
, 0,

−1√
2

)
,

respectively. Thus, we have the parametrization of a ruled surface M given by

φ(u, v) = α(u) + v e, u, v ∈ R.

It is easy to check that M is a lightlike ruled surface in R4
1. If we choose V =

(−1, 0, 0, 0), from (2.15), we obtain
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ξ1 = α′ = (4u2 + 1, 2
√

2 u, 4u2 − 1, 2
√

2 u),

e =
(

0,
−1√

2
, 0,

−1√
2

)
,

N1 =
1

2(4u2 + 1)2
(−(4u2 + 1), 2

√
2 u, 4u2 − 1, 2

√
2 u),

ξ2 =
1√

2(4u2 + 1)
(0, 4u2 − 1, −4

√
2 u, 4u2 − 1).

Furthermore, we get

λ = 0, a =
8u

4u2 + 1
, b = −4, c =

−2
(4u2 + 1)2

,

and
∇ξ1ξ1 = aξ1 + bξ2, ∇ξ1e = 0,

∇ξ1N1 = −aN1 + c ξ2, ∇ξ1ξ2 = −c ξ1 − bN1.

Hence, M is a cylindrical ruled surface of type I and it is totally umbilical.

3.2 Ruled Surfaces of Type II

Let M be a ruled surface of type II in R4
1 given by (2.18). Then, the curve α is a

spacelike curve in R4
1 and e is a null vector field along α such that g(α′, e) = 0. Since e

is a null vector along α, g(e′, e) = 0. Thus, from Lemma 2.1, e′ either e′ is a spacelike
vector, or e′ is a null vector, or e′ = 0. The tangent bundle TM of M is spanned by
{φu, φv}. If we set ξ1 = φv = e, then ξ1 is a degenerate vector field along α and the
radical distribution Rad TM of M is spanned by ξ1. The screen distribution S(TM)
of M is spanned by a unit spacelike vector field U , where we can take U = 1

‖φu‖φu.
Thus, we have a quasi-orthonormal frame field F = {ξ1, U,N1, ξ2} along M , where
ltr(TM) and D spanned by N1 and ξ2 which are a lightlike vector field and a unit
spacelike vector field along M , respectively, such that

g(ξ1, U) = g(ξ1, ξ2) = g(ξ2, N1) = 0, g(ξ1, N1) = 1.(3.2.1)

Proposition 3.1. Let M a ruled surface of type II in R4
1. Then the quasi-orthonormal

field of frame field F = {ξ1, U,N1, ξ2} of R4
1 along M is a quasi-orthonormal frame

along the curve α.

Proof: We prove the proposition with respect to the cases of e′.

i. We assume that e′ is a spacelike vector field along the curve α. Then, from
(3.2.1) we have g(α′, N1) = g(e′, N1) = 0 and g(α′, ξ2) = g(e′, ξ2) = 0, that is e′

belong to Γ(TM). Thus, we can choose U = α′.

ii. We assume that e′ is a null vector field along the curve α. Then, from Lemma
2.1, e and e′ are linear depended. Thus, we can write e′ = µ e, where µ is a real
parameter on I. Thus we choose U = φu − vµe = α′.
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iii. If e′ = 0, i.e. M is a cylindrical ruled surface, then U = α′. Hence we have the
assertion of the proposition. 2

From now on, we assume that the frame F is along the curve α.

According to the frame F , by the direct calculation, we have

∇ξ1ξ1 = ∇ξ1U = ∇ξ1N1 = ∇ξ1ξ2 = 0,(3.2.2)
∇Uξ1 = a11ξ1 + a12U = e′,(3.2.3)
∇UU = a21ξ1 − a12N1 + a24ξ2,(3.2.4)
∇UN1 = −a21U − a11N1 + a34ξ2,(3.2.5)
∇Uξ2 = −a34ξ1 − a24U,(3.2.6)

where a11 = g(∇Uξ1, N1), a12 = g(∇Uξ1, U), a21 = g(∇UU,N1), a24 = g(∇UU, ξ2)
and a34 = g(∇UN1, ξ2). From (3.2.2), we have

h(ξ1, ξ1) = h(ξ1, U) = 0, AN1ξ1 = Aξ2ξ1 = 0.(3.2.7)

Thus, from (3.2.7), we have the following corollary:

Corollary 3.3. Let M be a ruled surface of type II in R4
1 with the frame F =

{ξ1, U,N1, ξ2} along the curve α. Then, ξ1 is an eigenvector field for AN1 and Aξ2

with respect to eigenfunctions λ1 = 0 and λ2 = 0, respectively.

From (3.2.2)-(3.2.6), we have the following theorems:

Theorem 3.3. Let M be a ruled surface of type II in R4
1. Then the following asser-

tions are equivalent:
(1) M is totally geodesic.
(2) e′ is null vector field along the curve α and Aξ2 is Rad TM -valued.

On the other hand, from (2.7) and (3.2.2)-(3.2.6), for the basis {ξ1, U} of TM , we
have

h(ξ1, ξ1) = 0, h(ξ1, u) = 0, h(U,U) = −a12N + a24ξ2.(3.2.8)

If we set Z = −a12N + a24ξ2, then we can write

h(X,Y ) = g(X, Y )Z

for any X, Y ∈ Γ(TM). Thus the ruled surface of type II in R4
1 is also always a totally

umbilical ruled surface.

Theorem 3.4. Let M be a skew ruled surface of type II in R4
1. Then the induced

connection ∇ is a metric connection if and only if e′ is a null vector field along the
curve α.

Proof: Assume that ∇ is a metric connection on M . Then ∇Xg = 0, for any X ∈
Γ(TM). From (2.12) and (3.2.8), we obtain

(∇
U
g)(ξ1, U) = −a12.
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Thus, from (3.2.3), we get e′ = a11ξ1, i.e. e′ is a null vector field along α.
Conversely, let e′ be a null vector field along α. Then a12 = 0. From (2.12) and (3.2.8),
we get

∇ξ1g = 0, (∇U g)(ξ1, ξ1) = 0, (∇U g)(ξ1, U) = −a12 = 0, (∇U g)(U,U) = 0.

Hence, we have ∇
X

g = 0, for any X ∈ Γ(TM), that is ∇ is a metric connection. 2

Theorem 3.5. Let M a ruled surface of type II in R4
1. If M is a cylindrical ruled

surface, then the induced connection ∇ is a metric connection.

Proof: Let M be a cylindrical ruled surface. Then, from (3.2.3), we have a11 = a12 = 0.
Thus, A∗ξ1

is vanish on M . So ∇ is a metric connection. 2

Theorem 3.6. Let M be a ruled surface of type II in R4
1. M is a cylindrical ruled

surface if and only if the normal connection ∇⊥ is D-value.

Let M be a ruled surface of type II in R4
1. We want to find parametrized curve

γ(u) such that g(γ′(u), e′) = 0, u ∈ I, and γ(u) lies on the trace of φ; that is

γ(u) = α(u) + v(u)e(u),

for some real-valued function v = v(u). Assuming the existence of such a curve γ, we
obtain

γ′ = α′ + v′e + ve′.

Since g(e, e′) = 0, we have

v = −g(α′, e′)
g(e′, e′)

.

If e′ is a spacelike vector field along the curve α, then from Proposition 3.5, v 6= 0.
Hence α is not a striction line. If e′ is a null vector field along α, then from Lemma
2.1 α is a striction line.

Now, we consider the asymptotic bundle A(u) of M . If dim A(u) = 2 (resp.dim A(u) =
1), then e′ is a spacelike (resp. e′ is a null) vector field along the curve α.

Thus, we have the following theorem:

Theorem 3.7. Let M be a ruled surface of type II in R4
1. Then the following state-

ments are equivalent:
i) dim A(u) = 1.
ii) e′ is a null vector field along the curve α.
iii) α is a striction line.

Example 3.3. We consider the ruled surface given by

φ(u, v) = α(u) + ve(u), u 6= 0,

where α(u) = (0, 0, cos u, sin u) and e(u) = (u, u, 0, 0). Then we have
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φu = α′ + v e′ = (0, 0,− sin u, cos u) + v(1, 1, 0, 0),
φv = e = (u, u, 0, 0).

We can easily see that g(φu, φv) = g(e, e) = 0 and g(φu, φu) = 1. If we set
ξ1 = e and U = α′, then the radical distribution Rad TM and the screen dis-
tribution S(TM) are spanned by ξ1 and U , respectively. Moreover, we find that
N1 = −1

2u (1,−1, 0, 0) and ξ2 = (0, 0, cosu, sin u), then the lightlike transversal vec-
tor bundle ltr(TM) and the screen canonical affine normal bundle D are spanned
by N1 and ξ2, respectively. Hence, the quasi-orthonormal frame field of R4

1 along the
curve α is F = {ξ1, U,N1, ξ2}. According to this frame, we get

∇Uξ1 = e′ = a11ξ1,

∇UU = a24ξ2,

∇UN1 = −a11N1,

∇Uξ2 = −a24U1,

where a11 = 1
u , a24 = −1, a12 = a21 = a34 = 0. Thus the ruled surface M is a totally

umbilical surface.

We recall that the ruled surface M is intersect of the unit pseudo sphere S3
1 =

{(x1, x2, x3, x4) : −(x1)2+(x2)2+(x3)2+(x4)2 = 1} with the hypersurface x1−x2 = 0
in R4

1.

Example 3.4. Let α be a smooth curve in R4
1 given by α(u) = (0, u, f(u), 0) and

e = (1, 0, 0, 1), where f is an arbitrary smooth function. Then the ruled surface M is
parametrized by

φ(u, v) = α(u) + ve.

Thus we have

φu = α′ = (0, 1, f ′(u), 0), φv = e.

Here α is aspacelike curve and e is a lightlike vector field along α. The radical distri-
bution Rad TM is spanned by ξ1 = e and the screen distribution S(TM) is spanned
by the unit spacelike vector field U = 1

‖α′‖ α′. Hence we get

N1 =
1
2
(−1, 0, 0, 1), ξ2 =

1√
1 + f ′(u)2

(0, f ′(u),−1, 0),

where ltr(TM) is spanned by N1 which is a lightlike vector field and D is spanned
by ξ2 which is a unit spacelike vector field. Then M is a cylindrical ruled surface of
type II. It is easy calculated that a11 = a12 = a21 = a34 = 0, a24 = −f ′′(u)

(1+f ′(u)2)
3
2
. Thus

we obtain
∇Uξ1 = e′ = 0, ∇UU = a24ξ2,

∇UN1 = 0, ∇Uξ2 = −a24U.

Hence M is a totally umbilical ruled surface and the induced connection ∇ is a metric
connection.
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